Exercice 1
On considere la formule de quadrature suivante :

1) = §[55(~1) +167(w) — 3f(1)]

pour approcher l'intégrale fjl f(x)dz, ot w € (—1,1).

1. Rappeler la définition de degré d’exactitude r d’'une formule de quadrature, puis
déterminer la valeur de w telle que le degré d’exactitude de la formule I(f) donnée
soit r = 2.

2. On veut intégrer la fonction f(z) = e** sur lintervalle [0,1]. Pour cela, on divise
I'intervalle [0,1] en M sous-intervalles Iy = [xp_1, %] de la méme longueur H =
Tp— Tk, = 1/M, k=1,..., M, avec zg = 0 et x); = 1, et on considere la formule
composite du point milieu (rectangle) IS (f). Soit Lym k) (f) la formule simple du
point milieu (rectangle) sur le sous-intervalle [. En sachant que 'erreur commise
sur chaque intervalle est :

HB
pm. = 1 . 2
Ewy = '/ka(x)dx—fpm,(m(f) < Spmax|f(Q sifec?,
calculer I'erreur globale Ef = |I(f) — I7, (f)| introduite par la formule composite

du point milieu I, (f) = S Ly k) (f) sur lintervalle [0,1]. Trouver le nombre
minimal M de sous-intervalles afin que Ef =< 1072,

3. On a appliqué deux autres formules de quadrature composites IS(f) et I(f) pour
approcher l'intégrale fjl f(z)dz en supposant que f € C*([—1,1]).
Le tableau suivant montre ’erreur commise pour différentes valeurs de la longueur
H des sous-intervalles :

H  erreur IS(f) erreur If(f)
1.00 1.547 8.410e-03
0.10 1.580e-02 8.125e-07
0.01 1.580e-04 8.121e-11

Déduire de fagon approximative 'ordre de convergence des deux formules IS(f)
et I(f). Quelles formules que vous connaissez pourraient donner les valeurs du
tableau ?
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Exercice 3

On considére 1’équation non-linéaire f(z) = 0, ot f(z) = e~ — 22.

a) Montrer qu’il existe un seul zéro o de f dans [0, 1] et que la méthode de dichotomie
(bissection) peut étre utilisée afin de le calculer.

b) Trouver le nombre d’itérations de la méthode de bissection nécessaire pour approximer «
avec une tolérance de 10710,

c¢) Ecrire la méthode de point fixe définie par la fonction d’itération suivante :
1 - 2
¢(x)=x+1(e -z%), 0<z<1,
et montrer sa convergence vers la solution a.

d) Trouver le nombre d’itérations de la méthode de point fixe nécessaire pour calculer une
solution approchée avec une tolérance de 1010,

Exercice 4

On consideére le systéme linéaire

2 6 0
Ax=b, on A=1|0®> 4 60|, 6>0. (4)
0 6% 2

a) Ecrire la matrice d’itération de la méthode de Jacobi appliquée au systéme (4) et
déterminer les conditions nécessaires et suffisantes sur @ > 0 afin que la méthode soit
convergente.

b) Répondre a la méme question pour la méthode de Gauss-Seidel.

c) Est-ce que la méthode de Gauss-Seidel converge pour un ensemble de valeurs de 6 plus
grand que la méthode de Jacobi? Si le deux méthodes convergent, quelle est la méthode
qui requiert moins d’itérations ?

Plus une preuve
Plus une fonction en Python
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Exercice 3

On considére 1’équation non-linéaire f(z) = 0, ot f(z) = e~ — 22.

a) Montrer qu’il existe un seul zéro o de f dans [0, 1] et que la méthode de dichotomie
(bissection) peut étre utilisée afin de le calculer.

b) Trouver le nombre d’itérations de la méthode de bissection nécessaire pour approximer «
avec une tolérance de 10710,

c¢) Ecrire la méthode de point fixe définie par la fonction d’itération suivante :
¢(z)=$+l(e"’—x2) 0<z<1
4 ’ — — ’

et montrer sa convergence vers la solution a.

d) Trouver le nombre d’itérations de la méthode de point fixe nécessaire pour calculer une
solution approchée avec une tolérance de 1010,
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Exercice 2
On considere le probleme de Cauchy suivant :

On note par u,, 'approximation de y(t, ) au temps t,, = nh, h étant le pas de discretisation.

1.

Ecrire les schémas d’Euler progressif, d’Euler rétrograde et de Heun pour résoudre
numériquement le probleme donné.

. En sachant que la solution exacte est y(t) = In(e? + 2t), trouver les valeurs de h qui

garantissent la stabilité du schéma d’Euler progressif.

. En général, quel est I'ordre de convergence de la méthode de Heun ? Est-ce que cette

méthode est stable? Calculer I’approximation u; qu’on trouve par cette méthode.

. Réécrire la méthode d’Euler rétrograde sous la forme

Up+1 = ¢(un+1), Vn Z O,

ol ¢ est une fonction convenable qui dépend aussi de u,, et de h. Montrer que la
suite {u, } est croissante.

. Afin de trouver l'inconnue u,; (étant donnés w, et h), utiliser des itérations de

point fixe avec ¢ comme fonction d’itération. Etablir une condition sur h suffisante
a garantir que cette méthode de point fixe converge.
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