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EQUATIONS NON LINEAIRES

Objectif : trouver les zéros de fonctions (ou systémes) non linéaires, c-a-d les
valeurs a € R telles que f(a) = 0.

f(x)

(o)
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METHODE DE DICHOTOMIE OU BISSECTION I

Soit f : [a, b] — R une fonction continue telle qu'elle change de signe entre a et
b, i.e., f(a)f(b) < 0. Puisque f est continue, il existe un zéro ou racine « € [a, b]
tel que f(a) = 0.

La méthode dichotomie construit, a partir d'un essai initial x(¥) une suite

x© xM xR telle que limyg_oo XK = .
on pose x(©) = 2£2 (point milieu),
A si f(x(@) =0, alors a = x(©
Y\ f(x)

si f(x9)f(a)) < 0= le zéro a € [a,x(9)]
et on définit aM) = a et p(1) = x(©)

xa si F(XO)F(B)) < 0 = le zéro a € [x©), b]
AW ’/ o ___*_eton définit 20 — x(0) ot p(1) — p

b
! On vois bien que [x(® — a| < 252
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ALGORITHME DE BISSECTION

On pose a® = a, b® = p. Pour k = 0,1, ...

(k) _ a%k)4pk)

O si f(x(K)) =0, alors x(*) est le zéro cherché. Autrement :
@ soit f(x(K)f(ak)) < k = et le zéro a € [aK), x(K)].

On pose alkt1) = (k) et plkt1)

_ (k)

@ soit F(x(F(bK)) < k = le et zéro o € [x(K), b(K)].

On pose alkt1) = x(k) et plk+1) = p(k)

Le point x() se trouve au milieu de I'intervalle [a(¥), b(¥)], dont la longuer est
%. Donc on a I'estimation suivante pour |'erreur d'ap

|e(k)| — |X(k)

<b—a
~ ol = e

Si on désire une erreur plus petit d'une tolerance tof

combien d'iteration faudra-t-il faire ? (réponse : log, (
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0 donnée, en générale

b—a) _1)
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METHODE DE NEWTON

Soit f : R — R une fonction différentiable.
Soit x(%) un point donné. On considére I'équation de la droite y(x) qui passe par
le point (x(9), f(x(¥))) et qui a comme pente '(x(¥) :

y(x) = £ (x50 (x — xK) 4 F(x*).

On définit x(*t1) comme étant le point ou cette droite intersecte I'axe x,
c'est-a-dire y(x(**1)) = 0. On en déduit que :

L) (k)
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METHODE DE NEWTON

En partant du point x(, la suite {x(¥)} converge vers le zéro de f

i
y
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CONVERGENCE ?

o Cela dépend des propriétés de la fonction;

o Cela dépend du point initial.
y y

/ x®  xM x© xM  x©
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METHODE DE POINT FIXE

Un procédé général pour trouver les racines d'une équation non linéaire f(x) =0
consiste a la transformer en un probléme équivalent x — ¢(x) = 0, ou la fonction
auxiliaire ¢ : [a, b] — R doit avoir la propriété suivante :

o(a) =« si et seulement si f(a) =0.

Le point « est dit alors point fixe de la fonction ¢. Approcher les zéros de f se
raméne donc au probléme de la détermination des points fixes de ¢.

Idée : On va construire des suites qui vérifient x(“*1) = ¢(x(K), k > 0. En effet,
si x(K) — « et si ¢ est continue dans [a, b], alors la limite « satisfait ¢(a) = a.
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En partant du point x(9, la suite {x(¥)} converge vers le point fixe o

SCI-SB
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PROPOSITION

(Convergence globale)
1. Supposons que ¢(x) est continue sur [a, b| et telle que ¢(x) € [a, b] pour tout
x € [a, b]. Alors il existe au moins un point fixe « € [a, b] de ¢.

2. De plus, si AL < 1 tel que |p(x1) — d(x2)| < Lix1 — xo| Vxi, x2 € [a, b],

alors ¢ admet un unique point fixe « € [a, b] et la suite définie par
xU1) = ¢(x(K)), k > 0, converge vers o pour toute donnée initiale x\°) dans
[a, b].
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Démonstration

1. La fonction g(x) = ¢(x) — x est continue sur [a, b] et, par I'hypothése sur
I'image de ¢, on a que g(a) = ¢(a) —a >0 et g(b) = ¢(b) — b < 0. On sait
alors qu'il existe au moins un zéro de g dans l'intervalle [a, b], donc il existe au
moins un point fixe de ¢ dans [a, b].

2. Soient oy, ap € [a, b] deux points fixes différents. On a donc que

| — aa| = [p(a1) — ¢(a2)| < Ll — ao| < oz — g,

ce qui est absurde. Il existe donc un unique point fixe « de ¢ dans [a, b].
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Soient x(0 € [a, b] et x(k*1) = ¢(x(K). On a que
0.< ¥ — o] = [(x) — gla)| < LI —a] < . < LFO af

c.-a-d. )
X —al _ ko
X —af =

Puisque L < 1, pour k — 00, on a que

lim |x*¥) —a| < lim LXK =0.
k—o0 k—o00

Donc, ¥x(© ¢ [a, b], la suite {x(K)} définie par x(k*1) = ¢(x(K)), k > 0 converge
vers « lorsque k — 00.
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REMARQUE

Si ¢(x) est différentiable sur [a, b] et
JK < 1 tel que |¢'(x)| < K Vx € [a, b],

alors la condition 2 de la proposition (1) est vérifiée. Cette hypothése est plus
forte, mais elle est plus souvent utilisée en pratique car elle est plus aisée a
vérifier.
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DEFINITION

Pour une suite de nombres réels {x(X)} qui converge, x(¥) — a, on dit que la
convergence vers « est linéaire s'il existe une constante C < 1 telle que, pour k
suffisamment grand,

| xHD) — o < C | xW —a .

S'il existe une constante C > 0 telle que I'inégalité

| x D) — o |< C | x) — o |2

soit vérifiée, on dit que la convergence est quadratique.
En général, la convergence est d'ordre p, p > 1, s'il existe une constante C > 0
(avec C < 1 lorsque p = 1) telle que I'inégalité suivante soit satisfaite

| xUHD — o |< C | x —a|P.
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PROPOSITION

(Convergence locale)

Soient ¢ une fonction continue et différentiable sur [a, b] et a un point fixe de ¢.
Si| ¢'(a) |< 1, alors il existe un § > 0 tel que, pour tout x©© , | x©) —a |< 4, la
suite {x¥)} définie par x*+1) = ¢(x(K)) converge vers o lorsque k — .

De plus, on a

k1) _

lim ——— = ¢'(«).

k—o0 X(k) o

On remarque que, si 0 <| ¢'(«) |< 1, alors pour n'importe quelle constante C
telle que |¢'(«)| < C < 1, si k est suffisamment grand, on a :

| xHD) — o < C | x0 —a ).
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PROPOSITION

Soient ¢ une fonction deux fois différentiable sur [a, b] et a un point fixe de ¢. On
considére x(©) dans I'ensemble du convergence locale. Si ¢/'(at) = 0 et ¢" () # 0,
alors la méthode de point fixe associée a la fonction d'itération ¢ est d’ordre 2 et

x(k+1) _ o ¢//(a)
lim =
k—o0 (X(k) — Oé)2 2

Démonstration
Un développement de Taylor de ¢ en x = o donne

K = 6(x) — o) = (@) — a) + T oy

ou mn est entre x(K) et . Ainsi, on a

cox — L ¢(n)  ¢"(a)
||m — = = ||m = .
k—o0 X(k) — 2 k—o0 2 2
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Quelques exemples sur comment la valeur de | ¢/(«) | influence la convergence.
Cas convergents :

0<¢(a) <1, -1 < ¢(a) <0.
y ’ y=x

y=0 (x)

X©

xO  x® X
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Cas divergents :

#(a) < —1.

M xO @ X

x@
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A PROPOS DE LA METHODE DE NEWTON

La méthode de Newton constitue une méthode de point fixe : x(kt1) = ¢(x(k))

pour la fonction )
f(x
Qb(X) =X f-/(X)'

Soit a un zéro de la fonction f, c.-a-d. tel que f(«) = 0. On remarque que
¢'(a) =0, lorsque f'(«) # 0. En effet,

1 PR~ AP )
A 6
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THEOREM

Si f est deux fois différentiable, f(a) = 0 et f'(a) # 0, alors il existe 6 > 0 tel
que, si | x©) —a |< 6, la suite définie par la méthode de Newton converge vers .
De plus, la convergence est quadratique; plus précisément

x(k+1) _ ()
lim = .
k—oo (x(K) — )2 2f'(a)

Démonstration

La propriété de la convergence vient de la Proposition 2, tandis que la
convergence quadratique est une conséquence de la Proposition 3, du fait que
¢'(a) =0 et que ¢ (a) 2(a) =

2f'(a)
DEFINITION
On dit q'un zéro « de f est de multiplicité m, m € N si
fla)=...=fm () =0 et f(M(a )7Ao
: Itiplicité m = 1 e
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REMARQUE
Si f'(a) =0, la convergence de la méthode de Newton est seulement linéaire,
pas quadratique. On considére alors la méthode de Newton modifiée :

k
(k1) (k) f(X_()) k=0,1,2.... (7)

avec m la multiplicité de .

Si la multiplicité m de « n'est pas connue, il y a d'autres méthodes, des méthodes
adaptatives, qui permettent de récupérer |'ordre quadratique de la convergence.
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UN CRITERE D’ARRET POUR NEWTON

Quand faut-il arréter les itérations de I'algorithme de Newton ? Un bon critére
d'arrét est le contréle de l'incrément : les itérations s'achévent dés que

Ix(FD) — x| < ¢ (8)

ol € est une tolérance fixée.
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En fait, si on note e®) = o — x(¥) I'erreur a I'itération k, on a
D) — o — x0H) — () — ¢(x¥) = ¢/(€)el®),
avec 5(") entre x(K) et a, et
X 30— o 0 () 2 ) gl = (1 (W) M), (9)

En supposant que, si k est suffisamment grand, on a ¢/(¢()) ~ ¢/(a) et en
sachant que pour la méthode de Newton ¢'(«) = 0 si «v est un zéro simple, on

trouve |'estimation
|e(k)| ~ |X(k+1) _ X(k)’_

L'erreur qu'on commet lorsqu'on adopte le critére (8) est donc plus petite que la
tolérance fixée.
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CRITERES D'’ARRET : LE CAS GENERAL

En général, pour toutes les méthodes étudiées, on peut utiliser deux critéres
d'arrét différents : les itérations s'achévent dés que

xUFD) — x (K] < ¢ contréle de I'incrément),
|

ou
1F (x5 < e (contréle du résidu),

ol € est une tolérance fixée.
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Pour le critére qui contréle I'incrément on a obtenu |'estimation (9) :

1

T (1= ¢(a)

Si I'on trace un graphe du comportement de la fonction y(y) = ﬁ pour
y = ¢/(«) on peut conclure que le test :

(X(k+1) _ X(k))_

@ n'est pas satisfaint si ¢/(«a) est 7|
proche de 1,

@ est optimal pour les métohdes
d'ordre 2 pour lesquelles ¢/(a) = 0,

1 1,
@ est encore satisfaisant si e
— / . i =
L<¢a) <0 -1 ()| 1 ¢(a)
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lorsque |f’| ~ 1 dans un voisinage de la racine «. Sinon, il est soit trop restrictif
(si |[f’| > 1) soit trop faible (si |f'| < 1) :

A

fxk

alpha xk alpha xk

X X
< >

ek ek

\

Deux cas ou le résidu est un mauvais estimateur de l'erreur : |f/(x)| > 1
(a gauche), |f'(x)| < 1 (a droite) avec x dans un voisinage de «
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