
Ecole Polytechnique Fédérale de Lausanne Alexandre Caboussat
Analyse numérique (GM) / MATH-251(e) Printemps 2025

Corrigé 3 (b) - Révisions

Exercice 1

1.a) Les vérifications sont immédiates.

1.b) Après calcul, on trouve les polynômes suivants :

ϕ0(t) =
(t− 1)2

(
t− 1

2

)
(4t+ 1)

−1/2
;

ϕ1/2(t) =
t2 (t− 1)2

1/16
;

ϕ1(t) =
t2
(
t− 1

2

)
(4t− 5)

−1/2
;

ψ0(t) =
t
(
t− 1

2

)
(t− 1)2

−1/2
;

ψ1(t) =
t2
(
t− 1

2

)
(t− 1)

1/2
.

Effectuons le détail des calculs pour ϕ0. On considère le polynôme q(t) = (t−1)2(t−
1/2)(αt+ β). Ce polynôme satisfait bien évidemment

q(1) = q(1/2) = 0, q′(1) = 0.

Il suffit de trouver α et β tel que q′(0) = 0 puis de poser ϕ0(t) = q(t)
q(0) pour obtenir le

résultat.

1.c) Les polynômes ϕ0, ϕ1/2, ϕ1, ψ0, ψ1 sont linéairement indépendants; en effet, consid-
érons une combinaison linéaire nulle de ces quatre fonctions

q(t) = α0ϕ0(t) + α1ϕ1/2(t) + α2ϕ1(t) + α3ψ0(t) + α4ψ1(t) = 0, ∀t ∈ R

et montrons que αi = 0, i = 0, . . . , 4. En évaluant q(t) en t = 0 (resp. t = 1/2 et
t = 1) on obtient α0 = 0 (resp. α1 = 0 et α2 = 0). Puis en évaluant q′(t) en t = 0 et
t = 1, on conclut que α3 = 0 et α4 = 0.

Une famille de cinq polynômes de P4 linéairement indépendants forme une base de
P4 car dimP4 = 5.



1.d) On obtient :

p(0) = p0 ϕ0(0)︸ ︷︷ ︸
=1

+p1/2 ϕ1/2(0)︸ ︷︷ ︸
=0

+p1 ϕ1(0)︸ ︷︷ ︸
=0

+q0 ψ0(0)︸ ︷︷ ︸
=0

+q1 ψ1(0)︸ ︷︷ ︸
=0

= p0,

p′(0) = p0 ϕ
′
0(0)︸ ︷︷ ︸
=0

+p1/2 ϕ
′
1/2(0)︸ ︷︷ ︸
=0

+p1 ϕ
′
1(0)︸ ︷︷ ︸
=0

+q0 ψ
′
0(0)︸ ︷︷ ︸
=1

+q1 ψ
′
1(0)︸ ︷︷ ︸
=0

= p′0.

De même, on évalue p(1) et p′(1) pour conclure que ce polynôme vérifie les relations
(1) et (2). On note pour conclure que

p(1/2) = p0 ϕ0(1/2)︸ ︷︷ ︸
=0

+p1/2 ϕ1/2(1/2)︸ ︷︷ ︸
=1

+p1 ϕ1(1/2)︸ ︷︷ ︸
=0

+q0 ψ0(1/2)︸ ︷︷ ︸
=0

+q1 ψ1(1/2)︸ ︷︷ ︸
=0

= p1/2.

Donc p(t) satisfait la relation (3).

Exercice 2

Dans le cours, on a défini l’opérateur de différence première progressive appliqué à f au
point x0 par

∆hf(x0) = f(x0 + h)− f(x0).

En utilisant la définition récursive de ces opérateurs, ∆m
h f = ∆h(∆m−1

h f), m > 2,
on obtient successivement les expressions de l’opérateur de différence seconde ∆2

h et de
l’opérateur de différence quatrième ∆4

h :

∆2
hf(x0) = f(x0 + 2h)− 2f(x0 + h) + f(x0) et

∆4
hf(x0) = f(x0 + 4h)− 4f(x0 + 3h) + 6f(x0 + 2h)− 4f(x0 + h) + f(x0).

D’autre part, le développement limité à l’ordre 5 de la fonction f autour du point x0 nous
assure que

f(x0 + 4h) = f(x0) + f ′(x0)
4h

1!
+ f ′′(x0)

(4h)2

2!
+ f (3)(x0)

(4h)3

3!
+ f (4)(x0)

(4h)4

4!
+ f (5)(η1)

(4h)5

5!
,

f(x0 + 3h) = f(x0) + f ′(x0)
3h

1!
+ f ′′(x0)

(3h)2

2!
+ f (3)(x0)

(3h)3

3!
+ f (4)(x0)

(3h)4

4!
+ f (5)(η2)

(3h)5

5!
,

f(x0 + 2h) = f(x0) + f ′(x0)
2h

1!
+ f ′′(x0)

(2h)2

2!
+ f (3)(x0)

(2h)3

3!
+ f (4)(x0)

(2h)4

4!
+ f (5)(η3)

(2h)5

5!
,

f(x0 + h) = f(x0) + f ′(x0)
h

1!
+ f ′′(x0)

h2

2!
+ f (3)(x0)

h3

3!
+ f (4)(x0)

h4

4!
+ f (5)(η4)

h5

5!
,

où η1 ∈ [x0, x0 + 4h], η2 ∈ [x0, x0 + 3h], η3 ∈ [x0, x0 + 2h] et η4 ∈ [x0, x0 + h]. Après
substitution, on obtient

∆4
hf(x0) = f (4)(x0)h

4 +
[
1024f (5)(η1)− 972f (5)(η2) + 192f (5)(η3)− 4f (5)(η4)

] h5
5!
.
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L’erreur de troncature devient donc

∣∣∣∣f (4)(x0)− ∆4
hf(x0)

h4

∣∣∣∣ =
∣∣∣−1024f (5)(η1) + 972f (5)(η2)− 192f (5)(η3) + 4f (5)(η4)

∣∣∣ h
5!

6
1024 + 972 + 192 + 4

5!
max

x∈[x0,x0+4h]

∣∣∣f (5)(x)
∣∣∣ h .

Soit h0 > 0 un nombre arbitraire et posons

C =
274

15
max

x∈[x0,x0+4h0]

∣∣∣f (5)(x)
∣∣∣ .

Pour tout h 6 h0 nous avons donc

∣∣∣∣f (4)(x0)− ∆4
hf(x0)

h4

∣∣∣∣ 6 Ch.

Exercice 3

Notons t1 = −1, t2 = α et t3 = +1. On considère la base de Lagrange ϕ1, ϕ2, ϕ3 de P2

associée à ces points. Tout polynôme p de degré 2 peut donc s’écrire comme

p(t) = p(t1)ϕ1(t) + p(t2)ϕ2(t) + p(t3)ϕ3(t),

où

ϕ1(t) =
(t− α)(t− 1)

2(1 + α)
, ϕ2(t) =

(t+ 1)(t− 1)

(α+ 1)(α− 1)
et ϕ3(t) =

(t+ 1)(t− α)

2(1− α)
.

3.a) Supposons J(p) =

∫ +1

−1
p(t)dt pour tout polynôme p de degré 2. Ceci est équivalent

à

J(ϕk) =

∫ +1

−1
ϕk(t)dt, ∀ k = 1, 2, 3.

Ainsi: 

ω1 =

∫ +1

−1
ϕ1(t)dt =

1
3 + α

1 + α
, pour k = 1,

ω2 =

∫ +1

−1
ϕ2(t)dt =

4

3(1− α2)
, pour k = 2,

ω3 =

∫ +1

−1
ϕ3(t)dt =

1
3 − α
1− α

, pour k = 3.

(1)
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Avec ces choix de ωi, i = 1, 2, 3, notre formule de quadrature intègre exactement tous
les polynômes de degré 2, quel que soit α ∈]− 1,+1[.

3.b) Un polynôme p quelconque de degré 3 peut toujours être écrit comme p(t) = at3+q(t)
où q est un polynôme de degré 2. Notre formule de quadrature est exacte pour tous
les polynômes de degré 3 si elle intègre exactement chacun des termes at3 et q(t). Les
égalités J(p) =

∫ +1
−1 p(t)dt ∀ p ∈ P3, sont équivalentes à

a(ω1t
3
1 + ω2t

3
2 + ω3t

3
3) + J(q) = a

∫ +1

−1
t3dt+

∫ +1

−1
q(t)dt ∀ a ∈ R, ∀ q ∈ P2.

Comme d’après le point a) nous savons que J(q) =
∫ +1
−1 q(t)dt ∀ q ∈ P2, il suffit de

chercher α tel que ω1t
3
1 +ω2t

3
2 +ω3t

3
3 =

∫ +1
−1 t

3dt. En utilisant (1) cette relation s’écrit
(1 + 3α)(α− 1) + 4α3 + (1− 3α)(α+ 1) = 0, dont la seule solution dans l’intervalle
]− 1,+1[ est α = 0. Les poids deviennent alors ω1 = 1/3, ω2 = 4/3, ω3 = 1/3.

3.c) La formule de Simpson est J(g) = 1
3g(−1) + 4

3g(0) + 1
3g(1). C’est bien la formule de

quadrature que nous obtenons au point précédent. Nous avons donc démontré que la
formule de Simpson intègre exactement les polynômes de degré 3.
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