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Corrigé 1

Exercice 1

1.a) Les lignes, une fois complétées, sont les suivantes :

| p(i) = p(i) + £(j) * phi(j,n,x(i),t);

et

1 basis = basis * (xx-t(k))/(t(j)-t(k));

1.b) Afin de vérifier numériquement que l’erreur converge, nous calculons lerreur pour
différentes valeurs de n. Nous prenons ici n = {4,8,16}. Le code suivant trace ’erreur
en fonction du nombre de points d’interpolation, et la fig. [1] illustre le graphique
correspondant. On observe que 'erreur décroit (et tend vers zéro) lorsque n augmente.

nn = [4, 8, 16];
err_n = zeros(length(nn) ,1);

for ii = 1l:length(nn)

5 [err,t,f,x,pl=intlag(nn(ii));
6 err_n(ii) = err;

7 end

9o figure ()

10 grid omn

11 hold on

12 semilogy(nn, err_n, ’o-’, ’Linewidth’,4.75)
13 xlabel ("n"

14 ylabel ("err"

1.c) Lorsque f(t) = mﬁ et lorsque n augmente, on observe que 'interpolation de La-

grange avec points équidistants diverge (i.e. 'erreur augmente lorsque n augmente),
comme illustré sur la fig. .
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Figure 1: Cas f(t) = sin(2nt). Erreur absolue en fonction du nombre de points
d’interpolation.
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Figure 2: Cas f(t) = mﬁ Erreur absolue en fonction du nombre de points
d’interpolation.



Exercice 2

2.a) Le graphique est représenté dans la fig.
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Figure 3: p(t) vs t.

Remarque: Si on veut calculer de maniére naive ce polynoéme, on pose p(t) =
at® +bt> +ct +d, a,b,c,d € R et on impose:

d =0,
a+b+c =1,
c =0,
3a+2b =1.

On obtient p(t) = —t3 + 2t2.

2.b) Les vérifications sont immédiates. Graphiquement, les polynémes g, @1, 1o, 11 sont
illustrés sur la fig.
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Figure 4: Base d’Hermite de type cubique associée a tg et t;.

2.c) Les polynomes g, ¢1, 10,11 sont linéairement indépendants; en effet, considérons
une combinaison linéaire nulle de ces quatre fonctions

q(t) = aowpo(t) + arp1(t) + aatbo(t) + aszir(t) =0, VteR



2.d)

2.f)

et montrons que a; = 0, ¢ = 1,...,4. En évaluant ¢(t) en t = ¢y (resp. t = ¢;) on
obtient g = 0 (resp. a3 = 0). Puis en évaluant ¢/(t) en t = ¢y et t = ¢1, on conclut
que ag =0 et ag = 0.

Une famille de quatre polyndémes de degré 3 linéairement indépendants dans P forme
une base de P3 car cet espace est de dimension quatre.

On obtient :
p(to) = powo(to) +p1 e1(to) +po o(to) +11 1 (to) = po,
S~—— S~—— S—— S——
=1 =0 =0 =0
P'(to) = pogo(to) +p1¥i(to) +po 1y (te) +p) ¥1(to) = po,
S—— S~—— S—— S~——
—0 =0 =1 —0

en utilisant le point 2.@ De méme, on évalue p(t1) et p/(t1) pour conclure que ce
polynome vérifie les relations au point 2Jal

Le polynéme est donc :
p(t) = @1(t) + (1) = £2(2 —1).

Considérons la base de Lagrange (¢j)?:0 de P35 associée aux points tg, tg+¢,t1,t1 + €.
En utilisant les résultats du cours on peut écrire:

p(t) = pe(to)go(t) + pe(to +e)1(t) + pe(t1)p2(t) + pe(t1 + €)gs(t)
= ¢a(t) + ¢3(t) ,

avec

(t—to)(t —to—e)(t —t; —e)
(t1 —to)(t1 —to — €)(—¢)

(t — to)(t — to — 6)(t — tl)

¢2(t) = (tl +€e— tO)(tl - to)E ’

et (253 (t) =

d’ot, en regroupant les fractions sur un dénominateur commun puis en factorisant le
numérateur,
(t—to)(t —to—e)(—2t+3t1 —to+¢)

(tl — to)(tl — t(] — 6)(t1 — t() + 8)

pe(t) =

Avec cette expression explicite de p.(t), on peut calculer

i N2( _
lim pe(t) = ( to)(il ft;)?“ fo) _ ©1(t).

Les trois autres fonctions de base de Hermite peuvent étre obtenues par des procédés
analogues. En effet, par exemple, la fonction de base 11 s’obtient en posant, au point
2] ci-dessus,

ps(tﬂ) = 07 p&(to + 5) = 07 pE(tl) = 07 p&(tl + 5) =&

Les 2 derniéres fonctions (o et 1g) de la base des polynomes de degré 3 pour
I'interpolation de Hermite s’obtiennent alors par symétrie, en échangeant t; et to.



	
	

