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Corrigé 1

Exercice 1

1.a) Les lignes, une fois complétées, sont les suivantes :
1 p(i) = p(i) + f(j) * phi(j,n,x(i),t);

et
1 basis = basis * (xx -t(k))/(t(j)-t(k));

1.b) Afin de vérifier numériquement que l’erreur converge, nous calculons l’erreur pour
différentes valeurs de n. Nous prenons ici n = {4, 8, 16}. Le code suivant trace l’erreur
en fonction du nombre de points d’interpolation, et la fig. 1 illustre le graphique
correspondant. On observe que l’erreur décroit (et tend vers zéro) lorsque n augmente.

1 nn = [4, 8, 16];
2 err_n = zeros(length(nn) ,1);
3

4 for ii = 1: length(nn)
5 [err ,t,f,x,p]= intlag(nn(ii));
6 err_n(ii) = err;
7 end
8

9 figure ()
10 grid on
11 hold on
12 semilogy(nn , err_n , ’o-’, ’Linewidth ’ ,4.75)
13 xlabel("n")
14 ylabel("err")

1.c) Lorsque f(t) = 1
1+25t2

et lorsque n augmente, on observe que l’interpolation de La-
grange avec points équidistants diverge (i.e. l’erreur augmente lorsque n augmente),
comme illustré sur la fig. 2).



Figure 1: Cas f(t) = sin(2πt). Erreur absolue en fonction du nombre de points
d’interpolation.

Figure 2: Cas f(t) = 1
1+25t2

. Erreur absolue en fonction du nombre de points
d’interpolation.
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Exercice 2

2.a) Le graphique est représenté dans la fig. 3.

Figure 3: p(t) vs t.

Remarque: Si on veut calculer de manière naïve ce polynôme, on pose p(t) =
at3 + bt2 + ct+ d, a, b, c, d ∈ R et on impose:

d = 0,

a+ b+ c = 1,

c = 0,

3a+ 2b = 1.

On obtient p(t) = −t3 + 2t2.

2.b) Les vérifications sont immédiates. Graphiquement, les polynômes ϕ0, ϕ1, ψ0, ψ1 sont
illustrés sur la fig. 4.
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Figure 4: Base d’Hermite de type cubique associée à t0 et t1.

2.c) Les polynômes ϕ0, ϕ1, ψ0, ψ1 sont linéairement indépendants; en effet, considérons
une combinaison linéaire nulle de ces quatre fonctions

q(t) = α0ϕ0(t) + α1ϕ1(t) + α2ψ0(t) + α3ψ1(t) = 0, ∀t ∈ R

3



et montrons que αi = 0, i = 1, . . . , 4. En évaluant q(t) en t = t0 (resp. t = t1) on
obtient α0 = 0 (resp. α1 = 0). Puis en évaluant q′(t) en t = t0 et t = t1, on conclut
que α2 = 0 et α3 = 0.

Une famille de quatre polynômes de degré 3 linéairement indépendants dans P3 forme
une base de P3 car cet espace est de dimension quatre.

2.d) On obtient :

p(t0) = p0 ϕ0(t0)︸ ︷︷ ︸
=1

+p1 ϕ1(t0)︸ ︷︷ ︸
=0

+p′0 ψ0(t0)︸ ︷︷ ︸
=0

+p′1 ψ1(t0)︸ ︷︷ ︸
=0

= p0,

p′(t0) = p0 ϕ
′
0(t0)︸ ︷︷ ︸
=0

+p1 ϕ
′
1(t0)︸ ︷︷ ︸
=0

+p′0 ψ
′
0(t0)︸ ︷︷ ︸
=1

+p′1 ψ
′
1(t0)︸ ︷︷ ︸
=0

= p′0,

en utilisant le point 2.b. De même, on évalue p(t1) et p′(t1) pour conclure que ce
polynôme vérifie les relations au point 2.a.

Le polynôme est donc :

p(t) = ϕ1(t) + ψ1(t) = t2(2− t).

2.e) Considérons la base de Lagrange (φj)3j=0 de P3 associée aux points t0, t0+ε, t1, t1+ε.
En utilisant les résultats du cours on peut écrire:

pε(t) = pε(t0)φ0(t) + pε(t0 + ε)φ1(t) + pε(t1)φ2(t) + pε(t1 + ε)φ3(t)

= φ2(t) + φ3(t) ,

avec

φ2(t) =
(t− t0)(t− t0 − ε)(t− t1 − ε)
(t1 − t0)(t1 − t0 − ε)(−ε)

et φ3(t) =
(t− t0)(t− t0 − ε)(t− t1)
(t1 + ε− t0)(t1 − t0)ε

,

d’où, en regroupant les fractions sur un dénominateur commun puis en factorisant le
numérateur,

pε(t) =
(t− t0)(t− t0 − ε)(−2t+ 3t1 − t0 + ε)

(t1 − t0)(t1 − t0 − ε)(t1 − t0 + ε)
.

2.f) Avec cette expression explicite de pε(t), on peut calculer

lim
ε→0

pε(t) =
(t− t0)2(−2t+ 3t1 − t0)

(t1 − t0)3
= ϕ1(t).

Les trois autres fonctions de base de Hermite peuvent être obtenues par des procédés
analogues. En effet, par exemple, la fonction de base ψ1 s’obtient en posant, au point
2.e ci-dessus,

pε(t0) = 0, pε(t0 + ε) = 0, pε(t1) = 0, pε(t1 + ε) = ε.

Les 2 dernières fonctions (ϕ0 et ψ0) de la base des polynômes de degré 3 pour
l’interpolation de Hermite s’obtiennent alors par symétrie, en échangeant t1 et t0.
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