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FORMULES D’ INTEGRATION simples

Soit f : [a, b] — R une fonction continue donnée sur un intervalle [a, b] C R. On se propose de
calculer numériquement la quantité
b
/ f(x)dx.
a

On considere les formules d'intégration suivantes (dites simples):
o Formule du point milieu
o Formule du trapeze

o Formule de Simpson
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FORMULE DU POINT MILIEU

i) = oo (230 )
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FORMULE DU TRAPEZE

a b
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FORMULE DE SIMPSON
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En général, on définit

J(g) :/11 ﬂng(t)dt%/llg(t)dt,

ou lM,g est le polyndme d'interpolation de g de degré n = M — 1 aux noeuds ty, ..., ty:
1 1 M 1
se) = [ Mugos= [ S ae)etae =Y | [ eione]ste)
- —1j=1 j=1Lt 1
Wk

@j, pour j =1,--- M, est le j-itme polynéme caractéristique de Lagrange.
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On a la formule générale suivante:

J(f) :Zwkf(xk)v (4)
k=0

ol xi sont les noeuds de la formule de quadrature et wy sont les poids (voir la table suivante).

Formule H Xk Wk
Point milieu (1) Xo = %(aJr b) wo=b—a
Trapeze (2) xo=ax =b wo =wy = %(b —a)
Simpson (3) Xo=a, x1 = %(a +b), wo=wp= %(b —a),
o= b wlzg(b—a)
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En ce qui concerne I'erreur d'intégration, on a

/ab f(x)dx — /ab Maf(x)dx
b

/ (f — NLf)(x)dx

a

[1(F) = J(F)

< max |f(x) — M,f(x)|(b— a)
x€[a,b]

erreur d'interpolation

Augmenter n n'est donc pas une bonne stratégie pour réduire I'erreur d'intégration

[1(F) = J(F)I.
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FORMULES D’INTEGRATION composites

On va considérer les N sous-intervalles Iy = [xk—1,xk], k =1,..., N, ol xx = a+ kH et
H=(b—a)/N. Comme on a

l(f):Z/ f(x)dx,

k=1"1

on peut calculer une approximation de I'intégrale exacte de f sur chaque sous-intervalle Iy par
I'intégrale d’'un polynéme approchant f sur Iy, c.a.d.:

b
I(f) approchée par 2’;01/ I'I,,f(x)dx:/ NH£(x)dx.
Ik a
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1. FORMULE COMPOSITE DU POINT MILIEU

Cette formule est obtenue en remplagant, sur chaque sous-intervalle /g, la fonction f par un
polyndme constant MNof égal a la valeur de f au milieu de /x (voir figure suivante) : on obtient
la formule composite du point milieu

N
lem(f) = HY_ F(xk), (5)
k=1
ou
_ _ Xk—1t Xk
k= 5 .
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2. LA FORMULE COMPOSITE DU TRAPEZE

Si, sur chaque sous-intervalle /x, on remplace f par le polynéme d'interpolation ;1 (x) de
degré 1 aux noeuds xx_1 et xx, on obtient la formule composite du trapéze:

H M H M—1
() = 5 D170 + Flsa)] = o [F(a) + F(B)] + H Y F(x) (6)
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EXAMPLE

On considere /(f) = fol f(x)dx ot f(x) = cos(x?): la figure suivante montre I'erreur
d'intégration [/5, (f) — I(f)| (formule composite du point milieu) et |/£(f) — I(f)[ , (formule
composite du trapéze) en fonction du nombre de sous-intervalles M.

Erreur

I I I I I I I I I
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3. LA FORMULE COMPOSITE DE SIMPSON

La formule de Simpson est obtenue en remplacant f par son polyndme interpolant composite
N4 f(x) de degré 2. En particulier, M4 f(x) est une fonction continue par morceaux qui, sur
chaque sous-intervalle Ix, est obtenue comme le polynéme interpolant f aux noeuds

Xk—1 + Xk

5 et xx (voir figure suivante).

Xk—1, Xk =

On obtient donc la formule composite de Simpson:

M

IS(F) = % D (k1) + 4F (Ri) + F(i)] - (7)
k=1

S. DEPARIS, SCI-S ) INTRODUCTION



ATION NUM
000000000000 000000e00000000

ODUCTION



ON N
000000000000 0000000eO0000000

ERREUR D’ INTEGRATION

DEFINITION
On définit I'ordre d'une formule d'intégration par I'ordre de son erreur par rapport a H. J

e Formule composite du point milieu. Si f est dans C?([a, b]), alors

[(f) = Iom(F)] < ?H2Xrg[g,>z] |F"(x)| = ordre 2

e Formule composite du trapéze. Si f est dans C?([a, b]), alors

b —
(F) — IE(F)] < 22 H? max_|f"(x)| = ordre 2
12 x€la,b]

e Formule composite de Simpson. Si f est dans C*([a, b]), alors

b—
? H* max |f""(x)| = ordre 4

1(F) = I£(F)| < H
|() S( )|_180 6 x€[a,b]
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DEFINITION

Une formule de quadrature [ sur I'intervalle [a, b] est exacte pour une fonction f si

Elle est exacte de degré r si elle est exacte pour tout f polyndme de degré r, i.e.

I(f) = /b f(x)dx Vf P,

UCTION
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En prenant pour I les formules simples du point milieu, du trapéze et de Simpson, on peut
associer un degré d’exactitude aux formules que |'on vient de traiter.

En particulier, on peut montrer que I, et I, sont exactes de degré 1; la formule de Simpson
est exacte de degré 3.

Formule Composite | Dg. Exact. | Ordre par rapport a H
Point milieu (5) 1 2
Trapeze (6) 1 2
Simpson (7) 3 4
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Formule du point milieu

Formule du trapeze

foncion de degre 0, inograton oxacte

foncion de dagre 1, ingraton oxacte

foncion de degre 2, negraton pas oxacte

foncion de degre O, nograton exacts

fancion de dagra 1. intgraton sxacts

foncion de degra 2, intagraton pas axacte
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Formule de Simpson

foncion de degra O, ntograton oxacte fancion de dagre 1, integraton sxacte foncion de dagra 2. intgraton sxacte
foncion de dagre 3, inograion oxacte fonction do degre 4, intagration pas exacte
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