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Interpolation

Position du problème
(Jupyter Notebook)

Soit n � 0 un nombre entier. Etant donnés n + 1 noeuds distincts t0, t1,. . . tn et n + 1 valeurs

y0, y1,. . . yn, on cherche un polynôme p de degré n, tel que

p(tj) = yj pour 0  j  n. (1)

Si ce polynôme existe, on note p = ⇧n et on appelle ⇧n le polynôme d’interpolation des valeurs

yj aux noeuds tj , j = 0, . . . , n.
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Interpolation

Soit f 2 C 0
(I ) et t0, . . . , tn 2 I . Si on prend yj = f (tj), 0  j  n, alors le polynôme

d’interpolation ⇧n(t)est noté ⇧nf (t) et est appelé l’interpolant de f aux noeuds t0,. . . tn.
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Interpolation

Base de Lagrange
(Jupyter Notebook)

On considère les polynômes 'k , k = 0, . . . , n de degré n tels que

'k(tj) = �jk , k , j = 0, . . . , n,

où �jk = 1 si j = k et �jk = 0 si j 6= k . Explicitement, on a

'k(t) =
nY

j=0,j 6=k

(t � tj)

(tk � tj)
.
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Interpolation

La figure qui suit montre deux polynômes de Lagrange de degré n = 6 relatifs aux noeuds

d’interpolations t0 = �1, t1 = �2/3,. . . ,t5 = 2/3, et t6 = 1.
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Interpolation

Exemple

Pour n = 2, t0 = �1, t1 = 0, t2 = 1, les polynômes de la base de Lagrange sont

'0(t) =
(t � t1)(t � t2)

(t0 � t1)(t0 � t2)
=

1

2
t(t � 1),

'1(t) =
(t � t0)(t � t2)

(t1 � t0)(t1 � t2)
= �(t + 1)(t � 1),

'2(t) =
(t � t0)(t � t1)

(t2 � t0)(t2 � t1)
=

1

2
t(t + 1).
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Interpolation

Polynôme d’interpolation
(Jupyter Notebook)

Le polynôme d’interpolation ⇧n des valeurs yj aux noeuds tj , j = 0, . . . , n, s’écrit

⇧n(t) =
nX

k=0

yk'k(t), (2)

car il vérifie ⇧n(tj) =
P

n

k=0
yk'k(tj) = yj .

Par conséquent, on aura

⇧nf (t) =
nX

k=0

f (tk)'k(t).
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Interpolation

On montre maintenant que le polynôme ⇧n défini en (2) est le seul polynôme de degré n
interpolant les données yj aux nœuds tj .

En e↵et, soit Qn(t) un autre polynôme d’interpolation. Alors, on a

Qn(tj)� ⇧n(tj) = 0, j = 0, . . . , n.

Donc, Qn(t)� ⇧n(t) est un polynôme de degré n qui s’annule en n + 1 points distincts; il en

suit que Qn = ⇧n, d’où l’unicité du polynôme interpolant.
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Interpolation

Interpolation d’une fonction régulière

Théorème (Erreur d’interpolation) Soient t0, t1, . . ., tn, n + 1 nœuds équirépartis dans
I = [a, b] et soit f 2 C n+1

(I ). Pour t 2 I , soit Enf (t) = f (t)� ⇧nf (t). Alors, on a

max
x2I

|Enf (t)| 
1

2(n + 1)
(h)n+1

max
x2I

|f (n+1)
(t)|, (3)

où h =
b�a

n
. On remarque que l’erreur d’interpolation dépend de la dérivée n + 1-ième de f .
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Interpolation

Exemple

Polynômes d’interpolation ⇧i f pour i = 1, 2, 3, 6 et f (t) =
t + 1

5
sin(t), avec des noeuds

équirépartis sur [0, 6].
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Interpolation

Interpolation linéaire par morceaux
(Sec. 3.4 du livre)

Soient x0 = a < x1 < · · · < xN = b des noeuds qui divisent l’intervalle I = [a, b] en une réunion

d’intervalles Ii = [xi , xi+1] de longueur H où

H =
b � a

N
.

a b

H

xi xi+1xi−1

Sur chaque sous-intervalle Ii , on interpole f|Ii par un polynôme de degré 1. Le polynôme par

morceaux (polynôme composite) qu’on obtient est noté ⇧
H

1
f (t) et on a:

⇧
H

1
f (t) = f (xi ) +

f (xi+1)� f (xi )

xi+1 � xi
(x � xi ) pour x 2 Ii .
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Interpolation

Exemple

5 (suite) On considère les polynômes par morceaux de degré n = 1 interpolant la fonction de
Runge pour 5 et 10 sous-intervalles de [�5, 5].
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1
f et ⇧H2

1
f pour H1 = 2.5 et H2 = 1.0.
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Interpolation

Théorème 1 (Prop. 3.3 du livre)

Si f 2 C 2
(I ), (I = [x0, xN ]) et on dénote EH

1
f (t) = f (t)� ⇧

H

1
f (t), alors

max
x2I

| EH

1
f (t) | H2

8
max
x2I

|f 00(t)|.

Démonstration

D’après la formule (3), sur chaque intervalle Ii , on a

max
x2[xi ,xi+1]

| EH

1
f (t) | H2

4(1 + 1)
max
x2Ii

| f 00(t) | .

Remarque

On peut montrer que, si l’on utilise un polynôme de degré n (� 1) et si l’on dénote
EH

n
f (t) = f (t)� ⇧

H

n
f (t), dans chaque sous-intervalle Ii , on trouve

max
x2I

| EH

n
f (t) | Hn+1

4(n + 1)
max
x2I

|f (n+1)
(t)| .
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Interpolation

La méthode des moindres carrés

(Sec. 3.6 du livre)

Supposons que l’on dispose de n + 1 points x0, x1, . . . , xn et n + 1 valeurs y0, y1, . . . , yn. On a

vu que, si le nombre de données est grand, le polynôme interpolant peut présenter des

oscillations importantes.

Pour avoir une meilleure représentation des données, on peut chercher un polynôme de degré

m < n qui approche “au mieux” les données.
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Interpolation

Definition

On appelle polynôme aux moindres carrés de degré m f̃m(t) le polynôme de degré m tel que

nX

i=0

|yi � f̃m(xi )|2 
nX

i=0

|yi � pm(xi )|2 8pm(t) 2 Pm (4)

Remarque

Lorsque yi = f (xi ) (f étant une fonction continue) alors f̃m est dit l’approximation de f au sens
des moindres carrés.
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Interpolation

Autrement dit, le polynôme aux moindres carrés est le polynôme de degré m qui, parmi tous les

polynômes de degré m, minimise la distance des données.

Si on note f̃m(t) = a0 + a1x + a2x2 + . . .+ amxm et on définit la fonction

�(b0, b1, . . . , bm) =
nX

i=0

�
yi �

�
b0 + b1xi + b2x

2

i
+ . . .+ bmx

m

i

��2
,

alors le problème (4) peut être reformulé ainsi: trouver a0, a1, . . . am tels que

�(a0, a1, . . . , am) = min
bi ,i=0,...,m

�(b0, b1, . . . , bm)

Les coe�cients du polynôme aux moindres carrés peuvent être donc déterminés par les relations

@�

@bi
= 0, 0  i  m (5)

ce qui nous donne m + 1 relations linéaires entre les ak .
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Interpolation

Utilisons cette méthode dans un cas simple. Considérons les points x0 = 1, x1 = 3, x2 = 4 et

les valeurs y0 = 0, y1 = 2, y2 = 7 et calculons le polynôme interpolant de degré 1 au sens des

moindres carrés (droite de régression).
Le polynôme recherché a la forme f̃1(t) = a0 + a1x . On définit:

�(b0, b1) =
P

2

i=0
[yi � (b0 + b1xi )]2 et on cherche le point (a0, a1) où � atteint son minimum.

Donc, on impose les conditions
@�
@b0

(a0, a1) = 0 et
@�
@b1

(a0, a1) = 0:

@�

@b0
(a0, a1) = �2

2X

i=0

[yi � (a0 + a1xi )] = �2

 
2X

i=0

yi � 3a0 � a1

2X

i=0

xi

!

= �2(9� 3a0 � 8a1)

@�

@b1
(a0, a1) = �2

2X

i=0

xi [yi � (a0 + a1xi )] = �2

 
2X

i=0

xiyi � a0

2X

i=0

xi � a1

2X

i=0

x2
i

!

= �2(34� 8a0 � 26a1)

Donc les coe�cients a0 et a1 du polynôme sont les solutions du système linéaire:

⇢
3a0 + 8a1 = 9

8a0 + 26a1 = 34
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Interpolation

En général, on observe que, si pour calculer le polynôme interpolant aux moindres carrés

f̃m(t) = a0 + a1x + a2x2 + . . .+ amxm, on impose les conditions d’interpolation f̃m(xi ) = yi
pour i = 0, . . . , n, alors on trouve le système linéaire Ba = y, où B est la matrice de dimension

(n + 1)⇥ (m + 1)

B =

0

BBB@

1 x0 . . . xm
0

1 x1 . . . xm
1

.

.

.
.
.
.

1 xn . . . xm
n

1

CCCA

Puisque m < n le système est surdéterminé, c’est-à-dire que le nombre de lignes est plus grand

que le nombre de colonnes. Donc, on ne peut pas résoudre ce système de façon classique, mais

on doit le résoudre au sens des moindres carrés, en considérant:

BTBa = BTy.

Ce système linéaire est dit système d’équations normales. On peut montrer que les équations

normales sont équivalentes au système (5).
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