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Formulation du problème

On appelle système linéaire d’ordre n (n entier positif), une expression de la forme

Ax = b,

où A = (aij) est une matrice de taille n × n donnée, b = (bj) est un vecteur
colonne également donné et x = (xj) est le vecteur des inconnues du système. La
relation précédente équivaut aux n équations

n∑
j=1

aijxj = bi , i = 1, . . . , n.

La matrice A est dite régulière (non singulière) si det(A) 6= 0. On a l’existence
et l’unicité de la solution x (pour n’importe quel vecteur b donné) si et seulement
si la matrice associée au système linéaire est régulière.
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Sommaire méthodes directes

Résolution par factorisation LU ou de Choleski
Coût de la factorisation LU
Problèmes de Précision

En gros, pour le premier point il faut savoir répondre aux deux prochains
transparents
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Factorisation LU

La factorisation LU . Si A = PLU

A L et U sont triangulaires
B detP = ±1
C Rśolution par Ly = Pb et Ux = y
D sur Python : x = scipy.linalg.lu(A)
E sur Python : P,L,U = scipy.linalg.lu(A)
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Factorisation de Cholevski

La factorisation de Cholevski A
A Peut toujours se faire
B Peut se faire si A = AT

C Peut se faire si A est spd
D A = LLT , L triangulaires supérieure
E A = LLT , L triangulaires inférieure
F detA = (det L)2

G Rśolution par Ly = b et Lx = y
H sur Python : x = scipy.linalg.choleski(A)
I sur Python : L = scipy.linalg.choleski(A)

spd = symétrique définie positive
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Mineurs principaux I

Les mineurs principaux d’une matrice A ∈ Rn×n sont les déterminants des
matrices Ap = (ai ,j)1≤i ,j≤p, p = 1, ..., n.
Critère de Sylvester : une matrice symétrique A ∈ Rn×n est définie positive si
et seulement si les mineurs principaux de A sont tous positifs.
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Considérations sur la précision

Definition
On définit le conditionnement d’une matrice M symétrique définie positive
comme le rapport entre la valeur maximale et minimale de ses valeurs propres, i.e.

K (M) =
λmax(M)

λmin(M)
(1)

On peut montrer la relation suivante :

‖x− x̂‖
‖x‖

≤ K (A)
‖r‖
‖b‖

(2)

où r est le résidu r = b− Ax̂.
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Sommaire méthodes itératives

Méthodes itératives : définitions
Méthode de Richardson
Méthodes de Jacobi et de Gauss-Seidel
Critères de convergence
Méthodes du Gradient et du Gradient Conjugués
Critères de convergence
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Méthodes itératives

Résoudre un système linéaire Ax = b par une méthode itérative consiste à
construire une suite de vecteurs x(k), k ≥ 0, de Rn qui converge vers la solution
exacte x, c’est-à-dire :

lim
k→∞

x(k) = x

pour n’importe quelle donnée initiale x(0) ∈ Rn.
On peut considérer la relation de récurrence suivante :

x(k+1) = Bx(k) + g, k ≥ 0 (3)

où B est une matrice bien choisie (dépendante de A) et g est un vecteur
(dépendant de A et de b), qui vérifient la relation (de consistance)

x = Bx + g. (4)
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Étant donné que x = A−1b, on obtient g = (I − B)A−1b ; la méthode itérative
est donc complètement définie par la matrice B qui est appellée matrice
d’itération.
En définissant l’erreur au pas k comme

e(k) = x− x(k),

on obtient la relation de récurrence :

e(k+1) = Be(k) et donc e(k+1) = Bk+1e(0), k = 0, 1, . . . .
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On peut montrer que limk→∞ e(k) = 0 pour tout e(0) (et donc pour tout x(0)) si
et seulement si

ρ(B) < 1,

où ρ(B) est le rayon spectral de la matrice B , défini par

ρ(B) = max |λi(B)|

et λi(B) sont les valeurs propres de la matrice B .

Plus la valeur de ρ(B) est petite, moins il est nécessaire d’effectuer d’itérations
pour réduire l’erreur initiale d’un facteur donné.
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Construction d’une méthode itérative

Une méthode générale pour construire une méthode itérative est basée sur la
décomposition de la matrice A :

A = P − (P − A)

où P est une matrice inversible appelée préconditionneur de A.
Alors,

Ax = b ⇔ Px = (P − A)x + b

qui est de la forme (4) en posant

B = P−1(P − A) = I − P−1A et g = P−1b.
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On peut définir la méthode itérative correspondante

P(x(k+1) − x(k)) = r(k) k ≥ 0

où r(k) désigne le résidu à l’itération k : r(k) = b− Ax(k)

On peut généraliser cette méthode de la manière suivante :

P(x(k+1) − x(k)) = αkr(k) k ≥ 0 (5)

où αk 6= 0 est un paramètre pour améliorer la convergence de la suite x(k).
La méthode (5) est appelée méthode de Richardson.

La matrice P doit être choisie de telle manière que le coût de la résolution de (5)
soit assez faible. Par exemple, une matrice P diagonale ou triangulaire vérifierait
ce critère.
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La méthode de Jacobi

Si les éléments diagonaux de A sont non nuls, on peut poser

P = D = diag(a11, a22, . . . , ann)

D étant la partie diagonale de A :

Dij =

{
0 si i 6= j

aij si i = j .

La méthode de Jacobi correspond à ce choix avec αk = 1 pout tout k .
On déduit alors :

Dx(k+1) = b− (A− D)x(k) k ≥ 0.
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Par composantes :

x
(k+1)
i =

1
aii

(
bi −

n∑
j=1,j 6=i

aijx
(k)
j

)
, i = 1, . . . , n. (6)

La méthode de Jacobi peut s’écrire sous la forme générale

x(k+1) = Bx(k) + g,

avec
B = BJ = D−1(D − A) = I − D−1A, g = gJ = D−1b.
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La méthode de Gauss-Seidel

Cette méthode est définie par la formule suivante :

x
(k+1)
i =

1
aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

)
, i = 1, . . . , n.

Cette méthode correspond à (3) avec P = D − E et αk = 1 (∀k ≥ 0) où E est la
matrice triangulaire inférieure{

Eij = −aij si i > j

Eij = 0 si i ≤ j

(partie triangulaire inférieure de A sans la diagonale et avec les éléments changés
de signe).
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On peut écrire cette méthode sous la forme (5), avec la matrice d’itération
B = BGS donnée par

BGS = (D − E )−1(D − E − A)

et
gGS = (D − E )−1b.
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Convergence

On a les résultats de convergence suivants :
Si A est une matrice à diagonale dominante stricte par ligne, c’est -à-dire

|aii | >
∑

j=1,...,n;j 6=i

|aij |, i = 1, . . . , n.

alors les méthodes de Jacobi et de Gauss-Seidel sont convergentes
Soit A régulière, tridiagonale et dont les coefficients diagonaux sont tous
non-nuls. Alors les méthodes de Jacobi et de Gauss-Seidel sont toutes les
deux soit divergentes soit convergentes. Dans le deuxième cas,
ρ(BGS) = ρ(BJ)

2

Si A est une matrice symétrique définie positive, alors la méthode de
Gauss-Seidel converge (la méthode de Jacobi pas forcément).
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La méthode de Richardson

Considérons la méthode itérative générale :

P(x(k+1) − x(k)) = αkr(k), k ≥ 0. (7)

Cette méthode est appelée méthode de Richardson stationnaire préconditionné si
αk = α (une constante donnée) ; autrement elle est dite méthode de Richardson
dynamique préconditionné quand αk peut varier au cours des itérations.

La matrice inversible P est appelée préconditionneur de A.
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Si A et P sont symétriques définies positives, alors on a deux critères optimaux
pour le choix de αk :
1. Cas stationnaire :

αk = αopt =
2

λmin(P−1A) + λmax(P−1A)
, k ≥ 0,

où λmin et λmax désignent respectivement la plus petite et la plus grande
valeur propre de la matrice P−1A.

2. Cas dynamique :

αk =
(z(k))T r(k)

(z(k))TAz(k)
, k ≥ 0,

où z(k) = P−1r(k) est le résidu préconditionné.
Cette méthode est aussi appelée méthode du gradient préconditionné.
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Si P = I et A est symétrique définie positive, on trouve les méthodes :
de Richardson stationnaire si on choisit :

αk = αopt =
2

λmin(A) + λmax(A)
. (8)

du gradient si :

αk =
(r(k))T r(k)

(r(k))TAr(k)
, k ≥ 0. (9)

S. Deparis, SCI-SB-SC–EPFL Systèmes linéaires 21 / 41



Systèmes linéaires Systèmes linéaires

On peut récrire plus efficacement la méthode du gradient préconditionné de la
manière suivante : soit x(0), poser r(0) = b− Ax(0), puis pour k ≥ 0,

Pz(k) = r(k)

αk =
(z(k))T r(k)

(z(k))TAz(k)

x(k+1) = x(k) + αkz(k)

r(k+1) = r(k) − αkAz(k).

On observe qu’on doit résoudre un système linéaire pour la matrice P à chaque
itération ; donc P doit être telle que la résolution du système associé soit facile
(c’est-à-dire avec un coût raisonnable). Par exemple, on pourra choisir P
diagonale (comme dans le cas du gradient ou de Richardson stationnaire) ou
triangulaire.
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Convergence de la méth. de Richardson

Considérons tout d’abord les méthodes de Richardson stationnaires ; on a le
résultat de convergence suivant :

Theorem (Cas stationnaire)

On suppose la matrice P inversible et les valeurs propres de P−1A strictement
positives et telles que λmax = λ1 ≥ λ2 ≥ . . . ≥ λn = λmin > 0. Alors la méthode
de Richardson stationnaire est convergente si et seulement si 0 < α < 2/λ1. De
plus, le rayon spectral de la matrice d’itération Rα est minimal si α = αopt

αopt =
2

λmin + λmax
,

avec
ρopt =

λmax − λmin

λmin + λmax
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Dans le cas dynamique, on a un résultat qui permet de choisir de façon optimale
le paramètre d’accélération à chaque étape, si la matrice A est symétrique définie
positive :

Theorem (Cas dynamique)

Si A est symétrique définie positive, le choix optimal de αk est donné par

αk =
(r(k), z(k))
(Az(k), z(k))

, k ≥ 0 (10)

où
z(k) = P−1r(k). (11)
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Pour le cas stationnaire et pour le cas dynamique on peut démontrer que, si A et
P sont symétriques définies positives, la suite {x(k)} donnée par la méthode de
Richardson (stationnaire et dynamique) converge vers x lorsque k →∞, et

‖x(k) − x‖A ≤
(
K (P−1A)− 1
K (P−1A) + 1

)k

‖x(0) − x‖A, k ≥ 0, (12)

où ‖v‖A =
√

vTAv et K (P−1A) est le conditionnement de la matrice P−1A.
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Remarque. Dans le cas de la méthode du gradient ou de Richardson
stationnaire l’estimation de l’erreur devient

‖x(k) − x‖A ≤
(
K (A)− 1
K (A) + 1

)k

‖x(0) − x‖A, k ≥ 0. (13)

Remarque. Si A et P sont symétriques définies positives, on a

K (P−1A) =
λmax(P

−1A)

λmin(P−1A)
.
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La méthode du gradient conjugué

Une méthode encore plus rapide dans le cas où P et A sont symétriques définies
positives est celle du gradient conjugué préconditionné qui s’exprime ainsi :
soit x(0) une donnée initiale ; on calcule r(0) = b− Ax(0), z(0) = P−1r(0),
p(0) = z(0), puis pour k ≥ 0,

αk =
p(k)T r(k)

p(k)TAp(k)

x(k+1) = x(k) + αkp(k)

r(k+1) = r(k) − αkAp(k)

Pz(k+1) = r(k+1)

βk =
(Ap(k))

Tz(k+1)

(Ap(k))
Tp(k)

p(k+1) = z(k+1) − βkp(k) .
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Dans ce cas, l’estimation de l’erreur est donnée par

‖x(k) − x‖A ≤
2ck

1+ c2k
‖x(0) − x‖A , k ≥ 0 où c =

√
K2(P−1A)− 1√
K2(P−1A) + 1

.

(14)
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Critères de convergence

On a la relation suivante :
Si A est une matrice symétrique définie positive, alors

‖x(k) − x‖
‖x‖

≤ K (A)
‖r(k)‖
‖b‖

. (15)

L’erreur relative à la k-ième itération peut être majorée par le résidu relatif
multiplié par le conditionnement de A.
En particulier, si K (A) ≈ 1, une petite valeur de la norme du résidu correspond à
une petite valeur de la norme de l’erreur ; si K (A)� 1, cette relation peut être
fausse.
On a également une estimation (utilisée si P 6= I ) :

‖x(k) − x‖
‖x‖

≤ K (P−1A)
‖P−1r(k)‖
‖P−1b‖

.
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