
Ecole Polytechnique Fédérale de Lausanne Alexandre Caboussat
Analyse numérique (GM) / MATH-251(e) Printemps 2025
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Exercice 1

Comme A est supposée symétrique définie positive, il existe une unique matrice triangulaire
inférieure L à valeurs diagonales positives telle que A = LLT . Comme A est une matrice
de bande de demi-largeur ` = 2, la matrice L est aussi de bande de demi-largeur ` = 2.
L’équation A = LLT s’écrit donc
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En identifiant les deux matrices colonne par colonne, on peut compléter le fichier chol1.m:
1 function [b]=chol1(N)
2 %
3 % remplissage de la matrice A et du second membre b
4 %
5 for i=1:N
6 a(i)=2.;
7 c(i)=-1;
8 b(i)=1.;
9 end

10 %
11 % algorithme de cholesky
12 %
13 a(1)=sqrt(a(1));
14 for i=1:N-1
15 c(i) = c(i)/a(i);
16 a(i+1) = sqrt(a(i+1)-c(i)*c(i));
17 end
18 %
19 % resolution du systeme lineaire Ly = b */
20 %
21 b(1)=b(1)/a(1);
22 for i=1:N-1
23 b(i+1) = (b(i+1)-c(i)*b(i))/a(i+1);



24 end
25 %
26 % resolution du systeme lineaire L^T x = y */
27 %
28 b(N)=b(N)/a(N);
29 for i=N-1: -1:1
30 b(i) = (b(i)-c(i)*b(i+1))/a(i);
31 end

Exercice 2

2.a) Il suffit de montrer que les k × k-matrices

Ak =


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sont régulières, i.e. que dét(Ak) 6= 0. Or on a dét(A1) = a 6= 0 et dét(Ak) =
adét(Ak−1) pour tout k = 2, ..., N − 1. Ainsi dét(Ak) = ak 6= 0 et toutes les sous-
matrices principales Ak de A sont régulières.

2.b) Vérifions que la multiplication de L et de U donne bien une matrice de la forme de
A : 
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2.c) Entrées / Sorties :

Entrées : a, d, c et ~b.
Sorties : le N -vecteur ~m pour décrire L,

la solution ~x de A~x = ~best stockée dans le vecteur ~b.

Décomposition LU :

m1 := c

d :=
d

a[
Faire i = 2 à N

mi := c−mi−1 ∗ d
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Résolution (d’abord L~y = ~b, puis U~x = ~y) :
Faire i = 1 à (N − 1)

bi :=
bi
a

bN := bN −mi ∗ bi

bN :=
bN
mN

puis[
Faire i = (N − 1) à 1 (pas de − 1)

bi := bi − d ∗ bi+1

Exercice 3

3.a) A est symétrique. Pour montrer que A est symétrique définie positive, il faut prouver

que ~xTA~x > 0 ∀~x ∈ R2, ~x 6= ~0. Soit ~x =
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)
, avec ~x 6= ~0. On a:
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