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Exercice 1

1.a) L’algorithme de Gauss-Seidel est le suivant:
1 function [x_new] = gaussseidel(A, b, max_iter)
2

3 % parametres:
4 % - A: matrice tridiagonal
5 % - b: rhs
6 % - max_iter: nombre maximal d’iterations
7

8 % initialization
9 N = length(A);

10 x_old = zeros(N,1);
11 x_new = zeros(N,1);
12

13

14 for n = 1 : max_iter
15 x_new (1) = (b(1) - A(1,2) * x_old (2)) / A(1,1);
16 for i = 2 : N-1
17 x_new(i) =(b(i) - A(i,i-1) * x_new(i-1) - A(i,i+1) * x_old(i

+1)) / A(i,i);
18 end
19 x_new(N) = (b(N) - A(N,N-1) * x_new(N-1)) / A(N,N);
20

21 discrepance = norm(x_new - x_old) / norm(x_new);
22

23 if discrepance < 0.0001
24 fprintf(’ convergence obtenue a l’’iteration %d \n’,n)
25 break
26 else
27 x_old = x_new;
28 fprintf(’ iteration %d discrepance %e \n’, n, discrepance)
29 end
30 end
31

32 end

1.b) Le tableau suivant contient le nombre d’itérations en fonction de N :



N Nombre d’itérations

2 8

4 21

8 59

16 171

32 499

64 1368

On constate que le nombre d’itérations est multiplié par au moins 2 chaque fois que
N est multiplié par 2. Le nombre d’itérations est donc au moins O(N). A chaque
itération de la méthode de Gauss-Seidel, il faut faire O(N) opérations. Donc, le
nombre total d’opérations est au moins O(N2).

Exercice 2

2.a) En appliquant le schéma de Jacobi à ce système linéaire, on obtient:(
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Ceci donne par récurrence:
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Ainsi, α = 1
4 et β = 3

4 .

2.b) On montre par récurrence que, si xn+1
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Exercice 3

3.a) On a:

~r0 = ~b−A~x0 =
(
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)
,

2



z1 = −Ar0 =
(
−1
−1

)
,

α1 =
||~r 0||2

(~r0)T ~z1
= −1,
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(
1
1

)
.

Dans ce cas particulier, on a convergé en une itération!

Exercice 4

4.a) Notons Gω =

(
g11 g12
g21 g22

)
. La définition du cours donne l’égalité suivante :
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Il s’agit donc de résoudre les deux systèmes linéaires 2
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ce qui est une tâche aisée puisque la matrice est triangulaire. Nous obtenons bien
g11 = 1−ω, g21 = ω(1−ω)/2, puis g12 = ω/2, g22 = 1−ω+ω2/4. Nous avons donc
bien montré l’expression de la matrice Gω.

4.b) Par définition, la matrice de Jacobi est donnée par :
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et donc, pour tout nombre λ, nous avons

det(J − λI) = det
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Donc, det(J − λI) = 0 pour λ = ±1/2 et par conséquent ρ(J) = 1/2. On déduit du
résultat du cours que ωopt = 8− 4
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