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Theorem (de Cauchy-Lipschitz, proposition 7.1 du livre)
Si la fonction f (t, y) est
1. continue par rapport à ses deux variables ;
2. lipschitzienne par rapport à sa deuxième variable, c’est-à-dire qu’il existe une

constante positive L (appelée constante de Lipschitz) telle que

|f (t, y1)� f (t, y2)|  L|y1 � y2| 8y1, y2 2 R, 8t 2 I , (7)

Alors la solution y = y(t) du problème de Cauchy (3) existe, est unique et
appartient à C 1(I ).
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Méthodes des différences finies

pour l’approximation du problème de Cauchy (Sec. 7.2 du livre)

Soient 0 = t0 < t1 < . . . < tn < tn+1 < . . . une suite de nombres réels
équirépartis et h = tn+1 � tn le pas de temps. On notera par :

un une approximation de y(tn).

Dans le problème de Cauchy (3), pour t = tn, on a

y 0(tn) = f (tn, y(tn)).

On veut alors approcher la dérivée y 0(tn) au point tn. Cela se fait en utilisant des
schémas de dérivation numérique.
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Schéma d’Euler explicite ou progressif

( un+1 � un
h

= f (tn, un) pour n = 0, 1, 2 . . . ,Nh � 1

u0 = y0

(12)

Schéma d’Euler implicite ou rétrograde

( un+1 � un
h

= f (tn+1, un+1) pour n = 0, 1, 2 . . . ,Nh � 1

u0 = y0

(13)

S. Deparis, SCI-SB-SC–EPFL Equations non-linéaires 16 / 93



Equations différentielles ordinaires

La méthode de Heun :
8
<

:

un+1 � un
h

=
1
2

h
f (tn, un) + f

⇣
tn+1, un + hf (tn, un)

⌘i
pour n = 0, 1, 2 . . . ,Nh � 1

u0 = y0

(14)
Crank-Nicolson

8
<

:

un+1 � un
h

=
1
2

h
f (tn, un) + f (tn+1, un+1)

i
pour n = 0, 1, 2 . . . ,Nh � 1

u0 = y0

(15)
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Remarque

Le schéma d’Euler progressif est un schéma explicite car il permet de
calculer un+1 en fonction de un explicitement :

(EP) un+1 = un + hf (tn, un).

Le schéma d’Euler rétrograde est un schéma implicite car un+1 est définit
implicitement en fonction de un :

(ER) un+1 = un + hf (tn+1, un+1).
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En général, pour le schéma d’Euler rétrograde, il faut résoudre une équation non-linéaire à chaque pas de temps.

Méthode du point fixe : Notons que (ER) est équivalent à un problème de point fixe avec

un+1 = �(un+1) = un + hf (tn+1, un+1) (18)

On peut résoudre ce problème grâce aux itérations suivantes

uk+1
n+1 = �(ukn+1), k = 0, 1, 2, . . . (19)

Méthode de Newton : A partir de l’équation :

F (un+1) ⌘ un+1 � �(un+1) = 0, (20)

on utilise les itérations suivantes :

uk+1
n+1 = ukn+1 �

F (ukn+1)

F 0(ukn+1)
= ukn+1 �

F (ukn+1)

1 � �0(ukn+1)
, k = 0, 1, 2, . . . (21)

Dans les deux cas, on a limk!1 ukn+1 = un+1.
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Quelles méthodes sont implicites ?
A Euler Progressive un+1�un

h = f (tn, un)
B Euler Retrograde un+1�un

h = f (tn+1, un+1)

C Heun un+1�un
h = 1

2

h
f (tn, un) + f

⇣
tn+1, un + hf (tn, un)

⌘i

D Crank Nicolson un+1�un
h = 1

2

h
f (tn, un) + f (tn+1, un+1)

i

E Point miliux un+1�un�1

2h = f (tn, un)

F BDF 2 3f (xn+1)�4f (xn)+f (xn+1)
2h = f (tn+1, un+1)
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Conditions de stabilité

Le choix du pas de temps h n’est pas arbitraire. Pour la méthode d’Euler
progressive, on verra plus loin dans le cours que, si h n’est pas suffisamment
petit, des problèmes de stabilité peuvent surgir.

Par exemple, si l’on considère le problème
⇢

y 0(t) = �2y(t) pour t 2 R+

y(0) = 1, (23)

dont la solution est
y(t) = e�2t ,

on peut observer que les comportements par rapport à h des méthodes d’Euler
progressive et rétrograde sont très différents.
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La propriété de stabilité (absolue)

Pour � < 0 donné, on considère le problème modèle suivant :
⇢

y 0(t) = �y(t) pour t 2 R+

y(0) = 1 (24)

dont la solution est

y(t) = e�t . En particulier, lim
t!1

y(t) = 0.

Posons 0 = t0 < t1 < . . . < tn < tn+1 < . . . tels que tn = nh, où le pas de temps
h > 0 est donné.

Un schéma de résolution associé à ce problème est appelé absolument stable si

lim
n!1

un = 0.
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• Pour le schéma d’Euler progressif :

un+1 = (1 + �h)un, d’où un = (1 + �h)n, 8n � 0. (25)

Si 1 + �h < �1, alors |un| ! 1 quand n ! 1, donc le schéma d’Euler
progressif est instable.
Pour assurer la stabilité, on a besoin de limiter le pas de temps h, en imposant
la condition de stabilité :

|1 + �h| < 1 d’où h < 2/|�|.

• Pour le schéma d’Euler rétrograde :

un+1 =

✓
1

1 � �h

◆
un et donc un =

✓
1

1 � �h

◆n

, 8n � 0.

Et comme limn!1 un = 0, on a la stabilité sans condition sur h.
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Comparaison entre les solutions obtenues par les méthodes d’Euler progressive et
rétrograde pour h = 0.9 (à gauche, stable) et h = 1.1 (à droite, instable)
(condition de stabilité pour Euler progressif : |�| = 2 ) h < 2/|�| = 1).
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La stab. abs. contrôle les perturbations

Pour un problème général, on se pose la question de sa stabilité, c’est-à-dire de la
propriété selon laquelle des petites perturbations sur les données induisent des
“petites” perturbations sur la solution.

On veut montrer la propriété suivante.

Une méthode numérique absolument stable pour le problème modèle est stable
(au sens précédent) pour un problème de Cauchy quelconque.
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Remarque
Reprenons le problème modèle généralisé

(
y 0(t) = �(t)y(t) + r(t), t 2 (t0,+1),

y(t0) = y0,
(33)

Dans la méthode d’Euler Progressive, on peut contrôler les perturbations dans le
cas où il existe �min > 0 et �max < 1 tels que

� �max  �(t)  ��min, 8t � t0 (34)

et si on choisi 0 < h < 2/�max .
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Remarque
On considère maintenant le problème de Cauchy général

⇢
y 0(t) = f (t, y(t)) t > 0
y(0) = y0 ,

dans un intervalle non-borné.
Soit Dy l’ensemble qui contient la trajectoire de y(t) ainsi que celle de un.
Dans la méthode d’Euler Progressive, on peut étendre le contrôle des
perturbations au problème modèle généralisé (33), dans le cas où il existe
�min > 0 et �max < 1 tels que

� �max  @f /@y(t, y)  ��min, 8t � 0, 8y 2 Dy , (35)

et si on choisi 0 < h < 2/�max .
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Exemple

Example

Considérons le problème de Cauchy
(

y 0(t) = (�2 + sin(t))y(t) + e�3t , t 2 (0,+1),

y(1) = 3.

Ecrivez les Schemas d’Euleur Progressif et Retrograde pour ce problème de
Cauchy. Ensuite calculez

�(t)

�min,�max

La condition de stabitité pour Euler Progressive et Retrograde
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Convergence

Definition
Soit y(t) la solution du problème de Cauchy (3) sur l’intervalle [0,T ] ; soit un
une solution approchée au temps tn = nh trouvée par une méthode numérique
donnée, où h = T/Nh (Nh 2 N) est le pas de temps. La méthode est dite
convergente si

8n = 0, . . . ,Nh : |un � y(tn)|  C (h)

où C (h) ! 0 lorsque h ! 0.

Si, en plus, il existe p > 0 tel que C (h) = Khp pour une constante K qui ne
dépend pas de h ni de n, on dit que la méthode est convergente d’ordre p.

Dans la suite du cours, on va analyser la convergence et l’ordre de la méthode
d’Euler progressive.
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Convergence d’Euler progressif

Theorem
Si y 2 C2([0,T ]) et f satisfait �1 < ��max  @f

@y (t, y)  0 pour tout t 2 [0,T ]
et pour tout y 2 R. alors la méthode d’Euler progressive est convergente et

8n � 0, |y(tn)� un|  c(tn)h, où c(tn) = tn
1
2

max
t2[t0,tn]

|y 00(t)| , (37)

En particuler, la méthode est convergente d’ordre p = 1, avec

C (h) = c(T )h.

Remarque
Le même type de résultat peut être établi pour la méthode d’Euler rétrograde.
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Evolution des populations de lapins et de renards sur 10 ans.
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