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FORMULATION DU PROBLEME

On appelle systeme linéaire d'ordre n (n entier positif), une expression de la forme

ot A = (a;) est une matrice de taille n x n donnée, b = (b;) est un vecteur
colonne également donné et x = (x;) est le vecteur des inconnues du systéme. La
relation précédente équivaut aux n équations

n
g ajxj =bj, i=1,...,n.
=1

La matrice A est dite réguliére (non singuliére) si  det(A) # 0. On a I'existence
et I'unicité de la solution x (pour n'importe quel vecteur b donné) si et seulement
si la matrice associée au systéme linéaire est réguliére.
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SOMMAIRE METHODES DIRECTES

@ Résolution par factorisation LU ou de Choleski
o Codt de la factorisation LU
@ Problémes de Précision

En gros, pour le premier point il faut savoir répondre aux deux prochains
transparents
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FACTORISATION LU

La factorisation LU. Si A= PLU
@ L et U sont triangulaires
@ detP=+1
@ Réolution par Ly = Pb et Ux =y
@ sur Python : x = scipy.linalg.lu(A)
@ sur Python : P,L,U = scipy.linalg.lu(A)
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FACTORISATION DE CHOLEVSKI

La factorisation de Cholevski A

@ Peut toujours se faire

@ Peut se fairesi A= AT

@ Peut se faire si A est spd

@ A= LLT, L triangulaires supérieure

@ A=LL", L triangulaires inférieure

Q@ det A = (detL)?

@ Rsolution par Ly =bet Lx=y

@ sur Python : x = scipy.linalg.choleski(A)

@ sur Python : L = scipy.linalg.choleski(A)
spd = symétrique définie positive
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MINEURS PRINCIPAUX I

Les mineurs principaux d'une matrice A € R"*" sont les déterminants des

matrices A, = (aij)1<ij<p P =1, ..., n.
Critére de Sylvester : une matrice symétrique A € R"*" est définie positive si
et seulement si les mineurs principaux de A sont tous positifs.
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CONSIDERATIONS SUR LA PRECISION

DEFINITION

On définit le conditionnement d'une matrice M symétrique définie positive
comme le rapport entre la valeur maximale et minimale de ses valeurs propres, i.e.

Amax(M)
K(M) = ——-= 1
(M) o (M) (1)
On peut montrer la relation suivante :
[x — X]i Iial
< K(A) (2)
1]l b

ol r est le résidu r = b — AX.
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SOMMAIRE METHODES ITERATIVES

Méthodes itératives : définitions
Méthode de Richardson

Méthodes de Jacobi et de Gauss-Seidel
Critéres de convergence

e Méthodes du Gradient et du Gradient Conjugués
Critéres de convergence

(]
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METHODES ITERATIVES

Résoudre un systéme linéaire Ax = b par une méthode itérative consiste a
construire une suite de vecteurs x(¥), k > 0, de R” qui converge vers la solution

exacte X, c'est-a-dire :
lim x(¥)
k—o00

=X

pour n'importe quelle donnée initiale x(¥) € R".
On peut considérer la relation de récurrence suivante :

xk) = BxK) g k>0 (3)

ou B est une matrice bien choisie (dépendante de A) et g est un vecteur
(dépendant de A et de b), qui vérifient la relation (de consistance)

x=Bx+g. (4)
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Etant donné que x = A~'b, on obtient g = (/ — B)A~!b; la méthode itérative
est donc complétement définie par la matrice B qui est appellée matrice
d'itération.

En définissant I'erreur au pas k comme

k)

Y

ek = x — x(

on obtient la relation de récurrence :

el = BeW et donc elktV) = BF+1e® kK =0,1,....

S. DEeparis, SCI-SB-SC-EPFL S ES LINEAIRES



SYSTEMES LINEAIRES

000@0000000000000000O00000000000000

On peut montrer que lim,_,,, %) = 0 pour tout e(®) (et donc pour tout x(?) si
et seulement si

p(B) <1,

ou p(B) est le rayon spectral de la matrice B, défini par

p(B) = max |\,(B)|

et \;j(B) sont les valeurs propres de la matrice B.

Plus la valeur de p(B) est petite, moins il est nécessaire d'effectuer d'itérations
pour réduire |'erreur initiale d'un facteur donné.
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CONSTRUCTION D'UNE METHODE ITERATIVE

Une méthode générale pour construire une méthode itérative est basée sur la
décomposition de la matrice A :

A=P—(P—A)

ol P est une matrice inversible appelée préconditionneur de A.

Alors,
Ax=b & Px=(P—-A)x+b

qui est de la forme (4) en posant

B=P ' P-—A)=I-—P'A et g=P'b.
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On peut définir la méthode itérative correspondante

P(xH1) — x(y = ¢(k) k>0

oir r(k) désigne le résidu a I'itération k : ‘r(k) = b — Ax(
On peut généraliser cette méthode de la maniére suivante :

P(xk) — x(0) = qr® k>0 (5)

oil a, # 0 est un paramétre pour améliorer la convergence de la suite x(¥),
La méthode (5) est appelée méthode de Richardson.

La matrice P doit étre choisie de telle maniére que le coit de la résolution de (5)
soit assez faible. Par exemple, une matrice P diagonale ou triangulaire vérifierait
ce critere.
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LA METHODE DE JACOBI

Si les éléments diagonaux de A sont non nuls, on peut poser
P=D= diag(all, ar, ..., a,,,,)

D étant la partie diagonale de A :

DU:{O si i %]

a;  sii=j.

La méthode de Jacobi correspond a ce choix avec o, = 1 pout tout k.
On déduit alors :

Dx ) —p — (A-D)x® k>0,
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Par composantes :

1 n
Xf(kH):a_,-,- bi— > ax |, i=1,...n (6)

J=Li#i

La méthode de Jacobi peut s'écrire sous la forme générale
x+) = Bx() 4 g

avec

B=B,=DYD—-A)=I—-D"'A| g=g,=D"b.
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LA METHODE DE (GAUSS-SEIDEL

Cette méthode est définie par la formule suivante :

1 i—1 n
(k+1) 2 : (k+1) 2 : (k) .
" j=1 j=i+l

Cette méthode correspond a (3) avec P =D — E et ax =1 (Vk > 0) ot E est la
matrice triangulaire inférieure

Ej = —aj Sii>j
E; =0 sij<j

(partie triangulaire inférieure de A sans la diagonale et avec les éléments changés
de signe).
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On peut écrire cette méthode sous la forme (5), avec la matrice d'itération
B = Bgs donnée par

Bes = (D —E)™(D — E — A)

et
ges = (D — E)'b.
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CONVERGENCE

On a les résultats de convergence suivants :

o Si A est une matrice a diagonale dominante stricte par ligne, c'est -a-dire

|aii| > Z lagjl, i=1,...,n.

J=1.n i

alors les méthodes de Jacobi et de Gauss-Seidel sont convergentes

o Soit A réguliére, tridiagonale et dont les coefficients diagonaux sont tous
non-nuls. Alors les méthodes de Jacobi et de Gauss-Seidel sont toutes les
deux soit divergentes soit convergentes. Dans le deuxiéme cas,
p(Bes) = p(B,)?

@ Si A est une matrice symétrique définie positive, alors la méthode de
Gauss-Seidel converge (la méthode de Jacobi pas forcément).
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LA METHODE DE RICHARDSON

Considérons la méthode itérative générale :

P(xtD — xW) = ¥ k> 0. (7)

Cette méthode est appelée méthode de Richardson stationnaire préconditionné si
ay = « (une constante donnée) ; autrement elle est dite méthode de Richardson
dynamique préconditionné quand « peut varier au cours des itérations.

La matrice inversible P est appelée préconditionneur de A.
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Si A et P sont symétriques définies positives, alors on a deux critéres optimaux
pour le choix de ay :

1. Cas stationnaire :

2
Amin(P7YA) + A pax(P~1A)’

Qg = Qopt = k>0

Y

ol Amin €t Amax désignent respectivement la plus petite et la plus grande
valeur propre de la matrice P~1A.

2. Cas dynamique :

(z(k))Tr(k)
(z(k)) T Az(K)’

D =

k>0,

ot 2K = P~1¢(K est le résidu préconditionné.
Cette méthode est aussi appelée méthode du gradient préconditionné.
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Si P =1 et A est symétrique définie positive, on trouve les méthodes :

@ de Richardson stationnaire si on choisit :

2
- _ 8
Uk “ Pt )\min(A) + )\max(A) ( )
@ du gradient si :
()T
o = W, k > 0. (9)
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On peut récrire plus efficacement la méthode du gradient préconditionné de la
maniére suivante : soit x(©), poser r® = b — Ax(©, puis pour k > 0,

pzk) — (k)
(z9)Tr
(z(k))TAz(k)

D) — ¢ _ g, AZ(0),

Ok =

On observe qu'on doit résoudre un systéme linéaire pour la matrice P a chaque
itération ; donc P doit étre telle que la résolution du systéme associé soit facile
(c'est-a-dire avec un coit raisonnable). Par exemple, on pourra choisir P
diagonale (comme dans le cas du gradient ou de Richardson stationnaire) ou
triangulaire.
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CONVERGENCE DE LA METH. DE RICHARDSON

Considérons tout d'abord les méthodes de Richardson stationnaires; on a le
résultat de convergence suivant :

THEOREM (CAS STATIONNAIRE)

On suppose la matrice P inversible et les valeurs propres de P~1A strictement
positives et telles que Xppax = A1 > Mo > ... > N\, = A\pin > 0. Alors la méthode
de Richardson stationnaire est convergente si et seulement si 0 < o < 2/\;. De
plus, le rayon spectral de la matrice d’itération R, est minimal si & = copt

B 2
Slopt = )\min + )\max7
avec
o )\max - )\min
Povt )\min + >\max
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Dans le cas dynamique, on a un résultat qui permet de choisir de facon optimale
le paramétre d'accélération a chaque étape, si la matrice A est symétrique définie
positive :

THEOREM (CAS DYNAMIQUE)

Si A est symétrique définie positive, le choix optimal de ay est donné par

(9, 20
Qe = W, k Z 0 (10)

ou
2K = p~1¢(k), (11)
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Pour le cas stationnaire et pour le cas dynamique on peut démontrer que, si A et
P sont symétriques définies positives, la suite {x(X)} donnée par la méthode de
Richardson (stationnaire et dynamique) converge vers x lorsque k — oo, et

K(P1A) —1\*
Ix#) — x4 < (W) IX© —x|[a, k>0, (12)

ot |[v]|a = VvTAv et K(P'A) est le conditionnement de la matrice P~*A.
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Remarque. Dans le cas de la méthode du gradient ou de Richardson
stationnaire |'estimation de |'erreur devient

K(A) -1
K(A)+1

k
I — xl < ( ) X9 —xlla, k>0, (13)

Remarque. Si A et P sont symétriques définies positives, on a

Amax(P71A)

KA = Sy
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LA METHODE DU GRADIENT CONJUGUE

Une méthode encore plus rapide dans le cas ou P et A sont symétriques définies
positives est celle du gradient conjugué préconditionné qui s'exprime ainsi :

soit x(©) une donnée initiale; on calcule r® = b — Ax(©), z(0) = p=1£(0),

p©® =z puis pour k > 0,

~p® T (k)

= —=—
p(k) Ap(k)

x(k+1) — X(k) _|_ akp(k)

r(k+1) = r(k) — akAp(k)

(Ap)) " Z(k+D)

(Apt) " p(0
plkrD) = Z0+D) Z g (k)
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Dans ce cas, |'estimation de |'erreur est donnée par

2ck
||X(k) —x||a < m HX(O)

- X“A?

k>0

V(PR -1

VK(PTA) +1
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CRITERES DE CONVERGENCE

On a la relation suivante :
Si A est une matrice symétrique définie positive, alors

(15)

L'erreur relative a la k-iéme itération peut étre majorée par le résidu relatif
multiplié par le conditionnement de A.

En particulier, si K(A) ~ 1, une petite valeur de la norme du résidu correspond a
une petite valeur de la norme de I'erreur; si K(A) > 1, cette relation peut étre
fausse.

On a également une estimation (utilisée si P # /) :

X" — x|

Pfl (k)
S K(P_lA) || r ”
1]l

IP~b]
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