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Corrigé 3

Exercice 1

On cherche une formule de quadrature à M = 2 points t1 = −α, t2 = α (avec 0 < α 6 1)
donnée par :

J(g) = ω1g(−α) + ω2g(α),

1.a) Selon le résultat du cours, la formule de quadrature est exacte à l’ordre M − 1 = 1,
si et seulement si les poids ω1 et ω2 sont donnés par :

ωi =

∫ +1

−1
ϕi(t)dt, i = 1, 2,

où les ϕi(t) sont les fonctions de la base de Lagrange associées aux points t1 et t2.
Dans notre cas, on a ϕ1(t) =

1
2 −

t
2α et ϕ2(t) =

1
2 + t

2α .

Après calcul, on obtient que les poids sont donnés par ω1 = ω2 = 1 et la formule de
quadrature J(g) = g(−α)+ g(α) est exacte pour des polynômes de degré 1 pour tout
0 < α 6 1.

1.b) Soit p un polynôme de degré 2. On a p(t) = at2+ q(t) où a ∈ R et q est un polynôme
de degré 1. On a donc J(p) =

∫ +1
−1 p(t)dt ∀p ∈ P2, si et seulement si:

a(ω1t
2
1 + ω2t

2
2) + J(q) = a

∫ +1

−1
t2dt+

∫ +1

−1
q(t)dt ∀a ∈ R, ∀q ∈ P1.

Comme d’après le point 1.a nous savons que J(q) =
∫ +1
−1 q(t)dt,∀q ∈ P1, la formule

de quadrature est exacte pour les polynômes de degré 2 si et seulement si α est tel
que ω1t

2
1 + ω2t

2
2 =

∫ +1
−1 t

2dt, c’est-à-dire si α2 + α2 = 2
3 , i.e

α =
1√
3
.

La formule de quadrature J(g) = g(− 1√
3
)+g( 1√

3
) est donc exacte pour les polynômes

de degré 2. Lorsque g(t) = t3, on a J(g) =
∫ +1
−1 g(t)dt = 0, la formule de quadrature

J(g) = g(− 1√
3
) + g( 1√

3
) est donc exacte pour les polynômes de degré 3. On vérifie

sans peine que, pour g(t) = t4, J(g) = 2
9 6=

2
5 =

∫ +1
−1 g(t)dt, et donc la formule n’est

plus exacte pour les polynômes de degré 4.



Exercice 2

2.a) Par intégration par parties, on obtient :∫ 1

0
x2exdx =

[
x2ex

]1
0
−
∫ 1

0
2xexdx =

[
x2ex − 2xex

]1
0
+

∫ 1

0
2exdx = e− 2.

2.b) Le fichier integration.m est le suivant:
1 function [err_trap , err_gau2 ]= integration(N)
2 % ---------------------------
3 % Etant donne un entier N, on integre numeriquement la fonction f
4 % definie ci-apres sur l’intervalle [a,b] dont les bornes sont
5 % definies ci-dessous.
6 %
7 % parametres
8 % ----------
9 % N : nombre d’intervalles pour la discretisation de [a,b]

10 % sorties
11

12 % Bornes de l’intervalle
13 a = 0.;
14 b = 1.;
15

16 % Fonction f a integrer
17 % voir fin du fichier
18

19 % Valeur exacte de l’integrale de f sur [a,b] = [0,1]
20

21 exact = exp (1) - 2;
22 % Pas d’espace
23 h = (b-a)/N;
24

25 % Formule du trapeze
26 % ------------------
27

28 Lhtrap = 0.;
29 for i=0:N-1
30 xi=a+i*h;
31 Lhtrap = Lhtrap +0.5*h*(f(xi)+f(xi+h));
32 end
33

34 % Formule de Gauss a deux points
35 % ------------------------------
36

37 Lhgau2 = 0.;
38

39 for i=0:N-1
40 xi=a+i*h;
41 Lhgau2 = Lhgau2 + 0.5*h*(f(xi +0.5*h*( -1/( sqrt (3))+1))+f(xi+0.5*h

*(1/( sqrt (3))+1)));
42 end
43

44 err_trap = abs(exact -Lhtrap);
45 err_gau2 = abs(exact -Lhgau2);
46 end

2.c) L’erreur en fonction de h en échelle log-log est représentée ci-dessous:
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Sur ce graphique, nous constatons que la formule du trapèze correspond à une droite
de pente 2, alors que la formule de Gauss à deux points correspond à une droite de
pente 4. Nous avons donc vérifé numériquement les estimations d’erreur (3).

Exercice 3

On considère la base de Lagrange ϕ1, ϕ2, ϕ3 de P2 associée à t1, t2 et t3. Tout polynôme
p de degré 2 peut donc s’écrire comme

p(t) = p(t1)ϕ1(t) + p(t2)ϕ2(t) + p(t3)ϕ3(t),

où

ϕ1(t) =
(t− t2)(t− t3)
(t1 − t2)(t1 − t3)

, ϕ2(t) =
(t− t1)(t− t3)
(t2 − t1)(t2 − t3)

et ϕ3(t) =
(t− t1)(t− t2)
(t3 − t1)(t3 − t2)

.

3.a) On sait que J(p) =
∫ +1

−1
p(t)dt pour tout polynôme p de degré 2 si et seulement si

ωj =

∫ +1

−1
ϕj(t)dt, ∀ j = 1, 2, 3.

Ainsi, 

ω1 =

∫ +1

−1
ϕ1(t)dt =

2

3t1(t1 − t3)
,

ω2 =

∫ +1

−1
ϕ2(t)dt =

1

t1t3

(
2

3
+ 2t1t3

)
,

ω3 =

∫ +1

−1
ϕ3(t)dt =

2

3t3(t3 − t1)
.

3.b) Posons t2 = 0 et t1 = −t3 = −α, α ∈]0,+1]. Les poids correspondants sont alors
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donnés par 
ω1 =

1

3α2
,

ω2 = 2− 2

3α2
,

ω3 =
1

3α2
.

Un polynôme p quelconque de degré 3 peut toujours être écrit comme p(t) = at3+q(t)
où q est un polynôme de degré 2 et a un réel donné. Notre formule de quadrature
est exacte pour tous les polynômes de degré 3 si elle intègre exactement chacun des

termes at3 et q(t). Donc J(p) =
∫ +1

−1
p(t)dt pour tout polynôme p de degré 3 si et

seulement si

a(ω1t
3
1 + ω2t

3
2 + ω3t

3
3) + J(q) = a

∫ +1

−1
t3dt+

∫ +1

−1
q(t)dt.

D’après le point précédent, nous savons que J(q) =
∫ +1

−1
q(t)dt pour tout polynôme

q de degré 2. Il suffit donc de vérifier que ω1t
3
1+ω2t

3
2+ω3t

3
3 =

∫ +1

−1
t3dt. En utilisant

l’expression des poids déterminée ci-dessus, cette relation s’écrit (−α)3 1

3α2
+ 0 +

α3 1

3α2
= 0, ce qui est vérifié pour tout α ∈]0,+1]. La formule de quadrature est

donc exacte pour les polynômes de degré 3 lorsque t1 = −α, t2 = 0 et t3 = α,
∀α ∈]0,+1].

3.c) D’après le point précédent, nous savons que J(q) =
∫ +1

−1
q(t)dt pour tout polynôme

q de degré 3 si t2 = 0 et t1 = −t3 = −α, α ∈]0,+1]. Pour que notre formule
de quadrature soit exacte pour tout polynôme q de degré 4, il suffit de vérifier que

ω1t
4
1+ω2t

4
2+ω3t

4
3 =

∫ +1

−1
t4dt. En utilisant les poids ci-dessus, on obtient (−α)4 1

3α2
+

0 + α4 1

3α2
=

2

5
. Comme α ∈]0,+1], cette relation est vraie lorsque α =

√
3

5
et,

dans ce cas, la formule est exacte pour tout polynôme de degré 4 et les poids sont

ω1 = ω3 =
5

9
et ω2 =

8

9
.

3.d) On vérifie que, lorsque t1 = −
√

3
5 , t2 = 0 et t3 =

√
3
5 , ω1t

5
1 +ω2t

5
2 +ω3t

5
3 =

∫ +1

−1
t5dt

et donc la formule est exacte pour tous les polynômes de degré 5.
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