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Corrigé 4

Exercice 1

Comme A est supposée symétrique définie positive, il existe une unique matrice triangulaire
inférieure L a valeurs diagonales positives telle que A = LLT. Comme A est une matrice
de bande de demi-largeur ¢ = 2, la matrice L est aussi de bande de demi-largeur ¢/ = 2.
L’équation A = LLT s’écrit donc
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En identifiant les deux matrices colonne par colonne, on peut compléter le fichier chol1.m:

function [b]l=choll (N)
b
% remplissage de la matrice A et du second membre b
h
for i=1:N
a(i)=2.;
c(i)=-1;
b(i)=1.;
end
h
% algorithme de cholesky

2 %
s a(1)=sqrt(a(l));

for i=1:N-1
c(i) = c(i)/a(i);
a(i+1) = sqrt(a(i+1)-c(i)*c(i));

7 end

s

% resolution du systeme lineaire Ly = b */
%
b(1)=b(1)/a(1);
for i=1:N-1
b(i+1) = (b(i+1)-c(i)*b(i))/a(i+1);




26 % resolution du systeme lineaire L°T x =y */
27 %
28 b(N)=b(N)/a(N);

29 for i=N-1:-1:1

30 b(i) = (b(i)-c(i)*b(i+1))/a(i);
31 end

Exercice 2

2.a) Il suffit de montrer que les k x k-matrices

a d
Ay, = a 0 : k=1,..,N—1,
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sont régulieres, i.e. que dét(Ag) # 0. Or on a dét(A;) = a # 0 et dét(Ag) =
adét(Ay_1) pour tout k = 2,..., N — 1. Ainsi dét(Az) = a* # 0 et toutes les sous-
matrices principales A de A sont réguliéres.

2.b) Vérifions que la multiplication de L et de U donne bien une matrice de la forme de
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2.c) Entrées / Sorties :

Entrées : a, d, cet b.
Sorties :  le N-vecteur m pour décrire L,
la solution ¥ de AZ = best stockée dans le vecteur b.

Décomposition LU :
mypi=c

d:=
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m; :=c—my_1%d



Résolution (d’abord Lj = b, puis UZ = 7) :

Faire i=1 a (N -1)

puis
Faire ¢i=(N—-1) a 1 (pasde —1)
bi = bi —d* bi+1

Exercice 3

3.a) A est symétrique. Pour montrer que A est symétrique définie positive, il faut prouver

que ZTAZ > 0 VZ € R2, & # 0. Soit 7 = (il) avec T # 0. On a:
2
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3.b) On a:

t= (e vim)



	
	
	

