
Ecole Polytechnique Fédérale de Lausanne Alexandre Caboussat
Analyse numérique (GM) / MATH-251(e) Printemps 2025

Corrigé 11

Exercice 1

Nous commençons la résolution numérique du problème (P) en discrétisant par rapport à
la variable x. Considérons les approximations ui(t) de u(xi, t). Le problème semi-discrétisé
en espace consiste donc à trouver les N fonctions ui : R+ → R, i = 1, ..., N telles que

u̇i(t)−
ui−1(t)− 2ui(t) + ui+1(t)

h2
= ui(t)

3, i = 1, ..., N,

avec les conditions initiales ui(0) = w(xi), i = 1, ..., N et les conditions de bord u0(t) =
uN+1(t) = 0, ∀ t > 0. Ce schéma peut s’écrire sous forme matricielle, en définissant
les N -vecteurs ~u(t) =

(
ui(t)

)N
i=1

, ~w =
(
w(xi)

)N
i=1

et
(
~u(t)

)3
=
(
ui(t)

3
)N
i=1

, ainsi que la
N ×N -matrice suivante

A =
1

h2



2 −1
−1 2 −1

−1 2
. . . 0

.

0 . . . 2 −1
−1 2


.

Il s’agit alors de trouver la fonction ~u : t ∈ R+ 7→ ~u(t) ∈ RN telle que{
~̇u(t) = −A~u(t) +

(
~u(t)

)3
, ∀ t > 0,

~u0 = ~w.

1.a) Le problème discrétisé en temps par la méthode d’Euler rétrograde revient à chercher
les N -vecteurs ~un = (uni)

N
i=1, n > 0 tels que

~un+1 − ~un

τ
= −A~un+1 + (~un+1)3, n > 0,

~u0 = ~w.

L’équation qui permet d’obtenir ~un+1 à partir de ~un s’écrit

(I + τA)~un+1 − τ(~un+1)3 = ~un, n = 0, 1, 2,

Ce schéma est donc bien implicite et non linéaire, car pour calculer ~un+1 à partir de
~un il faut résoudre un système de N équations non linéaires à N inconnues.

1.b) Soit ~F : ~v ∈ RN 7→ ~F (~v) ∈ RN la fonction définie par ~F (~v) = (I + τA)~v− τ(~v)3−~un.
A chaque pas de temps, le problème issu de la méthode d’Euler rétrograde revient
à trouver ~un+1 ∈ RN tel que ~F (~un+1) = 0. La méthode de Newton pour approcher
~un+1 s’écrit {

D~F (~vk)(~vk − ~vk+1) = ~F (~vk), k > 0,

~v0 donné,

où D~F (~v) est la matrice jacobienne de ~F au point ~v :

D~F (~v) = I + τA− 3τB(~v) avec B(~v) =


v21

v22 0
. . .

0 v2N

 .

Cependant, on se contente de faire un unique pas de la méthode de Newton pour
approcher ~un+1 et c’est le résultat de ce premier pas qui sera alors pris comme solution
~un+1. En choisissant ~v0 = ~un le schéma issu du premier pas de la méthode de Newton
s’écrit

D~F (~un)(~un − ~un+1) = ~F (~un), n > 0,

c’est-à-dire, en considérant les définitions de ~F (~v) et de sa jacobienne,(
I + τA− 3τB(~un)

)
(~un − ~un+1) = τA~un − τ(~un)3, n > 0.

On constate que ce schéma est implicite et linéaire, car il suffit de résoudre un système
linéaire pour calculer ~un+1 à partir de ~un.

1.c) Le problème discrétisé en temps par la méthode de Crank-Nicholson revient à chercher
les N -vecteurs ~un = (uni)

N
i=1, n > 0 tels que

~un+1 − ~un

τ
=

(
−A~un+1 + (~un+1)3

)
+
(
−A~un + (~un)3

)
2

, n > 0,

~u0 = ~w,

ou, de façon équivalente
(
I +

τ

2
A
)
~un+1 − τ

2
(~un+1)3 =

(
I − τ

2
A
)
~un +

τ

2
(~un)3, n > 0,

~u0 = ~w.

Ce schéma est donc implicite et non linéaire, car pour calculer ~un+1 à partir de ~un,
il faut résoudre un système non linéaire de N équations à N inconnues.

Exercice 2

2.a) On pose u0i = xi(1 − xi), i = 0, ..., N + 1. Pour tout n > 0, étant donné uni , i =
0, ..., N + 1, le problème discrétisé en temps et en espace par la méthode d’Euler
progressive revient à chercher les un+1

i , i = 0, ..., N + 1 tels que
un+1
i − uni

τ
−
uni−1 − 2uni + uni+1

h2
+ (1 + xi)u

n
i = 0, i = 1, ..., N,

un+1
0 = un+1

N+1 = 0.

2

La relation ci-dessus nous permet également d’écrire :

un+1
i =

(
1− 2τ

h2
− (1 + xi)τ

)
uni +

τ

h2
uni−1 +

τ

h2
uni+1, i = 1, . . . , N. (1)

Ce schéma est donc bien explicite, car il permet d’exprimer explicitement un+1
i , i =

1, . . . , N à partir de uni , i = 0, . . . , N + 1.

2.b) On a
(
1− 2τ

h2
− (1 + xi)τ

)
> 1− 2τ

h2
−2τ > 0 par hypothèse. Par conséquent, si uni > 0,

i = 0, . . . N + 1, alors un+1
i > 0 pour i = 1, . . . , N grâce à la relation (1) ci-dessus.

Comme de plus, un+1
0 = un+1

N+1 = 0, les un+1
i sont positifs pour tout i = 0, . . . , N + 1.

Exercice 3

3.a) On pose u0i = sin(2πxi), i = 0, ..., N + 1. Pour tout n > 0, étant donné uni , i =
0, ..., N + 1, le problème discrétisé revient à chercher les un+1

i , i = 0, ..., N + 1 tels
que

(R1)


un+1
i − uni

τ
−
uni−1 − 2uni + uni+1

h2
+ α(xi)

3uni = f(xi, tn), i = 1, ..., N,

un+1
0 = un+1

N+1 = 0.

Nous pouvons mettre la relation ci-dessus sous la forme:

un+1
i =

(
1− 2τ

h2
− ατ(xi)3

)
uni +

τ

h2
uni−1 +

τ

h2
uni+1 + τf(xi, tn), i = 1, ..., N.

Ce schéma est donc explicite, car il permet d’exprimer un+1
i , i = 1, ..., N à partir de

uni , i = 0, ..., N + 1.

3.b) Le fichier paraprog.m est complété de la manière suivante :

1 %
2 % schema d’Euler progressif
3 %
4 for n = 1 : M
5 unew (1) = (1. - 2 * tau / h / h - alpha * tau * h^3) * uold (1) + tau

/ h / h * uold (2) + tau * f(h,t);
6 for i = 2 : N - 1
7 unew(i) = (1. - 2 * tau / h / h - alpha * tau * (i * h)^3) * uold(

i) + tau / h / h * (uold(i - 1) + uold(i + 1)) + tau * f(i * h,t) ;
8 end
9 unew(N) = (1. - 2 * tau / h / h - alpha * tau * (N * h)^3) * uold(N)

+ tau / h / h * uold(N - 1) + tau * f(N * h,t) ;
10 t = t + tau;
11 end

3.c) Nous remarquons que le schéma est stable pour N = 19 et τ = 0.00125, tandis qu’il
est instable pour N = 19 et τ = 0.0013. La condition τ 6 h2/2 est violée dans ce
deuxième cas.

3

3.d) On a les résultats suivants au temps t = 0.8 :

N + 1 h τ M Erreur
10 0.1 0.005 160 1.345654e-07
20 0.05 0.00125 640 3.526849e-08
40 0.025 0.0003125 2560 8.915923e-09
80 0.0125 0.000078125 10240 2.235105e-09

On note que l’erreur est approximativement divisée par quatre lorsque h est divisé
par deux et τ est divisé par quatre. Le schéma est donc bien d’ordre h2 + τ .

3.e) On pose u0i = sin(2πxi), i = 0, ..., N + 1. Pour tout n > 0, étant donné uni , i =
0, ..., N + 1, le problème discrétisé revient à chercher les un+1

i , i = 0, ..., N + 1 tels
que

(R2)


un+1
i − uni

τ
−
un+1
i−1 − 2un+1

i + un+1
i+1

h2
+ α(xi)

3un+1
i = f(xi, tn+1), i = 1, ..., N,

un+1
0 = un+1

N+1 = 0.

On peut écrire ce schéma sous la forme A~un+1 = ~un + τ ~f(tn+1) avec:

A =



a1 − τ

h2

− τ

h2
.
. − τ

h2

− τ

h2
aN


,

où ai = 1 +
2τ

h2
+ ατ(xi)

3.

3.f) Le fichier pararetro.m est complété de la manière suivante :

1 function [err , u, u_ex] = pararetro(N, M, tau)
2 %
3 % Schema d’Euler retrograde pour un probleme parabolique

unidimensionnel.
4 % A chaque pas de temps , il s’agit de resoudre le systeme

lineaire :
5 % A u^n+1 = u^n + tau f^{n+1}
6 %
7 % parametres
8 %
9 % N : nombre d’inconnues du systeme lineaire

10 % h : pas d’espace
11 % M : nombre de pas de temps
12 % tau : pas de temps
13 % t : temps courant
14 % u : N-vecteur , a chaque pas de temps ,

4

15 % u est second membre du systeme lineaire ,
16 % puis solution du systeme lineaire
17 % a : N-vecteur , diagonale de la matrice A,
18 % puis diagonale de L tq A=LL^T
19 % c : (N-1)-vecteur , sur -diagonale et sous -diagonale
20 % de la matrice A, puis sous -diagonale de L tq A=LL^T
21 %
22 h = 1/(N + 1);
23 t = 0;
24 alpha = 1.;
25

26 %
27 % condition initiale
28 %
29 for i = 1 : N
30 u(i) = w(i * h);
31 end
32

33 %
34 % remplissage de la matrice A
35 %
36 for i = 1 : N
37 a(i) = 1. + (2 * tau) / h / h + alpha * tau * (i * h)^3;
38 end
39 for i = 1 : N-1
40 c(i) = (-tau) / h / h;
41 end
42

43 %
44 % decomposition LL^T A = LL^T
45 %
46 a(1) = sqrt(a(1));
47 for i = 1 : N - 1
48 c(i) = c(i) / a(i);
49 a(i + 1) = sqrt(a(i + 1) - c(i) * c(i));
50 end
51

52 %
53 % schema d’Euler retrograde: A u^n+1 = u^n + tau f^{n+1}
54 %
55 for n = 1 : M
56 t = t + tau;
57

58 %
59 % second membre du systeme lineaire
60 %
61 for i = 1 : N
62 u(i) = u(i) + tau * f(i * h, t);
63 end
64

65 %
66 % resolution du systeme lineaire Ly = u^n+ tau f^{n+1}
67 %
68 u(1) = u(1) / a(1);
69 for i = 1 : N - 1
70 u(i + 1) = (u(i + 1) - c(i) * u(i)) / a(i + 1);
71 end
72

73 %
74 % resolution du systeme lineaire L^T u^n+1 = y
75 %

5

76 u(N) = u(N) / a(N);
77 for i = N - 1 : -1 : 1
78 u(i) = (u(i) - c(i) * u(i+1)) / a(i);
79 end
80 end
81

82 err = 0;
83 for i = 1 : N
84 x(i) = i * h;
85 u_ex(i) = uex(i * h, t);
86 erri = abs(u(i) - uex(i * h, t));
87 if (erri > err)
88 err = erri;
89 end
90 end
91 fprintf(’ erreur maximum au temps final %e \n’, err)
92 end

3.g) Nous remarquons que le schéma est stable quel que soit le choix des paramètres τ et
h.

3.h) On a les résultats suivants au temps t = 0.8 :

N + 1 h τ M Erreur
10 0.1 0.02 40 1.590178e-06
20 0.05 0.005 160 2.702037e-07
40 0.025 0.00125 640 6.044994e-08
80 0.0125 0.0003125 2560 1.468320e-08

On note que l’erreur est approximativement divisée par quatre lorsque h est divisé
par deux et τ est divisé par quatre. Le schéma est donc bien d’ordre h2 + τ .

6

	
	
	

