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Equations non-linéaires

Equations non linéaires

Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les

valeurs ↵ 2 R telles que f (↵) = 0.
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Méthode de dichotomie ou bissection I
Soit f : [a, b] ! R une fonction continue telle qu’elle change de signe entre a et

b, i.e., f (a)f (b) < 0. Puisque f est continue, il existe un zéro ou racine ↵ 2 [a, b]
tel que f (↵) = 0.

La méthode dichotomie construit, à partir d’un essai initial x (0) une suite

x (0), x (1), . . . , x (k), telle que limk!1 x (k) = ↵.
on pose x (0) = a+b

2
(point milieu),

si f (x (0)) = 0, alors ↵ = x (0)

si f (x (0))f (a)) < 0 ) le zéro ↵ 2 [a, x (0)]
et on définit a(1) = a et b(1) = x (0)

si f (x (0))f (b)) < 0 ) le zéro ↵ 2 [x (0), b]
et on définit a(1) = x (0) et b(1) = b

On vois bien que |x (0) � ↵| < b�a
2

.

On recommence avec [a(1), b(1)] et on aura

|x (1) � ↵| < b(1)�a(1)

2
= b�a

4
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Algorithme de bissection
On pose a(0) = a, b(0) = b. Pour k = 0, 1, ...

1 x (k) = a(k)+b(k)

2

2 si f (x (k)) = 0, alors x (k) est le zéro cherché. Autrement :

1 soit f (x (k))f (a(k)) < k ) et le zéro ↵ 2 [a(k), x (k)].
On pose a(k+1) = a(k) et b(k+1) = x (k)

2 soit f (x (k))f (b(k)) < k ) le et zéro ↵ 2 [x (k), b(k)].
On pose a(k+1) = x (k) et b(k+1) = b(k)

Le point x (k) se trouve au milieu de l’intervalle [a(k), b(k)], dont la longuer est
b�a
2k

. Donc on a l’estimation suivante pour l’erreur d’approximation :

|e(k)| = |x (k) � ↵|  b � a

2k+1
,

Si on désire une erreur plus petit d’une tolerance tol > 0 donnée, en générale

combien d’iteration faudra-t-il faire ? (réponse : log
2

�
b�a
tol

�
� 1 )

b � a

2k+1
� tol

b � a

tol
� 2

k+1 log
2

✓
b � a

tol

◆
� (k+1) k > log

2

✓
b � a

tol

◆
�1
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Méthode de Newton

Soit f : R ! R une fonction différentiable.

Soit x (0) un point donné. On considère l’équation de la droite y(x) qui passe par

le point (x (k), f (x (k))) et qui a comme pente f 0(x (k)) :

y(x) = f 0(x (k))(x � x (k)) + f (x (k)).

On définit x (k+1)
comme étant le point où cette droite intersecte l’axe x ,

c’est-à-dire y(x (k+1)) = 0. On en déduit que :

x (k+1) = x (k) � f (x (k))

f 0(x (k))
, k = 0, 1, 2 . . . . (3)
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Méthode de Newton

En partant du point x (0), la suite {x (k)} converge vers le zéro de f
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Convergence ?
Est-ce que cette méthode converge ?

Cela dépend des propriétés de la fonction ;

Cela dépend du point initial.

y

f(x)

x

α

y

f(x)

x

α

x
(2)

(3) x x(0)x xx(1)(1) (0)
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Méthode de point fixe

Un procédé général pour trouver les racines d’une équation non linéaire f (x) = 0

consiste à la transformer en un problème équivalent x � �(x) = 0, où la fonction

auxiliaire � : [a, b] ! R doit avoir la propriété suivante :

�(↵) = ↵ si et seulement si f (↵) = 0.

Le point ↵ est dit alors point fixe de la fonction �. Approcher les zéros de f se

ramène donc au problème de la détermination des points fixes de �.

Idée : On va construire des suites qui vérifient x (k+1) = �(x (k)), k � 0. En effet,

si x (k) ! ↵ et si � est continue dans [a, b], alors la limite ↵ satisfait �(↵) = ↵.
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En partant du point x (0), la suite {x (k)} converge vers le point fixe ↵
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Proposition

(Convergence globale)
1. Supposons que �(x) est continue sur [a, b] et telle que �(x) 2 [a, b] pour tout
x 2 [a, b]. Alors il existe au moins un point fixe ↵ 2 [a, b] de �.

2. De plus, si 9L < 1 tel que |�(x1)� �(x2)|  L|x1 � x2| 8x1, x2 2 [a, b],

alors � admet un unique point fixe ↵ 2 [a, b] et la suite définie par
x (k+1) = �(x (k)), k � 0, converge vers ↵ pour toute donnée initiale x (0) dans
[a, b].
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Démonstration

1. La fonction g(x) = �(x)� x est continue sur [a, b] et, par l’hypothèse sur
l’image de �, on a que g(a) = �(a)� a � 0 et g(b) = �(b)� b  0. On sait
alors qu’il existe au moins un zéro de g dans l’intervalle [a, b], donc il existe au
moins un point fixe de � dans [a, b].

2. Soient ↵1,↵2 2 [a, b] deux points fixes différents. On a donc que

|↵1 � ↵2| = |�(↵1)� �(↵2)|  L|↵1 � ↵2| < |↵1 � ↵2|,

ce qui est absurde. Il existe donc un unique point fixe ↵ de � dans [a, b].
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Soient x (0) 2 [a, b] et x (k+1) = �(x (k)). On a que

0  |x (k+1) � ↵| = |�(x (k))� �(↵)|  L|x (k) � ↵|  ...  Lk+1|x (0) � ↵|,

c.-à-d.

|x (k) � ↵|
|x (0) � ↵|  Lk .

Puisque L < 1, pour k ! 1, on a que

lim
k!1

|x (k) � ↵|  lim
k!1

Lk = 0.

Donc, 8x (0) 2 [a, b], la suite {x (k)} définie par x (k+1) = �(x (k)), k � 0 converge

vers ↵ lorsque k ! 1.
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Remarque

Si �(x) est différentiable sur [a, b] et

9K < 1 tel que |�0(x)|  K 8x 2 [a, b],

alors la condition 2 de la proposition (1) est vérifiée. Cette hypothèse est plus
forte, mais elle est plus souvent utilisée en pratique car elle est plus aisée à
vérifier.
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Definition
Pour une suite de nombres réels {x (k)} qui converge, x (k) ! ↵, on dit que la

convergence vers ↵ est linéaire s’il existe une constante C < 1 telle que, pour k
suffisamment grand,

| x (k+1) � ↵ | C | x (k) � ↵ | .

S’il existe une constante C > 0 telle que l’inégalité

| x (k+1) � ↵ | C | x (k) � ↵ |2

soit vérifiée, on dit que la convergence est quadratique.

En général, la convergence est d’ordre p, p � 1, s’il existe une constante C > 0

(avec C < 1 lorsque p = 1) telle que l’inégalité suivante soit satisfaite

| x (k+1) � ↵ | C | x (k) � ↵ |p .
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Proposition

(Convergence locale)
Soient � une fonction continue et différentiable sur [a, b] et ↵ un point fixe de �.
Si | �0(↵) |< 1, alors il existe un � > 0 tel que, pour tout x (0) , | x (0) � ↵ | �, la
suite {x (k)} définie par x (k+1) = �(x (k)) converge vers ↵ lorsque k ! 1.
De plus, on a

lim
k!1

x (k+1) � ↵

x (k) � ↵
= �0(↵).

On remarque que, si 0 <| �0(↵) |< 1, alors pour n’importe quelle constante C
telle que |�0(↵)| < C < 1, si k est suffisamment grand, on a :

| x (k+1) � ↵ | C | x (k) � ↵ | .
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Proposition

Soient � une fonction deux fois différentiable sur [a, b] et ↵ un point fixe de �. On
considère x (0) dans l’ensemble du convergence locale. Si �0(↵) = 0 et �00(↵) 6= 0,
alors la méthode de point fixe associée à la fonction d’itération � est d’ordre 2 et

lim
k!1

x (k+1) � ↵

(x (k) � ↵)2
=

�00(↵)

2
.

Démonstration
Un développement de Taylor de � en x = ↵ donne

x (k+1) � ↵ = �(x (k))� �(↵) = �0(↵)(x (k) � ↵) +
�00(⌘)

2
(x (k) � ↵)2

où ⌘ est entre x (k) et ↵. Ainsi, on a

lim
k!1

x (k+1) � ↵

(x (k) � ↵)2
= lim

k!1

�00(⌘)

2
=

�00(↵)

2
.
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Quelques exemples sur comment la valeur de | �0(↵) | influence la convergence.

Cas convergents :

0 < �0(↵) < 1, �1 < �0(↵) < 0.

x (0) x (1)

α

y=φ (x)

y

y=x

x

y=

x

y=x
y

xxx(0) (2) (1)

α

φ (x)
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Cas divergents :

�0(↵) > 1, �0(↵) < �1.

xx

y=

x (2) (1) (0) α

φ (x)

y

x

y=x y=

x xx(1) (0) (2)α

φ (x)

y=x

x

y
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A propos de la méthode de Newton

La méthode de Newton constitue une méthode de point fixe : x (k+1) = �(x (k))
pour la fonction

�(x) = x � f (x)

f 0(x)
.

Soit ↵ un zéro de la fonction f , c.-à-d. tel que f (↵) = 0. On remarque que

�0(↵) = 0, lorsque f 0(↵) 6= 0. En effet,

�0(x) = 1 � [f 0(x)]2 � f (x)f 00(x)

[f 0(x)]2
.

S. Deparis, SCI-SB-SC–EPFL Equations non-linéaires 32 / 55



Equations non-linéaires

Theorem
Si f est deux fois différentiable, f (↵) = 0 et f 0(↵) 6= 0, alors il existe � > 0 tel
que, si | x (0) �↵ | �, la suite définie par la méthode de Newton converge vers ↵.
De plus, la convergence est quadratique ; plus précisément

lim
k!1

x (k+1) � ↵

(x (k) � ↵)2
=

f 00(↵)

2f 0(↵)
.

Démonstration
La propriété de la convergence vient de la Proposition 2, tandis que la
convergence quadratique est une conséquence de la Proposition 3, du fait que
�0(↵) = 0 et que �00(↵)

2
= f 00(↵)

2f 0(↵) .

Definition
On dit q’un zéro ↵ de f est de multiplicité m, m 2 N si

f (↵) = . . . = f (m�1)(↵) = 0 et f (m)(↵) 6= 0.
Un zéro de multiplicité m = 1 est appelé zéro simple.
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Remarque
Si f 0(↵) = 0, la convergence de la méthode de Newton est seulement linéaire,
pas quadratique. On considère alors la méthode de Newton modifiée :

x (k+1) = x (k) �m
f (x (k))

f 0(x (k))
, k = 0, 1, 2 . . . . (7)

avec m la multiplicité de ↵.

Si la multiplicité m de ↵ n’est pas connue, il y a d’autres méthodes, des méthodes
adaptatives, qui permettent de récupérer l’ordre quadratique de la convergence.
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Un critère d’arrêt pour Newton

Quand faut-il arrêter les itérations de l’algorithme de Newton ? Un bon critère

d’arrêt est le contrôle de l’incrément : les itérations s’achèvent dès que

|x (k+1) � x (k)| < ✏ (8)

où ✏ est une tolérance fixée.
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En fait, si on note e(k) = ↵� x (k) l’erreur à l’itération k , on a

e(k+1) = ↵� x (k+1) = �(↵)� �(x (k)) = �0(⇠(k))e(k),

avec ⇠(k) entre x (k) et ↵, et

x (k+1) � x (k) = ↵� x (k) � ↵ + x (k+1) = e(k) � e(k+1) =
�
1 � �0(⇠(k))

�
e(k). (9)

En supposant que, si k est suffisamment grand, on a �0(⇠(k)) ⇡ �0(↵) et en

sachant que pour la méthode de Newton �0(↵) = 0 si ↵ est un zéro simple, on

trouve l’estimation

|e(k)| ⇡ |x (k+1) � x (k)|.

L’erreur qu’on commet lorsqu’on adopte le critère (8) est donc plus petite que la

tolérance fixée.
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Critères d’arrêt : le cas general

En général, pour toutes les méthodes étudiées, on peut utiliser deux critères

d’arrêt différents : les itérations s’achèvent dès que

|x (k+1) � x (k)| < ✏ (contrôle de l’incrément),

ou

|f (x (k))| < ✏ (contrôle du résidu),

où ✏ est une tolérance fixée.
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Pour le critère qui contrôle l’incrément on a obtenu l’estimation (9) :

e(k) ⇡ 1

(1 � �0(↵))
(x (k+1) � x (k)).

Si l’on trace un graphe du comportement de la fonction �(y) = 1

1�y pour

y = �0(↵) on peut conclure que le test :

n’est pas satisfaint si �0(↵) est

proche de 1,

est optimal pour les métohdes

d’ordre 2 pour lesquelles �0(↵) = 0,

est encore satisfaisant si

�1 < �0(↵) < 0.
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Par contre, le deuxième critère (contrôle du résidu) est satisfaisant seulement

lorsque |f 0| ' 1 dans un voisinage de la racine ↵. Sinon, il est soit trop restrictif

(si |f 0| � 1) soit trop faible (si |f 0| ⌧ 1) :

ek

y y

xx

f

fxk

xk fxkxk

f

alpha alpha

ek

Deux cas où le résidu est un mauvais estimateur de l’erreur : |f 0(x)| � 1

(à gauche), |f 0(x)| ⌧ 1 (à droite) avec x dans un voisinage de ↵
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