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Analyse numérique (GM) / MATH-251(e) Printemps 2025

Corrigé 11

Exercice 1

Nous commengons la résolution numérique du probléme (P) en discrétisant par rapport a
la variable z. Considérons les approximations u;(t) de u(z;,t). Le probléme semi-discrétisé
en espace consiste donc a trouver les N fonctions u; : Ry — R, i =1,...; N telles que

wi—1(t) — 2u;(t) + uig1(t)

3 =u(t)®, i=1,..,N,

u;(t) —

avec les conditions initiales u;(0) = w(z;), i = 1,..., N et les conditions de bord wg(t) =
unt1(t) = 0, V¢t > 0. Ce schéma peut s’écrire sous forme matricielle, en définissant
les N-vecteurs (t) = (Ui(t»é\ip w o= (w(a:z))iil et (ﬁ(t))3 = (ui(t)3)i]i1, ainsi que la
N x N-matrice suivante

2 -1
-1 2 -1
1 -1 2 0
A=
0 2 -1

{ﬁ(t) — —Ad(t) + (a@t))’,  Vit=0,

@ = .

1.a) Le probléme discrétisé en temps par la méthode d’Euler rétrograde revient a chercher

les N-vecteurs 4" = (u?)¥;, n > 0 tels que

gl — e
= AT @R, om0,
W =

L’équation qui permet d’obtenir @1 & partir de @™ s’écrit
(I +7A)a™ ™ — (@) = am, n=0,1,2,...

Ce schéma est donc bien implicite et non linéaire, car pour calculer @' & partir de
4™ il faut résoudre un systéme de N équations non linéaires & N inconnues.



1.b) Soit F': 7 € RN — F(7) € RN la fonction définie par F(7) = (I +71A)7—7(7)% — @™
A chaque pas de temps, le probléme issu de la méthode d’Euler rétrograde revient
a trouver "1 € RY tel que ﬁ(ﬂ”“) = 0. La méthode de Newton pour approcher
a1l s’écrit

DF (@) (78 — #*t1) = F(#*), k>0,
vY  donné,

ot DF (%) est la matrice jacobienne de F au point 7 :

DF(0) = I+ 1A — 37B(%) avec  B(7) =
2
0 W
Cependant, on se contente de faire un unique pas de la méthode de Newton pour
approcher @1 et c’est le résultat de ce premier pas qui sera alors pris comme solution
@1, En choisissant #° = @" le schéma issu du premier pas de la méthode de Newton
s’écrit
DFE(@")(a" — 4" = F(a@"), n>0,
c’est-a-dire, en considérant les définitions de F (V) et de sa jacobienne,

(I+7A—=3rB@@"))(@" — o) = rAd" — v(a")?, n > 0.

On constate que ce schéma est implicite et linéaire, car il suffit de résoudre un systéme
linéaire pour calculer @™+ & partir de ™.

1.c) Le probléme discrétisé en temps par la méthode de Crank-Nicholson revient a chercher

les N-vecteurs @™ = (u)N.;, n > 0 tels que
gt —ar (= AdT 4 (@) + (- Aa” + (a")?) .-
T B 2 ’ =
@ = 0,
ou, de fagon équivalente
<I+ ZA) g+t = Tty = (I - IA) T+ @, om0,
2 2 2 2
@ = .

Ce schéma est donc implicite et non linéaire, car pour calculer @"+! & partir de @,

il faut résoudre un systéme non linéaire de N équations & N inconnues.

Exercice 2

2.a) On pose u) = x;(1 — x;), i = 0,...,N + 1. Pour tout n > 0, étant donné u?, i =

0=
0,...,N + 1, le probléme discrétisé en temps et en espace par la méthode d’Euler

progressive revient a chercher les u?“, 1=0,...,N 41 tels que

n+1 n no__ n n

ultt uy | — 2w +u .

Z T Z : },}2Z (L) =0, i=1L..,N,
n+1 n+l
uy' = uyy = 0.



2.b)

La relation ci-dessus nous permet également d’écrire :

27’ .

Ce schéma est donc bien explicite, car il permet d’exprimer explicitement u"+1 1=

1,...,N apartirde u}’, ¢t =0,...,N + 1.

Ona(l—3 — (14 z)7) > 1—}275—27 > 0 par hypothése. Par conséquent, siu] > 0,
1=0,. ..N + 1, alors u"'H > 0pouri=1,...,N grace a la relation ci-dessus.

Comme de plus, ugH = u?\;jrll =0, les u”Jrl sont positifs pour tout 4 =0,..., N + 1.

Exercice 3

3.a)

3.b)

I O

On pose u! = sin(2rx;), i = 0,..., N + 1. Pour tout n > 0, étant donné u?, i =

0,..., N + 1, le probléme dlscretlse revient & chercher les u"+1, i =0,....,N 4+ 1 tels
que
u g ul - 2ul Ul _
(R1) — : 2 B a(@)Pul = f(ritn),  i=1,..,N,
1

n+1l __ n+1
Uy = uN+1—O.

Nous pouvons mettre la relation ci-dessus sous la forme:
2T T
1 3 .
ultt = <1 77~ at(z;) ) uy + ﬁul 1+ = h2 uit + 7 (25, tn), i=1,..,N.

Ce schéma est donc explicite, car il permet d’exprimer u”“ i=1,...,N a partir de
ul, 1 =0,..., N+ 1.

1, Y

Le fichier paraprog.m est complété de la maniére suivante :
%
% schema d’Euler progressif
YA
for n =1 : M
unew(1) = (1. - 2 * tau / h / h - alpha * tau * h~3) * uold(l) + tau

/ h / h *x uold(2) + tau * f(h,t);
for i = 2 : N - 1

unew(i) = (1. - 2 * tau / h / h - alpha * tau * (i * h)~3) * uold(
i) + tau / h / h * (uold(i - 1) + wold(i + 1)) + tau * f(i * h,t) ;
end
unew(N) = (1. - 2 * tau / h / h - alpha * tau * (N * h)~3) * uold(N)

+ tau / h / h * uold(N - 1) + tau * £f(N * h,t) ;
t =t + tau;
end

Nous remarquons que le schéma est stable pour N = 19 et 7 = 0.00125, tandis qu’il
est instable pour N = 19 et 7 = 0.0013. La condition 7 < h?/2 est violée dans ce
deuxiéme cas.



3.d) On a les résultats suivants au temps ¢ = 0.8 :

N+1 h T M Erreur
10 0.1 0.005 160 1.345654e-07
20 0.05 0.00125 640  3.526849¢-08
40 0.025 0.0003125 2560  8.915923e-09
80 0.0125 0.000078125 10240 2.235105e-09

On note que l'erreur est approximativement divisée par quatre lorsque h est divisé
par deux et 7 est divisé par quatre. Le schéma est donc bien d’ordre h? + .

3.e) On pose u) = sin(27x;), @ = 0,..., N + 1. Pour tout n > 0, étant donné u?, i =

0,..., N + 1, le probléme discrétisé revient & chercher les ut i =0, N +1 tels

i

que
n+1 n n+l n+1 n+1
ug Uy Ui 2u; " 4 Uy +a(z)Pu™ = f(zi ) i=1
R){ T e P = bl =1
n+l __ n+l __
Uy = Uy =0.

—

On peut écrire ce schéma sous la forme Aw" ™! = @ + 7f(t,41) avec:

-
al _ﬁ
T
A= h?
. T ’
;o

2
oua; =1+ h—;— + at(z;)3.

3.f) Le fichier pararetro.m est complété de la maniére suivante :

1 function [err, u, u_ex] = pararetro(N, M, tau)

2 yA

3 % Schema d’Euler retrograde pour un probleme parabolique
unidimensionnel.

4 % A chaque pas de temps, il s’agit de resoudre le systeme
lineaire

5 % A u"n+1 = u™n + tau f-{n+1}

6 %

7 % parametres

8 YA

9 % N : nombre d’inconnues du systeme lineaire

10 % h pas d’espace

11 %hoM nombre de pas de temps

12 % tau : pas de temps

13 hot temps courant

14 % u : N-vecteur, a chaque pas de temps,

7N7



15 % u est second membre du systeme lineaire,

16 % puis solution du systeme lineaire

17 % a : N-vecteur, diagonale de la matrice A,
18 % puis diagonale de L tq A=LL"T

19 % c : (N-1)-vecteur, sur-diagonale et sous-diagonale
20 % de la matrice A, puis sous-diagonale de L tq A=LL-"T
21 %

22 h = 1/(N + 1);

23 t = 0;

24 alpha = 1.;

25

26 %

27 % condition initiale

28 %

29 for i =1 : N

30 u(i) = w(i * h);

31 end

32

33 %

34 % remplissage de la matrice A

35 A

36 for i =1 : N

37 a(i) = 1. + (2 * tau) / h / h + alpha * tau * (i * h)"~3;
38 end

39 for i =1 : N-1

40 c(i) = (-tau) / h / h;

41 end

42

43 %

44 % decomposition LL-T A = LL-T

45 YA

46 a(1l) = sqrt(a(1));

47 for i =1 : N - 1

a8 c(i) = c(i) / a(i);

49 a(i + 1) = sqgrt(a(i + 1) - c(i) * c(i));

50 end

51

52 %

53 % schema d’Euler retrograde: A u"n+l = u™n + tau f-{n+1}
54 %

55 for n =1 : M

56 t =t + tau;

57

58 %

59 % second membre du systeme lineaire

60 %

61 for i =1 : N

62 u(i) = u(i) + tau * f(i * h, t);

63 end

64

65 %

66 % resolution du systeme lineaire Ly = u~n+ tau f~{n+1}
67 %

68 u(1) = u(1) / a(1);

69 for i =1 : N - 1

70 u(i + 1) = (u(i + 1) - c(i) * u(i)) / a(i + 1);
71 end

72

73 %

74 % resolution du systeme lineaire L°T u~n+l = y

75 %



76 u(N) = u(N) / a(N);

77 for i = N -1 : -1 : 1

78 u(i) = (u(i) - c(i) * u(i+1)) / a(i);
79 end

80 end

81

82 err = 0;

83 for i =1 : N

84 x(i) = i * h;

85 u_ex(i) = uex(i * h, t);

86 erri = abs(u(i) - uex(i * h, t));

87 if (erri > err)

88 err = erri;

89 end

90 end

91 fprintf (’ erreur maximum au temps final Y%e \n’, err)

92 end

3.g) Nous remarquons que le schéma est stable quel que soit le choix des paramétres 7 et
h.

3.h) On a les résultats suivants au temps ¢t = 0.8 :

N +1 h T M Erreur
10 0.1 0.02 40  1.590178e-06
20 0.05 0.005 160 2.702037e-07
40 0.025 0.00125 640  6.044994e-08
80 0.0125 0.0003125 2560 1.468320e-08

On note que lerreur est approximativement divisée par quatre lorsque h est divisé
par deux et 7 est divisé par quatre. Le schéma est donc bien d’ordre h? + 7.



	
	
	

