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Exercice 1

1.a) Comme
∂u

∂x
(x, t) =

dw

dx
(x−c0t) et

∂u

∂t
(x, t) = −c0

dw

dx
(x−c0t), u(x, t) vérifie l’équation

de transport. De plus on a bien u(x, 0) = w(x) et u(0, t) = w(−c0t) = 0 par définition
de la fonction w(x).

1.b) On pose u0i = w(xi), i = 0, ..., N+1. Soit n > 0 fixé. Etant donné uni , i = 0, ..., N+1,
le problème discrétisé en temps et en espace par un schéma progressif décentré revient
à chercher les un+1

i , i = 0, ..., N + 1 tels que :

un+1
i − uni

τ
+ c0

uni − uni−1

h
= 0, i = 1, . . . , N + 1,

avec un+1
0 = 0. On peut encore écrire le schéma de manière explicite :

un+1
i =

(
1− c0τ

h

)
uni +

c0τ

h
uni−1, i = 1, . . . , N + 1. (1)

1.c) Le fichier transport.m est complété de la manière suivante :
1 for n = 1 : M
2 t = t + tau;
3 unew (1) = uold (1) - (c * tau) / (h) * (uold (1)) ;
4 for i = 2 : (N + 1)
5 unew(i) = uold(i) - (c * tau) / (h) * (uold(i) - uold(i-1)) ;
6 end
7 %
8 for i = 1 : (N + 1)
9 uold(i) = unew(i);

10 end
11 end

1.d) On remarque que lorsque la condition CFL τ 6 h
c0
, est violée, la solution présente

des oscillations et finit par "exploser". Lorsque τ < h
c0
, le schéma est stable, mais on

remarque un effet de diffusion (la solution numérique est amortie). Lorsque τ = h
c0
,

le schéma devient un+1
i = uni−1, i = 1, . . . , N + 1; la solution est donc exacte dans ce

cas!

1.e) On a les résultats suivants au temps t = 0.8 :



N + 1 h τ M Erreur
20 0.05 0.08 10 2.359758e-01
40 0.025 0.04 20 1.853599e-01
80 0.0125 0.02 40 1.270456e-01
160 0.00625 0.01 80 8.128324e-02
320 0.003125 0.005 160 4.869991e-02
640 0.0015625 0.0025 320 2.752655e-02
1280 0.00078125 0.00125 640 1.484707e-02

On note que, pour h et τ suffisamment petits, l’erreur est approximativement divisée
par deux lorsque h est divisé par deux et τ est divisé par deux. Le schéma est donc
bien d’ordre h+ τ .

1.f) Soit n > 0 fixé. La relation (1) permet d’écrire pour i = 1, . . . , N + 1 :∣∣un+1
i

∣∣ 6
∣∣∣1− c0τ

h

∣∣∣ |uni |+ ∣∣∣c0τh ∣∣∣ ∣∣uni−1

∣∣
6

(∣∣∣1− c0τ

h

∣∣∣+ ∣∣∣c0τ
h

∣∣∣) max
k=0,1,...,N+1

|unk |.

Comme 1− c0τ
h > 0, on a

∣∣1− c0τ
h

∣∣+ ∣∣ c0τh ∣∣ = 1 et on obtient, pour i = 1, . . . , N + 1 :∣∣un+1
i

∣∣ 6 max
k=0,1,...,N+1

|unk |.

Pour i = 0, on a un+1
0 = 0. Finalement :

max
i=0,1,...,N+1

∣∣un+1
i

∣∣ 6 max
i=0,1,...,N+1

|uni |.

Exercice 2

2.a) On pose u0i = sin(2πxi), i = 0, ..., N + 1. Soit n > 0 fixé. Etant donné uni , i =
0, ..., N + 1, le problème discrétisé en temps et en espace par un schéma rétrograde
décentré revient à chercher un+1

i , i = 0, ..., N + 1 tels que :

un+1
i − uni

τ
+ c0

un+1
i − un+1

i−1

h
+ (1 + xi)u

n+1
i = 0, i = 1, . . . , N + 1,

avec un+1
0 = 0.

2.b) Le schéma peut s’écrire sous la forme L~un+1 = ~un avec:

L =



1 +
c0τ

h
+ τ(1 + xi)

−c0τ
h

1 +
c0τ

h
+ τ(1 + xi) 0
. . . . . .

0 −c0τ
h

1 +
c0τ

h
+ τ(1 + xi)


.
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Exercice 3

3.a) En utilisant les développements de Taylor de u(xi+1, t
n), u(xi−1, t

n), u(xi, t
n+1) au-

tour de u(xi, tn), nous obtenons

u(xi+1, t
n) = u(xi, t

n) + h
∂u

∂x
(xi, t

n) +
h2

2

∂2u

∂x2
(xi, t

n) +O(h3)

u(xi−1, t
n) = u(xi, t

n)− h∂u
∂x

(xi, t
n) +

h2

2

∂2u

∂x2
(xi, t

n) +O(h3)

u(xi, t
n+1) = u(xi, t

n) + τ
∂u

∂t
(xi, t

n) +
τ2

2

∂2u

∂t2
(xi, t

n) +O(τ3)

Par conséquent:

u(xi+1, t
n)− u(xi−1, t

n) = 2h
∂u

∂x
(xi, t

n) +O(h3)

u(xi+1, t
n) + u(xi−1, t

n) = 2u(xi, t
n) + h2

∂2u

∂x2
(xi, t

n) +O(h3)

Ainsi

u(xi+1, t
n)− u(xi−1, t

n)

2h
=

∂u

∂x
(xi, t

n) +O(h2)

u(xi+1, t
n) + u(xi−1, t

n)

2
= u(xi, t

n) +
h2

2

∂2u

∂x2
(xi, t

n) +O(h3)

Nous pouvons donc écrire l’approximation du schéma en utilisant ces formules aux
différences:

u(xi, t
n+1)− u(xi+1, t

n) + u(xi−1, t
n)

2
τ

+ c0
u(xi+1, t

n)− u(xi−1, t
n)

2h

=
u(xi, t

n+1)−
(
u(xi, t

n) + h2

2
∂2u
∂x2

(xi, t
n) +O(h3)

)
τ

+ c0

(
∂u

∂x
(xi, t

n) +O(h2)

)

=

(
τ ∂u∂t (xi, t

n) + τ2

2
∂2u
∂t2

(xi, t
n) +O(τ3)

)
− h2

2
∂2u
∂x2

(xi, t
n) +O(h3)

τ
+ c0

(
∂u

∂x
(xi, t

n) +O(h2)

)
=

∂u

∂t
(xi, t

n) +
τ

2

∂2u

∂t2
(xi, t

n) +O(τ2) +
h2

2τ

∂2u

∂x2
(xi, t

n) +O(h3/τ) + c0
∂u

∂x
(xi, t

n) +O(h2)

=
τ

2

∂2u

∂t2
(xi, t

n) +O(τ2) +
h2

2τ

∂2u

∂x2
(xi, t

n) +O(h3/τ) +O(h2)

Donc, l’ordre de consistance du schéma est O
(
τ + h2 + h2

τ

)
.
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