
Ecole Polytechnique Fédérale de Lausanne Alexandre Caboussat
Analyse numérique (GM) / MATH-251(e) Printemps 2025

Corrigé 6

Exercice 1

1.a) On peut écrire le problème sous la forme ~F (~x) = ~0 où ~x =

(
x1
x2

)
et

~F (~x) =

(
F1(x1, x2, . . . , xN)
F2(x1, x2, . . . , xN)

)
=

(
(1 + (x1 − x2)2)2x1 − x2 − 1
−x1 + (1 + (x2 − x1)2)2x2 − 1

)
= 0.

1.b) Soit ~y =

(
y1
y2

)
∈ R2. On a

D~F (~y) =

2 + 2(y1 − y2)(3y1 − y2) −1− 4y1(y1 − y2)

−1− 4y2(y2 − y1) 2 + 2(y2 − y1)(3y2 − y1)

 .

1.c) Le premier pas de la méthode de Newton s’écrit: étant donné ~x0 =
(

0
0

)
trouve ~x1

tel que
D~F (~x0)(~x0 − ~x1) = ~F (~x0).

En pratique, on résoud le système linéaire D~F (~x0)~y = ~F (~x0) où ~y =

(
y1
y2

)
et on

pose ~x1 = ~x0 − ~y. En effectuant le calcul avec ~x0 =
(

0
0

)
, on obtient:

(
2 −1
−1 2

)(
y1
y2

)
=

(
−1
−1

)
,

soit

~y =

(
y1
y2

)
=

(
−1
−1

)
,

et donc

~x1 =

(
1
1

)
.

Pour trouver ~x2, on résoud le système linéaire D~F (~x1)~y = ~F (~x1) et on pose ~x2 =
~x1 − ~y. Puisque ~F (~x1) = 0, alors ~y = ~0, et donc

~x2 =

(
1
1

)
= ~x1,

qui est bien une solution du problème.

Exercice 2

2.a) En écrivant le système linéaire sous la forme ~F (~x) = ~0, où ~F : RN → RN est une
fonction vectorielle, on obtient :

~F (~x) =


F1(x1, x2, . . . , xN)
F2(x1, x2, . . . , xN)

...
FN (x1, x2, . . . , xN)

 ,

les fonctions Fi étant définies par :

Fi(x1, x2, . . . , xN) = −xi−1 + 2xi − xi+1 + exi i = 1, 2, . . . , N.

2.b) La matrice jacobienne associée au système non-linéaire s’écrit :

D~F (~x) =



∂F1(~x)

∂x1

∂F1(~x)

∂x2
. . .

∂F1(~x)

∂xN
∂F2(~x)

∂x1

∂F2(~x)

∂x2
. . .

∂F2(~x)

∂xN
...

...
...

∂FN (~x)

∂x1

∂FN (~x)

∂x2
. . .

∂FN (~x)

∂xN



=



2 + ex1 −1
−1 2 + ex2 −1 0

−1 2 + ex3 −1
.

0 −1
−1 2 + exN


.

2.c) Pour que l’algorithme soit toujours bien défini, il est nécessaire qu’à chaque pas le
système linéaire A~y = ~b avec A = D~F (~xn), ~b = ~F (~xn) puisse être résolu. Ceci est
possible si la matrice A est symétrique définie positive donc régulière. Pour N = 2
la matrice jacobienne s’écrit :

A = D~F (~x) =

(
2 + ex1 −1
−1 2 + ex2

)
.

On a clairement A = AT et, pour tout ~y = (y1, y2) ∈ R2,

~yTA~y = (1 + ex1)y21 + (1 + ex2)y22 + (y1 − y2)2 > 0.

Donc ~yTA~y = 0 si et seulement si ~y = 0.

2.d) Les lignes de l’algorithme, une fois complétées, sont les suivantes :
1 function [x] = newtsys(N, max_iter = 1000)
2 %
3 % Methode de Newton : Etant donne x^n, trouver x^{n+1}
4 % tel que DF(x^n)(x^n - x^{n+1}) = F(x^n)

2

5 % En pratique on construit A=DF(x^n), b=F(x^n)
6 % on resoud Ay=b et on pose x^{n+1}=x^n-y
7 %
8 % parametres
9 % --

10 % N : nombre d inconnues du systeme non lineaire
11 % x : N-vecteur , contient x^n puis x^{n+1}
12

13 x = ones(N,1);
14

15 stop = 1;
16 iter = 0;
17 while stop >1e-10 && iter < max_iter
18 iter = iter + 1;
19

20 A = jacobian(x);
21 b = func(x);
22

23 y = A \ b;
24 x = x - y;
25

26 stop = norm(y) / norm(x);
27 fprintf(’iter=%i, stop = %e \n’,iter ,stop)
28 end
29 end

1 function [df] = jacobian(x)
2 N = length(x);
3 df = zeros(N,N);
4

5 df(1,1) = 2 + exp(x(1));
6 df(1,2) = -1;
7 df(N,N) = 2 + exp(x(N));
8 df(N,N-1) = -1;
9

10 for i = 2 : N-1
11 df(i,i) = 2 + exp(x(i));
12 df(i, i-1) = -1;
13 df(i, i+1) = -1;
14 end
15

16 end

1 function [FF] = func(x)
2 N = length(x);
3 FF = zeros(N,1);
4

5 FF(1) = 2*x(1) + exp(x(1)) - x(2);
6 FF(N) = 2*x(N) + exp(x(N)) - x(N-1);
7 for i = 2 : N-1
8 FF(i) = 2*x(i) + exp(x(i)) - x(i-1) - x(i+1);
9 end

10

11 end

2.e) Dans la méthode de Newton-corde, la matrice jacobienne est évaluée une unique fois
lors de l’initialisation.

1 function [x] = newtcorde(N, max_iter = 1000)
2 %

3

3 % Methode de Newton -Corde : Etant donne x^n, trouver x^{n+1}
4 % tel que DF(x^0)(x^n - x^{n+1}) = F(x^n)
5 % En pratique on construit A=DF(x^0), b=F(x^n)
6 % on resoud Ay=b et on pose x^{n+1}=x^n-y
7 %
8 % parametres
9 % --

10 % N : nombre d inconnues du systeme non lineaire
11 % x : N-vecteur , contient x^n puis x^{n+1}
12

13 x = ones(N,1);
14

15 stop = 1;
16 iter = 0;
17 A = jacobian(x);
18

19 while stop >1e-10 && iter < max_iter
20 iter = iter + 1;
21

22 b = func(x);
23

24 y = A \ b;
25 x = x - y;
26

27 stop = norm(y) / norm(x);
28 fprintf(’iter=%i, stop = %e \n’,iter ,stop)
29 end
30 end

2.f) La vitesse de convergence peut-être obtenue en regardant la discrépance. C’est égale-
ment cette grandeur que l’on peut utiliser comme critère d’arrêt pour les algorithmes
de résolution, elle est définie par : ∥∥xn+1 − xn

∥∥
‖xn+1‖

.

Le tableau ci-dessous présente les résultats obtenus pour N = 5 points et n = 5
itérations de la méthode de Newton et de la méthode de Newton-corde. L’algorithme
de Newton converge plus rapidement que celui de Newton-corde; la précision atteinte
après 5 itérations étant beaucoup plus grande.

Méthode de Newton
n xn1 xn2 xn3 xn4 xn5

||xn+1−xn||
||xn+1||

0 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 5.0706e+31
2 -0.6111 -0.8333 -0.8888 -0.8333 -0.6111 1.0000e+00
3 -0.8185 -1.2070 -1.3232 -1.2070 -0.8185 9.2272e-02
4 -0.8418 -1.2529 -1.3787 -1.2529 -0.8418 1.2969e-03
5 -0.8421 -1.2535 -1.3793 -1.2535 -0.8421 1.8307e-07

4

Méthode de Newton-corde
n yn1 yn2 yn3 yn4 yn5

||yn+1−yn||
||yn+1||

0 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 5.0706e+31
2 -0.2858 -0.3487 -0.3597 -0.3487 -0.2858 1.0000e+00
3 -0.4450 -0.5714 -0.5973 -0.5714 -0.4450 1.4669e-01
4 -0.5464 -0.7277 -0.7692 -0.7277 -0.5464 4.4029e-02
5 -0.616 -0.8426 -0.8985 -0.8426 -0.6161 1.7693e-02

Exercice 3

3.a) Le calcul donne, écrit par composante:

∂

∂yk
L(~y) =

(
A~y −~b

)
k
+ (yk)

3 k = 1, . . . , N.

3.b) Puisque ~x est le minimum de L, sa dérivée doit être nulle, donc satisfaire ~gradL(~x) =
~0, ce qui correspond à :

A~x−~b+

 (x1)
3

...
(xN)3

 = ~0

3.c) Étant donné ~x0, n = 0, 1, 2, . . . , la méthode de Newton s’écrit, pour trouver ~xn+1

à partir de ~xn:
DF (~xn)

(
~xn+1 − ~xn

)
= −~F (~xn) (1)

On a explicitement les composantes de la matrice jacobienne, avec i, j = 1, . . . , N :

(DF (~y))ij =
∂Fi

∂yj
(~y) =

∂

∂yj

(
(A~y −~b)i + (yi)

3
)
=

∂

∂yj

(
N∑
k=1

Aikyk − bi + (yi)
3

)
= Aij+3(yj)

2δij ,

où on a noté

δij =

{
1 si i = j,
0 si i 6= j

.

La symétrie est évidente. Reste à prouver la positivité. Pour tout ~y, ~z ∈ RN on a:

~zT (DF (~y))~z = ~zTA~z + ~zT

3(y1)
2 (0)

. . .
(0) 3(yN)2

~z = ~zTA~z + 3
N∑
k

(yk)
2(zk)

2 > 0.

On a aussi que ~zT (DF (~y))~z = 0 =⇒ ~zTA~z = 0 =⇒ ~z = ~0. Donc la matrice
jacobienne DF (~y) est bien symétrique définie positive pour tout ~y ∈ RN .

5

	
	
	

