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THEOREM (DE CAUCHY-LIPSCHITZ, PROPOSITION 7.1 DU LIVRE)
Si la fonction f(t,y) est
1. continue par rapport a ses deux variables ;

2. lipschitzienne par rapport a sa deuxiéme variable, c'est-a-dire qu'il existe une
constante positive L (appelée constante de Lipschitz) telle que

1f(t,yn) = f(t, ) S Lyt —yo| I,y €R, Ve, (7)

Alors la solution y = y(t) du probléme de Cauchy (3) existe, est unique et
appartient a C*(1).
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METHODES DES DIFFERENCES FINIES

pour I'approximation du probléme de Cauchy (Sec. 7.2 du livre)

Soient 0 =ty < t; <...<t, < thy1 < ... une suite de nombres réels
équirépartis et h = t,,1 — t, le pas de temps. On notera par :

u, une approximation de  y(t,).
Dans le probléme de Cauchy (3), pour t = t,, on a
Y (ta) = f(ta, y(ta))-

On veut alors approcher la dérivée y'(t,) au point t,. Cela se fait en utilisant des
schémas de dérivation numérique.
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Schéma d'Euler explicite ou progressif

Up = Yo

(12)

Schéma d’Euler implicite ou rétrograde

Upt1 — Up
h
o = Yo

= f(tpr1, Unt1) pour n=0,1,2...,N,—1
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La méthode de Heun :

n — Up 1
U+1h u = E[f(tnaun)—i_f(tn+]_7un+hf(tn7un))i| pour n:07172"'7Nh_1
Uo = Yo

(14)

Crank-Nicolson

Upr1 — Up 1
h 2
bp = Yo

[f(tn,u,,)—l-f(t,,ﬂ,unﬂ)} pour n=0,1,2..., N, —1

(15)
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REMARQUE

o Le schéma d’Euler progressif est un schéma explicite car il permet de
calculer u,. 1 en fonction de u, explicitement :

(EP) Upy1 = Uy + hf(tn, up).

o Le schéma d’Euler rétrograde est un schéma implicite car u,1 est définit
implicitement en fonction de u, :

(ER) Un+1 = Up -+ hf(tn+1, Un+1).
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En général, pour le schéma d’'Euler rétrograde, il faut résoudre une équation non-linéaire a chaque pas de temps.
Méthode du point fixe : Notons que (ER) est équivalent a un probléme de point fixe avec

upt1 = ¢(un+1) = un + hf(tni1, Unya) (18)

On peut résoudre ce probléme grice aux itérations suivantes

k+1 k
Ul = dlupq), k=0,1,2,... (19)
Méthode de Newton : A partir de I'équation :
F(unt1) = tnt1 — ¢(Un+1) = 0, (20)
on utilise les itérations suivantes :
Flupia) Flupia)
k+1 k n+1 k n+1
11 = Upig — o = lUpyy — o, k=0,1,2,... (21)
! § F/(“r‘:+1) ! 1- ¢’(U,‘§+1)

Dans les deux cas, on a limy_, o u‘;+1 = Up41.
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Quelles méthodes sont implicites ?

@ Euler Progressive
@ Euler Retrograde

@ Heun

@ Crank Nicolson

@ Point miliux
@ BDF 2
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—un+1h_un == f(tr” Un)

5= = f(ts1, Una)

un+—1h__“n — % [f(tm Un) + f(tn+17 u, + hf(tn, Un))}
ettt — £ (tr,tun) + F(tns1, Uni)|

un+12_hun—1 = f(tm Un)

3f n —4f n JFf n
(xnt1) 2(/7X JHF(ni1) f(tot1s Uns1)
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CONDITIONS DE STABILITE

Le choix du pas de temps h n'est pas arbitraire. Pour la méthode d'Euler
progressive, on verra plus loin dans le cours que, si h n'est pas suffisamment
petit, des problémes de stabilité peuvent surgir.

Par exemple, si I'on considére le probléme

{ }}i’((ot))_:l—72y(t) pour t € Ry (23)

dont la solution est
2t

y(t)=e",
on peut observer que les comportements par rapport a h des méthodes d'Euler
progressive et rétrograde sont trés différents.
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LA PROPRIETE DE STABILITE (ABSOLUE)

Pour A\ < 0 donné, on considére le probléme modéle suivant :

{ i’((t))zzl)\y(t) pour t € Ry (24)

dont la solution est
y(t) = M. En particulier, lim y(t) =0.
t—00

Posons 0 =tg < t; <...<t, < thy1 < ... tels que t, = nh, ou le pas de temps
h > 0 est donné.

Un schéma de résolution associé a ce probléme est appelé absolument stable si

lim u, =0.
n—oo
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e Pour le schéma d'Euler progressif :
Uni1 = (1 + Ah)u,, dou w,=(1+Ah)", Vn>0. (25)

Si 14+ Ah < —1, alors |u,| — oo quand n — oo, donc le schéma d'Euler
progressif est instable.

Pour assurer la stabilité, on a besoin de [limiter le pas de temps h, en imposant
la condition de stabilité :

|14+ Ah| < 1dou h<2/|).

e Pour le schéma d'Euler rétrograde :

1 1 "
Uni1 (1—>\h) U, et donc  wu, (1—>\h) , Yn>0

Et comme lim,_,o u, = 0, on a la stabilité sans condition sur h.
S. DEeparis, SCI-SB-SC-EPFL
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y(t)
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AN A _v/\/\\/\\

y()

- - sol-ex
—e— Euler prog.
—a— Euler retr

Comparaison entre les solutions obtenues par les méthodes d'Euler progressive et
rétrograde pour h = 0.9 (a gauche, stable) et h = 1.1 (a droite, instable)
(condition de stabilité pour Euler progressif : |A\| =2 = h <2/|\| =1).
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LA STAB. ABS. CONTROLE LES PERTURBATIONS

Pour un probléme général, on se pose la question de sa stabilité, c'est-a-dire de la
propriété selon laquelle des petites perturbations sur les données induisent des
“petites’ perturbations sur la solution.

On veut montrer la propriété suivante.

Une méthode numérique absolument stable pour le probléme modéle est stable
(au sens précédent) pour un probléme de Cauchy quelconque.

S. DEepaArIis, SCI- SC EQUATIONS NON-LINEAI



EQUATIONS DIFFERENTIELLES ORDINAIRES

0000000000000 0000O00O0O00O000000O0000000000e0000000000000000000000000000000000000000000O00000000000

REMARQUE

Reprenons le probléeme modéle généralisé
y'(t) = At)y(t) + r(t), t € (to,+00),
(33)
y(to) = yo,

Dans la méthode d'Euler Progressive, on peut contréler les perturbations dans le
cas ou il existe \pin > 0 et A\nax < 00 tels que

- )\max S )\(t) S _)\min7Vt Z tO (34)

et si on choisi 0 < h < 2/ pax.

S. DEeparls, SCI-SB-SC-EPFL EQUATIONS NON-LINEAIRES



EQUATIONS DIFFERENTIELLES ORDINAIRES

0000000000000 0000O00O0O00O000000O00000000000e000000000000000000000000000000000000000000O00000000000

REMARQUE
On considére maintenant le probléeme de Cauchy général

{ y'(t) = f(t,y(t)) t>0

y(0) =y,

dans un intervalle non-borné.

Soit D, I'ensemble qui contient la trajectoire de y(t) ainsi que celle de u,.
Dans la méthode d'Euler Progressive, on peut étendre le contréle des
perturbations au probléme modéle généralisé (33), dans le cas on il existe
Amin > 0 et Amax < 00 tels que

- )\max S af/a)/(tay) S _>\mimvr Z 07 vy € Dy7 (35)

et si on choisi 0 < h < 2/ pax.
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EXEMPLE

EXAMPLE

Considérons le probléme de Cauchy
y'(t) = (=2 +sin(t))y(t) + e, t € (0,+00),
y(1)=3.

Ecrivez les Schemas d'Euleur Progressif et Retrograde pour ce probleme de
Cauchy. Ensuite calculez

o A\(t)
° )\mim)\max

@ La condition de stabitité pour Euler Progressive et Retrograde
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CONVERGENCE

DEFINITION

Soit y(t) la solution du probleme de Cauchy (3) sur I'intervalle [0, T]; soit u,
une solution approchée au temps t, = nh trouvée par une méthode numérique
donnée, ot h = T /N, (N, € N) est le pas de temps. La méthode est dite
convergente si

\V/I’IIO,...,N;,Z |Un_y(tn)|§C(h)

ou C(h) — 0 lorsque h — 0.

Si, en plus, il existe p > 0 tel que C(h) = KhP pour une constante K qui ne
dépend pas de h ni de n, on dit que la méthode est convergente d'ordre p.

Dans la suite du cours, on va analyser la convergence et |'ordre de la méthode
d'Euler progressive.
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CONVERGENCE D’'EULER PROGRESSIF

THEOREM

Siy € C3([0, T]) et f satisfait —00 < —Apax < g—;(t,y) < 0 pour tout t € [0, T]
et pour tout y € R. alors la méthode d’Euler progressive est convergente et

1
vn 20, |y(ta) = un| < c(tn)h, ot c(ty) = to5 max [y"(t)], (37)

te(to, tn]

En particuler, la méthode est convergente d'ordre p = 1, avec

C(h) = c(T)h.

REMARQUE

Le méme type de résultat peut étre établi pour la méthode d'Euler rétrograde.
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Evolution des populations de lapins et de renards sur 10 ans. |
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