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1 Equations non-linéaires

Objectif : trouver les zéros (ou racines) d’une fonction f : [a,b] - R :
a€la,b : fla)=0

##£ 3.1 Dichotomie

(Enlevé pour I’examen)

# tmporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

1.1 Meéthode de Newton
Soit f : R — R une fonction différentiable.

Soit z(®) un point donné. On considére Péquation de la droite y(z) qui passe par le point
(®), f(2*)) et qui a comme pente f(z*)),

y(a) = f'@®) (@ —2®) + fa).



On définit ¥+ comme étant le point ou cette droite intersecte I'axe z, ¢’est-a-dire y(z*#+1)) = 0.
On en déduit que :
k
D = (k) _ M k=0,1,2....
(@)

[2]: | # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

Exercice (5, Série 1) On cherche les zéros de la fonction

f(a;)z%sin(%)le—x.

1. Vérifiez qu'il y a au moins un zéro v dans U'intervalle [0, 2].

2. Ecrivez la méthode de Newton pour trouver le zéro a de la fonction f(x) et calculez la premiére
itération a partir de la valeur initiale z(©) = 1.

3. Calculez les zéros « de la fonction f avec la méthode de Newton (fonction newton que vous
devrez écrire)

def Newton( F, dF, x0, tol, nmax )

NEWTON Find the zeros of a nonlinear equations.

NEWTON(F,DF,X0,TOL,NMAX) tries to find the zero X of the

continuous and differentiable function F nearest to X0 using

the Newton method. DF is a function which take X and return the derivative of F.
If the search fails an error message ts displayed.

returns the value of the
restdual B in X,the number of iterations N required for computing X and
INC the increments computed by Newton.

FHOR R R O™ O™ ™ " W

return x, r, n, inc

Choisissez 2(°) = 1 comme point de départ pour la méthode et utilisez une tolérance tol = 10™4 sur
la valeur absolue de I'incrément entre deux itérations successives |z*F+1) — z(*)|.

Dans le cas de la méthode de Newton, lincrément est une bonne approximation de l’erreur.

[3]: def Newton( F, dF, x0, tol, nmax )
NEWTON Find the zeros of a monlinear equations.
NEWTON(F,DF,X0,TOL,NMAX) tries to find the zero X of the
continuous and differentiable function F nearest to X0 using
the Newton method. DF is a function which take X and return the derivative,
—of F.
If the search fails an error message ©s displayed.

Outputs : [z, 7, n, inc, z_sequencel]



T : the approzimated rToot of the function

T : the absolute value of the residualin X

n : the number of iterations N required for computing X and
inc : the increments computed by Newton.

T_sequence :@ the sequence computed by Newton
1

# Initral values
n=20
xk = x0

# inittalisation of loop components
# increments (in abs wvalue) at each iteration

inc = []
# in case we wish to plot the sequence
x = [x0]

# diff : last increment,
diff = tol + 1 # <nitially set larger then tolerance

# Loop until tolerance ©s reached
while ( diff >= tol and n <= nmax )
# Newton tteration
deltax = F(xk) / dF(xk)
xkl = xk - deltax

# increments
diff = np.abs(deltax)
inc.append (diff)

# prepare the next loop
n=mn+1

xk = xkil

x . append (xk)

# Final residual
rkl = np.abs(F(xkl))

# Warning 1f not converged
if n > nmax :

print('Newton stopped without converging to the desired tolerance ')
print('because the maximum number of iterations was reached')

return xk1, rkl, n, inc, np.array(x)

[4] :

'_h
Il

lambda x : O0.5*np.sin(np.pi*x/2)+1-x

df = lambda x : 0.25%np.pi*np.cos(np.pi*x/2)-1



tol = le-4
nmax 10

zero, residual, niter, inc, x = Newton(f, df, x0, tol, nmax)

print(f'The zero computed is {zero:1.4f}')
print(f'Newton stoppedconverged in {niter} iterations');
print(f'with a residual of {residual:1.4e}.\n');

The zero computed is 1.4031
Newton stoppedconverged in 4 iterations
with a residual of 3.3120e-12.

[5]: from NonLinearEquationsLib import plotNewtonIterations

[6]: [a,b] = [0,3.5]
x0 =3
zero, residual, niter, inc, x = Newton(f, df, x0, tol, nmax)

# Rezise plots, which are usually too small
plt.figure(figsize=(12, 4))
plt.rcParams.update({'font.size': 12})

# Subplot 1 over 2, 1st ome
plt.subplot(121)

#plt.plot(range(MazIterations), RelativeError, 'b:.')
plt.plot(range(niter), inc, 'b:.')

plt.xlabel('n'); plt.ylabel('$\\delta x$');
plt.grid(True)

#plt.zscale('log')

plt.yscale('log')

plt.legend(['$|\\delta x[$'])

# Subplot 1 over 2, 2nd one
plt.subplot (122)
plotNewtonIterations (a,b,f,x,200)
plt.show()

# Rezise plots, which are usually too small
plt.figure(figsize=(8, 4))



plt.rcParams.update({'font.size': 16})

plotNewtonIterations (a,b,f,x,200)
# plt.savefig('Newton-iterations.png', dpi=600)

plt.show()
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(7]:| [a,p] = [-1,3.5]
z = np.linspace(a,b,200)
plt.plot(z,f(z), 'b-', x[6],f(x[6]), 'rx')
plt.ylabel('$f(x)$'); plt.xlabel('$x$');

# Plot the z,y-azis



[]:

plt.plot([a,b]l, [0,0], 'k-',linewidth=0.1)
plt.plot([0,0], [np.min(f(z)),np.max(£f(z))], 'k-',linewidth=0.1)

plt.legend(['$£$"', '$\\alpha$'])
# plt.savefig('Newton-fz-alpha.png', dpi=600)

plt.show()
f
11 <«
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1.2 Methode de point fixe
1.2.1 Exercice (1, Série 3)
On considére les méthodes de point fixe (") = g;(z(™) (i =1,2,3) avec:

]. n 1 n
(@) =5 ) = =2 ga(at) = 2In(22(),

dont les fonctions d’itération g;(x) sont visualisées sur la figure plus bas




1. Pour chaque point fixe Z de la fonction d’itération g; (i = 1,2, 3), on suppose d’avoir choisi
une valeur initiale 2(°) proche de Z. Etudiez si la méthode converge vers Z.

2. Pour chaque fonction d’itération g;, déterminez graphiquement pour quelles valeurs initiales
2 Ja méthode de point fixe correspondante converge et vers quel point fixe.

3. Montrez que si  est un point fixe de la fonction g; (i = 1,2, 3), alors il est aussi un zéro de la
fonction f(x) = e® — 422 (dont le comportement est tracé sur la derniére figure).

4. Comment peut-on calculer les zéros de f7

L’exercice 2 est a faire sur papier, ici une indication par ordinateur

[8]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

[9]: | from NonLinearEquationsLib import plotPhi, FixedPoint, plotPhilterations
[10]: plt.rcParams['figure.figsize']l = [20, 5]

plt.subplot(1,3,1)

[a,b] = [-2,5]

phil = lambda x : np.exp(x/2)/2
plotPhi(a,b,phil, '$g_1$")

plt.subplot(1,3,2)

[a,b] = [-2,5]

phi2 = lambda x : - np.exp(x/2)/2
plotPhi(a,b,phi2, '$g_2$"')

plt.subplot(1,3,3)

[a,b] = [1le-1,5]

phi3 = lambda x : 2*np.log(2+*x)
plotPhi(a,b,phi3, '$g_3$"')

plt.show()

# Graph of the fonction $f(z)=e z-4z"28
N = 100

z = np.linspace(a,b,N)

f = lambda x : np.exp(x) - 4*x*x

plt.subplot(1,3,1)
plt.plot(z,f(z), 'k-")

plt.xlabel('x'); plt.ylabel('f(x)');
# Plot the z,y-azis
plt.plot([a,b]l, [0,0], 'k-',linewidth=0.1)



plt.plot([0,0], [np.min(£f(z)),np.max(f(z))],

plt.legend(['f(x)'])
plt.title('Graph of $f(x)=e~x-4x"2$')

plt.show()

g1
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[11]:

Partie 1 Pour chaque point fize T de la fonction d’itération g; (i =1,2,3), on suppose choisir une
valeur initiale 9 proche de . Etudiez si la méthode converge vers .

On va utiliser la fonction FixedPoint qui se trouve dans NonLinearEquationsLib.py

def FixedPoint( phi, x0, a, b tol, nmax )
FizedPoint Find the fized point of a function by iterative iterations
FizedPoint ( PHI,X0,a,b, TOL,NMAX) tries to find the fizedpoint X of the a
continuous function PHI nearest to X0 using
the fized point iterations method.
[a,b] : if the tterations exit the interval, the method stops
If the search fails an error message ts displayed.

Outputs : [z, T, n, inc, z_sequencel

z : the approxzimated fized point of the function

r : the absolute wvalue of the residual in X : [phi(z) - z/
n : the number of iterations N required for computing X and
T_sequence :@ the sequence computed by Newton

return zkl, rk1, n, np.array(z)

tol = le-2
10

nmax

# Choose fonction pht
[a,b] = [-2,5]

phi = phil

label = '$phi_18'

# Inttial Point

x0 =3

zero, residual, niter, x = FixedPoint(phi, x0, a,b, tol, nmax)
plt.subplot(131)

plotPhi (a,b,phi,label)

plt.plot(x,phi(x), 'rx')

# plot the graphical interpretation of the Fized Point method
plotPhilterations(x)

plt.show()

10



[12]:

Graph de la fonction phi;

61 — phii
y=X
41
3 2]
of —— |
—2-
-2

tol = le-2
10

nmax

# Choose fonction pht

intervals = [ [-2,5] , [-2,5] , [le-2,5] 1]

phiFunctions = [phil, phi2, phi3]

labels = ['$phi_1$', '$phi_2$', '$phi_3$']

# Initral Poaints
initialPoints = [4.2,2,1]

alpha = np.empty(3)

for k in range(3) :

phi = phiFunctions[k]; x0 = initialPoints [k]
a = intervals[k][0]; b = intervals[k] [1]

label = labels[kl]

11




[13]:

alphalk], residual, niter, x = FixedPoint(phi, x0, a,b, tol, nmax)

plt.subplot(1l,3,k+1)

plotPhi (a,b,phi,label)
plt.plot(x,phi(x), 'rx')

# plot the graphical interpretation of the Fixzed Point method

plotPhilterations(x)

plt.show()

FixexPoint stopped without
because the maximum number
FixexPoint stopped without
because the maximum number

Graph de la fonction phiy

converging to the desired tolerance
of iterations was reached
converging to the desired tolerance
of iterations was reached

Graph de la fonction phi, Graph de la fonction phiz

61 — phiy 4| — phiz
y=X y=x
4 24
£ P
Q QU
—21
—/ H
0 Xo —4
-2 —6
-2 0 2 4 -2

plt.subplot(1,3,1)
plt.plot(z,f(z),'k-")

# Solutions found:

Graph of the fonction $f(z)=e xz-4z"28

#

N = 100

a,b = [-2,5]

z = np.linspace(a,b,N)

f = lambda x : np.exp(x) - 4*x*x

plt.plot(alpha,f(alpha),'ro')
plt.annotate("$\\alpha_1$", (alphal0], 2))
plt.annotate("$\\alpha_2$", (alphalll, 2))
plt.annotate("$\\alpha_3$", (alphal[2]+0.1, -4))

plt.xlabel('x'); plt.ylabel('f(x)');

12




# Plot the z,y-azis

plt.plot([a,b]l, [0,0], 'k-',linewidth=0.1)

plt.plot([0,0], [np.min(f(z)),np.max(f(z))], 'k-',linewidth=0.1)
plt.legend(['f(x)"', '$\\alpha$'])

plt.title('Graph of $f(x)=e"x-4x"2%')

plt.show()
Graph of f(x) = X — 4x?
50 1
— f(x)
4041 e

1.2.2 Critéres d’arrét

On a l'estimation

1
W) = = (0D g8y = (g (B)) (2 * D) — z(R)
e @ a™). = (' (") (@ )
(1= ¢'(6™))
On cherche a obtenir [e(*)| &~ ¢ (une tolérance choisie).

On trace un graphe de la fonction ~(t) = ﬁ

13



[14]:

N o |

#
N
a,
z
f

plt.
.plot(z,f(z), 'k-")

plt

plt.

plt

plt

plt.

plt

Graph of the fonction $f(t)=1/(1-t)$

100

= [-1,0.9]
np.linspace(a,b,N)
lambda x : 1/(1-x)

subplot(1,3,1)

annotate("(-1,0.5)", (-1.2, 0.7))

.annotate("(0,1)", (-0.2, 1.2))

.plot([-1.2,1], [0,0], 'k-',linewidth=0.1)

plot([0,0], [-1,10], 'k-',linewidth=0.1)

.xlabel('t'); plt.ylabel('1/(1-t)');

# Plot the z,y-azis

plt.show()

101

1/(1-t)

(-1,0.5) (0.1)

-1.0 -05 0.0 0.5 1.0
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[15]:

[16]:

2 Interpolation et approximation de données

2.1 Position du probléme
2.1.1 Interpolation de données

Soit n > 0 un nombre entier. Etant donnés (n + 1) noeuds distincts xg, x1,... T, et (n+ 1) valeurs
Y0, Y1,- - - Yn, o0 cherche un polynéme p de degré n, tel que

p(z;) = y; pour 0 < j < n.

Exemple On cherche le polynéme II,, de degré n = 4 tel que II,(z;) = y;,j = 1,...,5 avec les
données suivantes

T Yk

1 3
1.5 4
2 2
25 5
3 1

# amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

# Some data given: z=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1
x = np.linspace(l, 3, 5) # equivalent to np.array([ 1, 1.5, 2, 2.5, 3 ])
y = np.array([3, 4, 2, 5, 11)

# Plot the points using matplotlibd
plt.plot(x, y, 'ro')

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)

plt.legend(['data'])
plt.show()

15



57 ° e data
44 .
> 3 .
2] .
11 .
1.00 1.25 1.50 175 2.00 2.25 2.50 275 3.00

Si ce polynéme existe, on le note p = II,,. On appelle II,, le polynéme d’interpolation des valeurs
y; aux noeuds xj, 7 =0,...,n.

[17]: # Plot the interpolating function

# Defining the polynomzal function
def p(x):
# coefficients of the interpolating polynomial
a = np.array([-140.0, 343.0, -872./3., 104.0, -40./3.]1)

# value of the polynomzal in all the points t
return al[0] + al1l*x + a[2]*(x**2) + a[3]*(x**3) + al[4]*(xx*4)

# points used to plot the graph
z = np.linspace(1l, 3, 100)

plt.plot(x, y, 'ro', z, p(=2))
plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(['data','$\Pi_2(x)$'])

plt.show()
¢ data
51 M2(x)
4,
>
3
2
1]
1.00 125 1.50 175 2.00 2.25 2.50 275 3.00
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[18]:

[19]:

2.1.2 Interpolation de fonctions
Soit f € C°(I) et xq,...,x, € I. Si on prend

yj:f(xj)v 0§]§n7

alors le polynome d’interpolation IT,,(x) est noté II,, f () et est appelé 'interpolant de f aux noeuds

LQye -+ Ly

Exemple Soient
x1=1,290 =1.75,23 = 2.5,24 = 3.25, 25 = 4

les points d’interpolation et
f(x) = zsin(27x).
On cherche l'interpolant II,, f de degré n =4

# defining the fonction that we want to interpolate
def f(x):
return x*np.sin(x*2.*np.pi)

# The interpolation must occour at points z=1, 1.75, 2.5, 3.25, 4
x = np.linspace(l, 4, 5)

# points used to plot the graph
z = np.linspace(l, 4, 100)

plt.plot(x, f(x), 'ro', z, f(z),':")
# labels, title, legend

plt.xlabel('x'); plt.ylabel('$f(x)$'); #plt.title('data’)
plt.legend(['$f(x_k)$', ' $£(x)$'])

plt.show()
3 o flxg
1
=< 0 o "!.‘ i d
= ;
-1
5 .
-3
-1
1.0 15 2.0 2.5 3.0 35 4.0

# Plot the interpolating function
# Defining the polynomial function

def p(x):
# coeffictents of the interpolating polynomial

17



a = np.array ([0, 7.9012, -13.037, 5.9259, -0.79012])
# value of the polynomial in all the points
return af[0] + al1l*x + al2]*(x**2) + al3]*(x*x*3) + al4]*(x**x4)

# points where to evaluate the polynomial

z = np.linspace(l, 4, 100)

plt.plot(x, f(x), 'ro', z, £(z),':', z, p(2))

plt.xlabel('$x$'); plt.ylabel('$f(x)$'); #plt.title('data’)

plt.legend(['$f(x_k)$', '$£(x)$"', '$\Pi_n(x)$']1)

plt.show()

10 15 2.0 25 30 35 40

2.1.3 Matrice de Vandermonde

Il est possible d’écrire un systéme d’équations et de trouver les coefficients de maniére directe. Ce
n’est pas toujours la meilleure solution.

Nous cherchons les coefficients du polynéme p(z) = ag + a1z + ... + a,2™ qui satisfont les (n + 1)
équations p(xg) = yr, k = 0, ..., n, c’est-a-dire

ap + a1z + ... + apxy = yr, k=0,...,n

Ce systéme s’écrit sous forme matricielle

1 zg 22 - 2

o3
=
=)
<
S

33
S
S
<
3

X

Pour construire cette matrice, vous pouvez utiliser la fonction

# Defining the mzn Vandermonde matriz
def VandermondeMatrix(x):

18



# Input

# ¢ : +1 array with interpolation nodes
# Output

# Matriz of Vandermonde of size n = n

que vous pouvez importer avec la commande
from InterpolationlLib import VandermondeMatrix
Exemple On cherche les coefficients du polynéme d’interpolation de degré n = 4 des valeurs

suivantes

Tk Yk

1 3
1.5 4
2 2
25 5
3 1

[20]: from InterpolationlLib import VandermondeMatrix

# Some data given: z=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1
X = np.linspace(l, 3, 5)

y = np.array([3, 4, 2, 5, 11)

n = x.size - 1

A = VandermondeMatrix(x)

# print (4)

# compute coefficients
a = np.linalg.solve(A, y) # Resouds Az = b avec b=y et rends z

# print the coefficients on screen

print('The coefficients a_0, ..., a_n are')

print(a)

The coefficients a_0, ..., a_n are

[-140. 343. -290.66666667 104. -13.33333333]

[21]: # Now we can define the polynomial
p = lambda x : al[0] + a[1l*x + a[2]*(x**2) + a[3]*(x**3) + al[4]*(x**4)

# points used to plot the graph
z = np.linspace(l, 3, 100)

plt.plot(x, y, 'ro', z, p(z))

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(['data', 'p(x)'])
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plt.show()

e data
p(x)

1.00 1.25 1.50 175 2.00 2.25 2.50 2.75 3.00

2.1.4 Alternatives : polyfit et polyval

Les fonctions polyfit et polyval de numpy font essentiellement la méme chose que les paragraphes
ci-dessous. Plus tard nous verrons des méthodes plus performantes.

a = numpy.polyfit(x, y, n, ... ) :

e input : z,y les données & interpoler, n le degré du polynéme recherché
e output : les coefficients du polyndéme, dans [’ordre inverse de ce que nous avons vu !

# Some data given: z=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1
x = np.linspace(l, 3, 5)

y = np.array([3, 4, 2, 5, 11)

n = x.size - 1

a = np.polyfit(x,y,n)

# Now we can define the polynomial, with coeffs in the reverse order !
p = lambda x : al4] + al[3]*x + al[2]*(x**2) + al[1]lx(x**3) + al0]*(x**4)

# We can also use polyval instead !
# np.polyval (a,z)

# points used to plot the graph
= np.linspace(l, 3, 100)

N

plt.plot(x, y, 'ro', z, p(z), '.', z, np.polyval(a,z))
plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(['data’','p(x)', 'polyval'l])

plt.show()
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21 ¢ data
p(x)
—— polyval

1.00 1.25 1.50 1.75 2.00 225

[ 1:

2.2 Interpolation de Lagrange
2.2.1 Base de Lagrange

On considére les polynomes ¢y, k =0,...,n de degré n tels que

or(Ti) = Ojk, k,j=0,...,n,
ol djp =1sij=~ketdj,=0sij# k. Explicitement, on a

n

en@) = ] (z—3))

=0 (T6 = T3)

[23]:  # Zmporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

Exercice (théorique) Vérifiez que

1. B={yk,k=0,...,n} est une base de P,(R)
2. Chaque polynéme ¢y, est de degré n
3. pr(xj) = 0jk, k,j=0,...,n

[24]: # Defining the Lagrange bastis functions
def phi(x,k,z):
# the input variables are:
# x : the interpolatory points
# k : which basts function
# z : where to evaluate the function

H

careful, there are n+l interpolation points!
= X.size - 1

[=}

21

2.50

2.75

3.00




# init result to ome, of same type and size as z
result = np.zeros_like(z) + 1

# first few checks on k:
if (type(k) !'= int) or (x.size < 1) or (k > n) or (k < 0):
raise ValueError('Lagrange basis needs a positive integer k, smaller,
—than the size of x')

# loop on n to compute the product
for j in range(0,n+1)
if (j == k)
continue
if (x[k] == x[j1)
raise ValueError('Lagrange basis: all the interpolation points need,,
—to be distinct')

result = result * (z - x[j]) / (x[k] - x[j1)

return result

Exemple Pourn =2, zo0= -1, z; =0, x2 = 1, les polyndémes de la base de Lagrange sont

T—x1)(x —x 1

wole) = S o)
0 - 901;%960 )
J:—-xg x

= -1

e A e 1)

LL’ — X)X — .731
2o(x) = r+1
palo) = o = Caa ).

[256]: # plot the Lagrange Basis functions
x = np.linspace(-1., 1, 3)
z = np.linspace(-1.1, 1.1, 100)

plt.plot(z, phi(x,0,z), 'g', z, phi(x,1,z), 'r', z, phi(x,2,2),':")

plt.xlabel('x'); plt.ylabel('$\\varphi_{k}(x)$'); plt.title('Lagrange basis
—functions')

plt.legend(['$\\varphi_{0}$"', '$\\varphi_{1}$','$\\varphi_{2}$'])

plt.grid(True)

plt.show()
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1.2
1.0
0.8
0.6

Pk(x)

0.4
0.2
0.0

-0.2

Lagrange basis functions

Exercice Visualisez la base de Lagrange associée aux points x; = 1,1.5,2,2.5,3. Evaluez sur le
graphique les valeurs de g (x;)

# plot the Lagrange Bastis functions

X =
z =

plt

np.linspace(l., 3, 5)
np.linspace(0.9, 3.1, 100)

.plot(z, phi(x,0,z), 'g', z, phi(x,1,z), 'r', z, phi(x,2,2),':", z,.,
—phi(x,3,z),"':', z, phi(x,4,2),"':")

plt.xlabel('x'); plt.ylabel('phi(x)'); plt.title('Lagrange Basis functions')
plt.legend(['$\\varphi_0$"', '$\\varphi_1$"', '$\\varphi_2§',

plt.
plt.

15

1.0

0.5

phi(x)

0.0

-0.5

-1.0

"$\\varphi_3$', '$\\varphi_4$'])

grid(True)
show ()

Lagrange Basis functions

— %o
— ¢
3
Qs

1.0 15 2.0 2.5 3.0

2.2.2 Polyn6éme d’interpolation

Le polynéme d’interpolation 1I,, des valeurs y; aux noeuds x;, j = 0,...,n, s’écrit

M, (2) = Y yker(®),
k=0
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[28]:

car il veérifie IT, (z;) = > 0o yeer(z;) = vj.

2.3 Interpolation d’une fonction continue

Soit f : [a,b] — R continue et xy,...,x, € [a,b] des noeuds distincts. Le polynéme d’interpolation
IT,,(x) est noté IL, f(x) et est appelé l'interpolant de f aux noeuds xg, ..., Zp,.

Si on prend
yr = f(zk), k=0,...,n,

alors on aura .
M, f(z) = flar)er(x).
k=

0

Exercice Ecrivez une fonction Python qui a la définition suivante, en utilisant la fonction phi
définie plus haut. Ecrivez aussi un petit test sur la base de I'exercice précédent.

# Lagrange Interpolation of data (z,y), evaluated at ordinate(s) z
def LagrangePi(x,y,z):

# the input variables are:

# ¢ : the interpolatory points

# y : the corresponding data at the points z

# z : where to evaluate the function

Utilisez le fait que {¢k,k = 0,...,n} est une base des polynomes de degré < n et que le vecteur y
représente les coordonnées du polyndéme d’interpolation recherché par rapport a cette base, c’est-a-
dire

n(2) = Yoo + - + Ynn

# tmporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from InterpolationLib import LagrangeBasis as phi

# Lagrange Interpolation of data (z,y), evaluated at ordinate(s) z
def LagrangePi(x,y,z):

# the input variables are:

# x : the interpolatory points

# y : the corresponding data at the points =

# z : where to evaluate the function

# {pht(z,k,.), k=0,...,n} is a basis of the polynomials of degree n
# y represents the coordinates of the interpolating polynomial with respect,
—~to this basis.

# Therefore LagrangePi(z,y,.) = y[0] phi(z,0,.) + ... + y[n] phi(z,n,.)

# careful, there are n+l basis functions!
n = x.size - 1
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# init result to zero, of same type and size as z
result = np.zeros_like(z)

# loop on n to compute the product
for k in range(0,n+1)
result = result + y[k] * phi(x,k,z)

return result

# vecteur des points d'interpolation
x = np.linspace(0, 1, 5)

# vecteur des waleurs
y = np.array([3.38, 3.86, 3.85, 3.59, 3.49])

z = np.linspace(-0.1, 1.1, 100)
plt.plot(x, y, 'ro', z, LagrangePi(x,y,z))

plt.xlabel('x'); plt.ylabel('y');
plt.legend(['data', 'p(x)'])

plt.show()
e data
3.8 p(x)
3.6
>‘3.4
3.2
>0 00 02 04 ) 06 08 10
2.3.1 Erreur d’interpolation
Soient xg, 21, ..., Tn, (n + 1) nceuds équirépartis dans I = [a, b] et soit f € C"1(I). Alors

I < 1 b—a\"" (n+1)
rggflf(w)— nf(fﬂ)l_Q(nH) - rggjzclf (z)].

On remarque que l'erreur d’interpolation dépend de la dérivée (n + 1)-iéme de f.

Exercice On considére les points d’interpolation

o = 1,.%‘1 = 1.75,1‘2 = 2.5,.%'3 = 3.25,:6'4 =4
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et la fonction
f(x) = zsin(27x)

1. Calculez la base de Lagrange associée a ces points. D’abord sur papier, ensuite utilisez Python
pour en dessiner le graphique.

2. Calculez le polynéme d’interpolation II,, & I’aide de la base de Lagrange. D’abord sur papier,
ensuite avec Python.

3. Quelle est erreur théorique d’interpolation ?

Comportement pour n grand: eg, la fonction de Runge. Le fait que

1 b —a ’I’L+l
lim =0

n’'implique pas forcément que max,ey |Ey f(x)| tende vers zéro quand n — oo.

1
Soit f(z) = 112 x € [—5,5]. Sion l'interpole dans des noeuds équirépartis, l'interpolant présente

des oscillations au voisinage des extrémités de l'intervalle.

[30]:  # Runge fonction
f = lambda x : 1./(1+x**2)

# Values of N to use
Nrange = [3,5,10]

# plotting points

z = np.linspace(-5, 5, 100)

for n in Nrange :

x = np.linspace(-5,5,n+1)
y = £(x);

plt.plot(z, LagrangePi(x,y,z), ':')

plt.plot(z,f(z), 'b')

plt.xlabel('x'); plt.ylabel('y'); plt.title('Runge function')
plt.legend(Nrange)

plt.show()
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Runge function
2.0 -
Y 5
15 10

1.0

0.5

0.0

sympy est une librairie pour le calcul symbolique en Python. Nous allons 'utiliser pour étudier le
comportement de l'erreur d’interpolation de la fonction de Runge.

[31]: # Using symbolic python to compute derivatives
import sympy as sp

# define = as symbol
X = sp.symbols('x")

# define Runge function
f = 1/(1+x**2)

# pretty print the 5th derivative of f
f5 = sp.diff(f, x,5)

# display fb5
sp.init_printing(use_unicode=True)
display (£5)

# evalf can be used to compute the walue of a function at a given point
print('5th derivative evaluated at 3 :')
print( £5.evalf (subs={x: 3}) )

162 162>
2400 (- ey + 1625 - 3)

(22 +1)*
5th derivative evaluated at 3 :
-0.112320000000000

Pour définir une fonction qui accepte un array de valeur, il faut utiliser les lignes suivantes.
Ensuite on peut aussi dessiner le graphe ...

[32]: # to evaluate a function at many given points, we need the following trick
diff_f_func = lambda t: float(sp.diff(f,x,k).evalf(subs={x: t}))
diff_f = np.vectorize(diff_f_func)
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# the derivative can be set with k (not wvery elegant...)
k=4
print(diff_£(4.5))

# plotting points
z = np.linspace(-5, 5, 100)
# plot the derivative between -5 and b5

plt.plot(z,diff_f(z), 'b')

plt.xlabel('t'); plt.ylabel('y'); plt.title('Derivatives of Runge function')
plt.legend(Nrange)

plt.show()

0.0102402235718104

Derivatives of Runge function

20

15

10

. ou évaluer le maximum pour plusieurs n et voir le comportement de max |f(™| en fonction de
n.

[33]: | # Plot maz(abs(fn)) in the range -5,5
z = np.linspace(-5, 5, 100)

Nmax = 10
maxValFn = np.zeros(Nmax)
for k in range(Nmax) :
maxValFn([k] = np.max(np.abs(diff_£f(z)))

plt.plot(range(10), maxValFn)
plt.yscale('log')
plt.xlabel('n'); plt.ylabel('$\max|\partial f|$');

plt.title('Max of $|\partial™n f|$');
plt.show()
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Max of |9”f]

10
10
5 108
X
©
€ 102
10

10°

2.3.2 Interpolation de Chebyshev

Pour chaque entier positif n > 1, pour ¢ = 0,...n, on note
&; = —cos(mi/n) € [—-1,1]

les points de Chebyshev et on définit

a+b b—a.
zi = — + —5 i € [a, b],
pour un intervalle arbitraire [a,b]. Pour une fonction continue f € C!([a,b]), le polynéme
d’interpolation II,, f de degré n aux noeuds {z;,i = 0,...,n} converge uniformément vers f quand
n — 0o.

# Chebichev points on the interval [-1,1]
z = np.linspace(0,1, 100)

plt.plot(np.cos(np.pi*z), np.sin(np.pi*z))

z = np.linspace(0,1, n+l)
plt.plot(np.cos(np.pi*z), np.sin(np.pi*z), 'o')
plt.plot(np.cos(np.pi*z), O*z, 'x')

for k in range(0,n+1)
plt.plot([np.cos(np.pi*z[k]) ,np.cos(np.pi*z[k])], [0,np.sin(np.pi*z[k])],"':")

plt.axis('equal')
plt.xlabel('t');

plt.title('Chebyshev points')
plt.show()
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Chebyshev points

1.0 —,
oo / \
0.6 7 )
0.4 . : .
0.2
0.0
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Exemple On reprend le méme exemple mais on interpole la fonction de Runge dans les points de
Chebyshev. La figure montre les polynémes de Chebyshev de degrés n = 5 et n = 10. On remarque
que les oscillations diminuent lorsqu’on augmente le degré du polynome.

[35]:  # Runge fonction
f = lambda x : 1./(1+x*%*2)

# Values of N to use
Nrange = [3,5,10]

# plotting points

[a,b] = [-5,5]

z = np.linspace(a,b, 100)

for n in Nrange :

# Chebyshev points on [-1,1]

hx = -np.cos(np.pi*np.linspace(0,n,n+1)/n)
# mapped to [a,b]

x =(atb)/2 + (b-a)/2*hx

y = £(x);
plt.plot(z, LagrangePi(x,y,z), ':')
plt.plot(z,f(z), 'b")
plt.xlabel('x'); plt.ylabel('y'); plt.title('Chebyshev interpolation')

plt.legend(Nrange)
plt.show()
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Chebyshev interpolation

1.0

0.8

0.6

0.4

0.2

0.0

2.4 Interpolation par intervalles
2.4.1 Interpolation linéaire par morceaux
Soit f : [a,b] — R continue et a =x9 < ... < x, = b.

On choisit une partition de [a,b] en N sous-intervalles de la forme [x;,2;11],4 = 0,..., N — 1]. Sur
chaque sous-intervalle, on fait une interpolation de degré 1 avec les 2 noeuds x;, x;+1. Sur chaque
sous-intervalle I; = [x;,2;11], on interpole Jir; par un polynéme de degré 1. Le polynome par
morceaux (polynéme composite) qu’on obtient est noté I f(x) et on a:

f(wig1) — f(fb“i)(

Tit+1 — X4

' f(2) = f(=i) +

x —x;) pour x € [z, Tit1]

Dans le cas de données vy, cela s’écrit

Yi+1 — Yi
M (z) =y + 2 (z —x;) pour = € [z, Ti11]
Titl — T4
Le choix le plus simple est le suivant :

oonposeH:b_Ta

e ensuite z; = a+1iH pour i =0,..., N

# amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from InterpolationlLib import PiecewiselinearInterpolation as PiH1

La fonction PiH1 implémente 'interpolation linéaire par morceaux pour des points équidistribués

def PiecewiselLinearInterpolation(a,b,N,f,z):
# the input wvartables are:
# a,b : z[0] = a, z[n] = Db
# f : the corresponding data at the points
# z : where to evaluate the function
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[38]:

2.4.2 Exercice

Soient xp,k = 0,..,4 des
(3.38,3.86, 3.85,3.59, 3.49) les valeurs d’une fonction en ces points.

points équidistribués

sur Dlintervalle [1,5] et y =

e Dessinez le graphe de l'interpolateur par morceaux de cette fonction
e Calculez numériquement (sur papier) la valeur de IT¥(4.5) et vérifiez le résultat sur le

graphique
# intervalle d'interpolation
a=1; b=5
# vecteur des valeurs auz points equidistribué
y = np.array([3.38, 3.86, 3.85, 3.59, 3.49])
N = y.size-1
x = np.linspace(a,b,N+1)

z = np.linspace(a, b, 100)

plt.plot(x, y, 'ro', z, PiH1(a,b,N,y,z) )

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)

plt.legend(['data', 'p(x)'])
plt.show()

3.8

3.7

3.6

3.5

3.4

e data
p(x)

1.0 15 2.0

2.4.3 Exercice

# interval and function
a=-5;b=5
f = lambda x : 1/(1+x*x2)

# Values of N to use
Nrange = [3,5,10]

# plotting points

z = np.linspace(-5, 5, 100)

25 3.0

32
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Dessinez le graphe de la fonction de Runge et l'interpolateur linéaire par morceaux sur Uintervalle
[-5,5] pour N = 3,5,10
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for N in Nrange :
plt.plot(z, PiH1(a,b,N,f,z), ':')

plt.plot(z, f(z), 'b')

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend (Nrange)

plt.show()

1.0

0.8

0.6

0.4

0.2

0.0

2.4.4 FErreur d’interpolation linéaire par morceaux
Théoréme (Enlevé pourl’examen)
Remarque On peut aussi montrer que, si I’on utilise un polynéme de degré n (> 1) et si 'on dénote

Ellf(x) = f(z) — I f(z), dans chaque sous-intervalle I;, on trouve

n+1
max | E, f(z) |< At D) Iggflf (z)]

2.4.5 Interpolation quadratique par morceaux

Soit f : [a,b] — R continue et a = g < ... < x, = b. Sur chaque sous-intervalle [z;,z;1], on fait
une interpolation de degré 2 avec les 3 noeuds z;, Tig 1y Tigd, oll iyl est le milieu de [z;, x;41].
Sur chaque sous-intervalle I; = [x;, 7;11], on interpole fi;, par un polynome de degré 2. Le polynome
par morceaux (polynéme composite) qu’on obtient est noté IIE f(z) et on a:

M3 f(2) = f@)el) @) + f(z,, )@l @) + f(ai)ed) (@) pour @ € [wi, w541]
ol gpgi)(m),cpgi)(x),cpéi)(x) sont les polynémes de la base de Lagrange associés aux noeuds

(@i, ;4 1, Ti1).

from InterpolationlLib import PiecewiseQuadraticInterpolation as PiH2

# intervalle et fonction
a=-5;b=25
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[40] :

f = lambda x : 1/(1+x*%*2)

# Values of N to use
Nrange = [3,5,10]

# plotting points

z = np.linspace(-5, 5, 100)

for N in Nrange :
plt.plot(z, PiH2(a,b,N,f,z), ':')

plt.plot(z, £(z), 'b')

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(Nrange)

plt.show()

1.0

0.8

0.6

0.4

0.2

0.0

-4 -2 0 2 4

Exercice Calculez l'erreur d’interpolation de la fonction de Runge dans l'intervalle [—5, 5] quand
on utilise I'interpolation linéaire par morceaux

1. Théoriquement
2. Faites un graphique qui montre la convergence en fonction de H = IFT”L = %
3. Refaites le méme exercice pour I'interpolation quadratique par morceaux

Remarque On s’attend & ce que l'erreur soit quadratique en H. Pour le voir il faut utiliser des
axes logarithmiques dans les deux directions.

Admettons que 'erreur converge quadratiquement vers 0 par rapport & H, e.g

err = lambda H : 3*%H**x2 + 2xH**3;

Comment est le graphique de cette fonction dans l'intervalle [107% 1] ? Que se passe-t-il si on
change les axes avec plt.xscale('log') et plt.yscale('log') 7 Quelle est la pente de err dans
ce systéme 7

## Assume the error is quadratic
err = lambda H : 10%H**2 + 20%H**3;

# take h has powers of 2: 2°(-20),2°(-19), ..., 2°(-1)
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h = np.power(2,np.linspace(-20, -1, 20, endpoint=True) )
plt.plot(h, err(h), 'b:.')
plt.xlabel('h'); plt.ylabel('err');

# plt.zscale('log')
# plt.yscale('log')

plt.grid(True)

# try with and wothout equal azts
plt.axis('equal')

plt.show()

-10.0 -75 -5.0 -2.5 0.0 25 5.0 75 10.0

2.5 Approximation au sens des moindres carrés

Soit m > 0 un nombre entier. Etant donnés (n + 1) points distinets xo, x1,... T, et (n+ 1) valeurs
Y0, Y1,- - - Yn, o0 cherche un polyndéme p de degré m < n tel que

n
Z ly; — p(z;)]? soit le plus petit possible.
j=0
On appelle polynéme aux moindres carrés de degré m le polynéme p,(x) de degré m tel que

Z | _ﬁn(xj)P < Z |y _pn(xj)‘Q Vpm(z) € Py, (3)
j=0 j=0

Nous cherchons les coefficients du polynéme p(x) = ag + a1z + ... + ax™ qui satisfait au mieuz les
(n+ 1) équations p(x) = yg, k =0, ..., n, c’est-a-dire

ap + a1Tk + ... + amxy =Y, k=0,..,n

Ce systéme s’écrit sous forme matricielle
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1 =z - ay ap Yo
1 =z, - 332” Qm Yn

Puisque m < n, on ne peut pas résoudre ce systéme de fagon classique.

Il faut le résoudre au sens des moindres carrés, en considérant:

BTBa = Bly

Ou B est la matrice (m + 1) x (n + 1) du systéme, a € R™"! le vecteur des inconnues et y € R™*!
le vecteur des données.

Ce systéme linéaire est dit systéme d’équations normales. On peut montrer que les équations
normales sont équivalentes au probléme de minimisation.

Remarque: La résolution de ce systéme demande parfois des méthodes plus avancées que
Uélimination de Gauss, comme la factorisation QR. Pour linstant on va se contenter d’utiliser
np.linalg.solve

Pour construire cette matrice, vous pouvez utiliser la fonction

def VandermondeMatrix(x, m=0):
# Input
# x : +1 array with interpolation nodes
# m : degree of the polynomtal. If empty, chooses m=size(z)-1
# Output
# Matriz of Vandermonde of size m = n

que vous pouvez importer avec la commande

from InterpolationlLib import VandermondeMatrix

Exemple On considére un test mécanique pour établir le lien entre contraintes (MPa =
100N/cm?) et déformations relatives (cm/cm) d’un échantillon de tissu biologique (disque inter-
vertébral, selon P. Komarek, Ch. 2 de Biomechanics of Clinical Aspects of Biomedicine, 1993, J.
Valenta ed., Elsevier).

Figures/disque.png

On cherche & approximer au sens des moindres carrés avec un polynoéme p, de degré n = 1,2,3.
Les mesures effectuées sont les suivantes

sigma = np.array([0.00, 0.06, 0.14, 0.25, 0.31, 0.47, 0.50, 0.70]1);
epsilon = np.array([0.00, 0.08, 0.14, 0.20, 0.22, 0.26, 0.27, 0.29]1);
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[41]: # <mporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from InterpolationLib import VandermondeMatrix
[42]: # data given:
sigma = np.array([0.00, 0.06, 0.14, 0.25, 0.31, 0.47, 0.50, 0.70]);

epsilon = np.array([0.00, 0.08, 0.14, 0.20, 0.22, 0.26, 0.27, 0.29]);

# degree of the polynomzal
m= 1;

B = VandermondeMatrix(sigma,m)

*:

print (B)

*:

compute coefficients
= np.linalg.solve( B.T.dot(B), B.T.dot(epsilon))

)

# print the coefficients on screen

print('The coefficients a_0, ..., a_m are')
print(a)
The coefficients a_0, ..., a_m are

[0.06288442 0.39379615]

[43]: def polynomial(a,x):
m = a.size-1
# \hat p = a_0 + a_l z + ... + a_n T°m
# 1s equal to the scalar product between the vectors a and (1, z, ..., z°m)
return np.power( np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).dot(a)

# points used to plot the graph, slightly larger than data
z = np.linspace(sigmal[0]-0.1, sigma[-1]*1.1, 100)

plt.plot(sigma, epsilon, 'ro', z, polynomial(a,z),'b')
plt.xlabel('$\sigma$'); plt.ylabel('$\epsilon$');
plt.legend(['data','$\hat p_n$'])

plt.show()
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[44]:

[44] :

[45] :

0.3

0.2

0.1

0.0 °
0.0 0.2 0.4 0.6 0.8

Exercice Depuis https://hsso.ch/fr/2012/b/14 on a téléchargé les données de la population suisse
dans le fichier Data/PopulationSuisse.csv.

Approximez ’évolution de la population avec un polynéme de degré n =1,2,3,7.

Ensuite faites 'hypothése de croissance exponentielle de la population, c’est-a-dire p(x) = e®1*+a0
ol ag et aq sont des paramétres. Comment utiliser I’approximation polynémiale dans ce contexte 7

# Data of the population has been dowloaded from https://hsso.ch/fr/2012/b/1}
# into the file Data/PopulationSuisse.csv
import pandas as pd

# Read data from file 'PopulationSutisse.csv'
data = pd.read_csv("Data/PopulationSuisse.csv")
# Preview the first &5 lines of the loaded data
data.head()

Année Population
0 1860 2506784
1 1870 2654394
2 1880 2924702
3 1888 2917754
4 1900 3315443
x = data['Année'].to_numpy()

y = datal['Population'].to_numpy()

9
B = VandermondeMatrix(x,m)

B
Il

# compute coefficients
a = np.linalg.solve( B.T.dot(B), B.T.dot(y))

# print the coefficients on screen

print('The coefficients a_0, ..., a_n are')
print(y)
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The coefficients a_0, ..., a_n are

[2506784 2654394 2924702 2917754 3315443 3753293 3880320 4066400 4265703
4714992 5429061 6269783 6365960 6873687]

[46]: def polynomial(a,x):
m = a.size-1
# \hat p = a_0 +a.lz+ ... +a.nz™m
# is equal to the scalar product between the vectors a and (1, =, ..., °m)
return np.power( np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).dot(a)

# points used to plot the graph, slightly larger than data
z = np.linspace(x[0], 2020, 100)

plt.plot(x, y, 'ro', z, polynomial(a,z),'b"')
plt.xlabel('année'); plt.ylabel('Population');
plt.legend(['data','$\hat p_n$'])

plt.show()

le7
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On assume une croissance exponentielle : population(x) = C x 1% = elotm®
En d’autres termes: log(population)(z) = a, + a1z
[47]: #

x = data['Année'].to_numpy()
y = np.log(datal['Population'].to_numpy())

m= 1
B = VandermondeMatrix(x,m)

# compute coefficients
a = np.linalg.solve( B.T.dot(B), B.T.dot(y))

# print the coefficients on screen

print('The coefficients a_0, ..., a_n are')
print(a)
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The coefficients a_0, ..., a_n are
[-0.01356599 0.00791249]

[48]: def expPolynomial(a,x):
m = a.size-1

# \hat p = a_0 + a_l x + ... + a_n T°m

# 1s equal to the scalar product between the vectors a and (1, z, ..., z°m)

return np.exp(np.power( np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).
—dot (Ei) )

# points used to plot the graph, slightly larger than data
z = np.linspace(x[0], 2020, 100)

plt.plot(x, np.exp(y), 'ro', z, expPolynomial(a,z),'b"')
plt.xlabel('année'); plt.ylabel('Population');
plt.legend(['data','$\hat p_n$'])

plt.show()
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[]:

3 Intégration numérique

3.1 3.1 Formules de quadrature sur [—1,1]

(Enlevé pour I'examen)

3.2 Intégration Numérique : Exercices

[49]: # <mporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt
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3.2.1 Exercice Série 6, Ex 5 : Formule de Simpson

On considére la fonction f : [a,b] — R dans C%([a,b]); on est intéressé a approcher l'intégrale
b
I(f) = fa f(z)dz.

1. Ecrivez une fonction Simpson qui implémente la formule composite de Simpson pour
I’approximation de l'intégrale ci-dessus. Utilisez la structure suivante:

def Simpson( a, b, N, f )
# [a,b] : inteval
# N : number of subintervals
# f : fonction to integrate using the Simpson rule

2. Testez ensuite pour quels monémes f(z) = ¢ cette formule intégre exactement la fonction,
pour d = 0,1, ... sur 'intervalle [1,4], avec N =1 et ensuite N = 10.

3. Vérifiez numériquement pour quelques polynomes que la fonction ainsi écrite est linéaire en f
pour N =10

Suggestion: En utilisant une fonction lambda il est possible de décider le parameétre d d’un mondéme
& un moment ultérieur:

monomial = lambda x : x**d

Partie 1
[50]: # This function just provides the Simpson quadrature rule.

def Simpson( a, b, N, f )
# [a,b] : inteval
# N : number of subintervals
# f : fonction to integrate using the trapezoidal rule

M=3

nodes = np.array([-1, 0, 1])
weights = np.array([1./3., 4./3., 1./3.1)

# size of the subintervals
H=(-a) /N

# points defining intervals
x = np.linspace(a,b,N+1)

z = np.zeros(M);

for k in range(N)
# left of the subinterval, also first quadrature point
z[0] = x[k]
# right of the subinterval, also third quadrature point
z[2] = x[k+1]
# mid point, , also second quadrature point
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[51]:

[52]:

z[1] = (x[k] + x[k+1])/2
# can also be computed as
z = (x[k] + x[k+1])/2 + nodes*(x[k+1] - x[k])/2

# local quadrature:
Jgk = weights[0] * £(z[0]) + weights[1] * f(z[1]) + weights[2] * f(z[2])
# or as a single sum

Jgk = sum(weights * f(z))

Lh = Lh + Jgk

# approzimate integral
return H/2 * Lh

Partie 2

dig

4
L/ildx::3
1

4d 1
de — ——
/1”6”” d+1

# Checking simpson fonction
a=1; b=

4d+1 -1
d+114 __
] =

d+1

# with lambda fonctions, it ts possible to determine a parameter (here d)

# at a later moment
monomial = lambda x : x**d

# recording for which degrees the integral s exact (up to epsilon)
exactDegree = -1

epsilon

N=1

le-12

for d in range(7)
= Simpson( a, b, N, monomial )

intsim

intExact =

print(f'Simpson on x~{d} :
;».66}'

)

(4x*x(d+1) - 1)/(d+1)

if np.abs(intsim-intExact) < epsilon :
exactDegree = d

{intsim: .6f} - {intExact:.6f}

= {intsim-intExact:

print(f'Simpson with N = {N} is exact up to degree {exactDegreel}')

Simpson on x°0 :
x"1 :
x"2 :
x"3 :
x"4

Simpson
Simpson
Simpson
Simpson

on
on
on
on

3.000000 - 3.000000
7.500000 - 7.500000
21.000000 - 21.000000
63.750000 - 63.750000
206.625000 - 204.600000

-4.440892e-16

0.

0
0
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[53]:

[54]:

[55] :

Simpson on x°5 : 707.812500 - 682.500000
Simpson on x"6 : 2536.781250 - 2340.4285
Simpson with N = 1 is exact up to degree 3

N =10

exactDegree = -1

for d in range(7)
intsim = Simpson( a, b, N, monomial
intExact = (4*x(d+1) - 1)/(d+1)

print(f'Simpson on x~{d} :
H.GG}'

)

= 2.531250e+01

71

)

if np.abs(intsim-intExact) < epsilon :
exactDegree = d

1.963527e+02

{intsim: .6f} - {intExact:.6f}

= {intsim-intExact:

print(f'Simpson with N = {N} is exact up to degree {exactDegreel}')

Simpson
Simpson
Simpson
Simpson
Simpson
Simpson
Simpson
Simpson

Partie 3

on
on
on
on
on
on
on

x"0 : 3.000000 - 3.000000

x"1 : 7.500000 - 7.500000

x"2 : 21.000000 - 21.000000
x"3 : 63.750000 - 63.750000
x"4 : 204.600202 - 204.600000
x"5 : 682.502531 - 682.500000
x"6 : 2340.449818 - 2340.4285

with N = 10 is exact up to degre

4
]/ ldxr =3
1

maxD = 5;

N =10

4 1
/ 2%dr = ——1
1 d+1

p = lambda x : np.polyval(coefs,x)

-4.440892e-16
0.000000e+00

71
e 3

2
2

d+114 _

0.000000e+00
-1.421085e-14

.025000e-04
.531250e-03
2.124623e-02

4d+1 -1
L™ d+1

# pre-computing integrls of monomials up to degree mazD

intMono

np.zeros (maxD+1)

for d in range(maxD+1)
intMono[d] = Simpson( a, b, N, monomial )

# generating random coefficients
np.random.rand (maxD+1)

coefs =

# evaluating Simpson on the polynomial :
intPoly = Simpson(a,b,N, p)
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[ 1:

[56]:

[67]:

# computing integral by linearity. Remeber that in polyval, the order of the,

—coeffictents is opposite !

intSum = 0
for d in range(maxD+1)

intSum = intSum + coefs[maxD-d]*intMono [d]

print(f'Simpson on a_{d} + a_{d-1} x + ... + a_0x~{d} by linearity : \n'

f'\t {intPoly:.6f} - {intSum:.6f} = {intPoly-intSum:.6e}"')

Simpson on a_5 + a_4 x + ... + a_0x"5 by linearity :

262.343120 - 262.343120 = 0.000000e+00

3.2.2 Exercice Série 6, Ex 6 : Degré d’exactitude d’une formule de quadrature

On considére la fonction f : [a,b] — R dans C%([a,b]); on est intéressé & approcher l'intégrale

1(f)

= [, J(x) dz.

Plus précisément on prend f(z) =sin(fz)+e®—1laveca=0et b=1 (f € C*([a,b])) et on peut
calculer I(f) =2 (1 —cos(3)) +e—2.

1.

Calculez une approximation de I'intégrale en utilisant les formules du rectangle, du trapéze et
de Simpson simples, c-a-d avec un seul intervalle.

Calculez une approximation de l'intégrale en utilisant les fonctions Midpoint, Trapezoidal
et Simpson (déja codées). avec N = 10 sous-intervalles de méme taille. On notera les valeurs
approchées de l'intégrale I5, (f), If(f), and IS(f), respectivement.

. Répétez le point 2. avec N = 2¥ pour k = 2,...,7 et calculez les erreurs En,(f) = I(f) -

L5, (O EE(f) = [ L(f) = IE(f)], et ES(f) := [I(f) —I(f)|. Dessinez les erreurs en fonction de
H = (b—a)/N sur une échelle logarithmique sur les deux axes. Quel est 1'ordre de convergence
de ces méthodes ? Est-ce en accord avec la théorie 7 Motivez votre réponse.

On prend maintenant f(z) = 2%, a = 0 et b = 1, avec d € N. L’intégrale de f vaut
I(f) =1/(d+1). Vérifiez numériquement les degrés d’exactitude de chacune des formules de
quadrature du point 1. Pour cela, il faut choisir plusieurs valeurs de d = 0,1,2,.... Motivez
votre réponse.

import matplotlib.pyplot as plt
import numpy as np

from Integrationlib import =*

Partie 1

f =

a =

lambda x : np.sin(7/2%x) + np.exp(x) - 1

0; b=1

Texact = 2/7+(1l-np.cos(7/2) ) + np.exp(1l) - 2
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X = np.linspace(a,b,1000)
y=1f (%)

plt.plot(x, y, 'b")
plt.show()
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[68]: intMD (b-a) * £( (atb)/2 )
intTrap = (b-a) * ( f(a)+f(b) )/2
intSimp = (b-a)/6 * ( f(a) + 4*xf((atb)/2) + £(b) )

print(f'exact \t rect \t\t trap \t\t Simpson')
print (f'{Iexact:.4f} \t {intMD:.4f} \t {intTrap:.4f} \t {intSimp:.4f}')

exact rect trap Simpson
1.2716 1.6327 0.6837 1.3164
Partie 2

[59]: N = 10
intMD = Midpoint(a,b,N,f)

intTrap = Trapezoidal(a,b,N,f)
intSimp = Simpson(a,b,N,f)

print(f'exact \t rect \t\t trap \t\t Simpson')
print (f'{Iexact:.4f} \t {intMD:.4f} \t {intTrap:.4f} \t {intSimp:.4f}')

exact rect trap Simpson
1.2716  1.2737 1.2673 1.2716
Partie 3

[60]: errmp = []
errtrap = []
errSim = []

N = 2x*np.linspace(2,7,6).astype(int)
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for n in N :
errmp.append( np.abs( Midpoint( a, b, n, f) - Iexact ) )
errtrap.append( np.abs( Trapezoidal( a, b, n, f) - Iexact ) )
errSim.append( np.abs( Simpson( a, b, n, f) - Iexact ) )

H = (b-a)/N
plt.plot(H, errmp, 'b:.', H, errtrap, 'c:*', H, errSim, 'g:x')

plt.plot(H, H**2 * (errmp[0]/H[0]**2)*5, 'k:', H, H+*4 * (errSim[0]/H[0]*x4)*5,
ke I)

plt.legend(['rectangle', 'trapeze', 'Simpson', '$H"2$', '$H~43$'])
plt.xlabel('H'); plt.ylabel('err');

plt.xscale('log')
plt.yscale('log')
plt.grid(True)
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[Pardon d’écrire en anglais..|

We recall that the errors Ef (f) = leg,,(f)l, Ef(f) = lef(f)], and ES(f) = |es(f)| read, for a

sufficiently regular function f(x):

e () =I(f) = I, (f) = 62_4“ H? f"(¢), for some ¢ € [a, b], if fe C%([a,b]),
e;(f)=1(f)—I;(f) :_b1—2a H2f"(n), for some 7 € [a, 1], iff602([a,b]),
SN =10) ~ ) =~ e B IO, forsome Celat],  if £ € CH(la,b]).

Since in this case f(x) € C*([a,b]), we expect the orders of accuracy (convergence orders of the
errors) to be equal to 2, 2, and 4 for the composite midpoint, trapezoidal, and Simpson quadrature
formulas, respectively. This is confirmed by the figure above, where we can observe that the plots
of the errors Ey,,(f) and E¢(f) vs. H are, in log-log scale, parallel to the line representing the curve
(H, H?), thus indicating the order of accuracy (convergence order) 2 for the composite midpoint and
trapezoidal quadrature formulas. Similarly, the plot of the error Es(f) is, in log-log scale, parallel to
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[61]:

[62] :

the line representing the curve (H, H*), from which we deduce the order of accuracy (convergence
order) 4 for the composite Simpson quadrature formula.

We notice that the orders of accuracy could be deduced by computing the errors for two dif-
ferent values of H, say H; and H; for example for a generic composite quadrature formula
we obtain the corresponding errors Ef (f) and Ef, (f). If we assume that the error Ef(f)
can be expressed as Ef(f) = C HY, with @ > 0 and C a positive constant independent of H
and «, we can estimate the order of accuracy (convergence order) of the quadrature formula as
a = logg (E%Q(f)/Eth(f)) /logg (Ha/Hy), for any 8 > 1 and H; and Hp “sufficiently small’’. For
the composite midpoint, trapezoidal, and Simpson quadrature formulas, we use the following com-
mands, for which the results (o = 2.01, 2.01, and 4.01, respectively) confirm the expected orders of
accuracy (convergence orders).

slopeMP = ( np.log(errmp[-1]) - np.log(errmp[0]) ) / ( np.log(H[-1]) - np.
—log(H[O0]) )

slopeTrap = ( np.log(errtrap[-1]) - np.log(errtrap[0]) ) / ( np.log(H[-1]) - np.
—log(H[O0]) )

slopeSim = ( np.log(errSim[-1]) - np.log(errSim[0]) ) / ( np.log(H[-1]) - np.
—log(H[O0]) )

print(f'La convergence numérique est environ de ')
print(f'Rectangle : {slopeMP:.2f}')
print(f'Trapeze : {slopeTrap:.2f}')
print(f'Simpson : {slopeSim:.2f}')

La convergence numérique est environ de
Rectangle : 2.01

Trapeze : 2.01

Simpson : 4.01

Partie 4 The function f(z) = 2 is a polynomial of degree d for d € N. The simple midpoint,
trapezoidal, and Simpson quadrature formulas possesses degree of exactness equal to 1, 1, and 3,
respectively.

N =1

# with lambda fonctions, it ts possible to determine a parameter (here d)
# at a later moment

monomial = lambda x : x**d

# recording for which degrees the integral s exact (up to epsilon)
exactDegree = -1
epsilon = le-12

for d in range(7)

intsim = Midpoint( a, b, N, monomial )

intExact = 1/(d+1)

print (f 'Midpoint on x~{d} : {intsim:.6f} - {intExact:.6f} =,
—{intsim-intExact:.6e}"')
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if np.abs(intsim-intExact) < epsilon :
exactDegree = d

print (f'Midpoint is exact up to degree {exactDegreel}')

Midpoint on x"0 : 1.000000 - 1.000000 = 0.000000e+00
Midpoint on x"1 : 0.500000 - 0.500000 = 0.000000e+00
Midpoint on x"2 : 0.250000 - 0.333333 = -8.333333e-02
Midpoint on x"3 : 0.125000 - 0.250000 = -1.250000e-01
Midpoint on x4 : 0.062500 - 0.200000 = -1.375000e-01
Midpoint on x"5 : 0.031250 - 0.166667 = -1.354167e-01
Midpoint on x76 : 0.015625 - 0.142857 = -1.272321e-01

Midpoint is exact up to degree 1

[63]: for d in range(7)
intsim = Trapezoidal( a, b, N, monomial )
intExact = 1/(d+1)
print(f'Trapezoidal on x~{d} : {intsim:.6f} - {intExact:.6f} =,
—{intsim-intExact:.6e}"')
if np.abs(intsim-intExact) < epsilon :
exactDegree = d

print(f'Trapezoidal is exact up to degree {exactDegreel}')

Trapezoidal on x"0 : 1.000000 - 1.000000 = 0.000000e+00
Trapezoidal on x"1 : 0.500000 - 0.500000 = 0.000000e+00
Trapezoidal on x"2 : 0.500000 - 0.333333 = 1.666667e-01
Trapezoidal on x”3 : 0.500000 - 0.250000 = 2.500000e-01
Trapezoidal on x"4 : 0.500000 - 0.200000 = 3.000000e-01
Trapezoidal on x°5 : 0.500000 - 0.166667 = 3.333333e-01
Trapezoidal on x"6 : 0.500000 - 0.142857 = 3.571429e-01

Trapezoidal is exact up to degree 1

[64]: for d in range(7)
intsim = Simpson( a, b, N, monomial )
intExact = 1/(d+1)
print(f'Simpson on x~{d} : {intsim:.6f} - {intExact:.6f} = {intsim-intExact:
<.6e}")
if np.abs(intsim-intExact) < epsilon :
exactDegree = d

print(f'Simpson is exact up to degree {exactDegreel}')

Simpson on x"0 : 1.000000 - 1.000000 = 0.000000e+00
Simpson on x~1 : 0.500000 - 0.500000 = 0.000000e+00
Simpson on x"2 : 0.333333 - 0.333333 = 0.000000e+00
Simpson on x"3 : 0.250000 - 0.250000 = 0.000000e+00
Simpson on x"4 : 0.208333 - 0.200000 = 8.333333e-03
Simpson on x"5 : 0.187500 - 0.166667 = 2.083333e-02
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[]:

[65] :

[66]:

Simpson on x"6 : 0.177083 - 0.142857 = 3.422619e-02
Simpson is exact up to degree 3

De ces simulations nous vérifions que les monoémes f(z) = x

4 sont intégrées exactement pour les

degrées d = 0 et d = 1 dans le cas des formules du rectangle et du trapéze, et pour d = 0,1,2,3
dans le cas de la formule de Simpson.

3.2.3 Exercice Série 6, Ex 7 : Convergence pour fonction non-lisse

import matplotlib.pyplot as plt
import numpy as np

from IntegrationLib import Midpoint
from IntegrationlLib import Trapezoidal
from IntegrationLib import Simpson

On considére, sur l'intervalle [—1, 1], la fonction f suivante:

e six <0

f(””):{ 1 siz>0

On peut définir une telle fonction en utilisant la commande

f = lambda x : np.exp(x)*(x<=0) + (1)*(x>0)

1. Utilisez 1000 points équirépartis dans l'intervalle [—1, 1] pour afficher la fonction f (utilisez la
commande axis pour recadrer I'image).

2. On g’intéresse a présent a lintégrale I = f_ll f(x) dx. On peut calculer la valeur de I
analytiquement et on trouve I = 2 — % =~ 1.6321. Calculez des valeurs approchées de [
en considérant les formules du point milieu, du trapéze et de Simpson avec N = 1,9, 99, 999
ol IV est le nombre de sous-intervalles de formules composites. Utilisez les fonctions midpoint,
trapezoidal et simpson (déja codées).

3. Reportez les erreurs calculées au point (b) dans un graphe montrant l'erreur en fonction de
H avec des échelles logarithmiques.

4. Estimez, & partir des graphes obtenus au point précédent, 'ordre de chacune des méthodes.
Comparez-les avec les ordres donnés au cours. Y a-t-il des différences? Pourquoi? (Regardez
les dérivées de f ).

5. Pourquoi obtient-on de bien meilleurs résultats pour la méthode de Simpson avec un nombre
pair d’intervalles qu’avec un nombre impair (essayez avec N = 99 et ensuite N = 100 )?

6. Refaites 'exercice avec N = 2,10, 100, 1000.

Partie 1
f = lambda x : np.exp(x)*(x<=0) + (1)*(x>0)
a=-1; b=1
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X = np.linspace(a,b,1000)
y=1f (%)

plt.plot(x, y, 'b')
plt.show()

1.0

0.9

0.8

0.7

0.6

0.5

0.4

—1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Partie 2 On calcule tout d’abord la valeur exacte de I'intégrale, puis on calcule les erreurs, que
I'on stocke dans des vecteurs:

[67]: Iexact = 2 - np.exp(-1)

errmp = []
errtrap = []

errSim = []

N = [1,9,99,999]

#V = [2,10,100,1000]

for i in range(4)
errmp.append( np.abs( Midpoint( a, b, N[i], f) - Iexact ) )
errtrap.append( np.abs( Trapezoidal( a, b, N[i], f) - Iexact ) )
errSim.append( np.abs( Simpson( a, b, N[i], f) - Iexact ) )

Partie 3
[68]: H = 2./np.array(N)
plt.plot(H, errmp, 'b:.', H, errtrap, 'c:*', H, errSim, 'g:x')

plt.plot(H, H**2 * (errmp[0]/H[0]**2)*5, 'k:', H, H+*4 * (errSim[0]/H[0]*x4)*5,
o'k !')

plt.legend(['rectangle', 'trapeze', 'Simpson', '$H"2$', '$H"4$'])
plt.xlabel('H'); plt.ylabel('err');

plt.xscale('log')

50



[69]:

plt.yscale('log')
plt.grid(True)

plt.show()
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Les graphes pour toutes les méthodes sont des droites. On remarque que lorsque H est divisé par
10, les erreurs sont environ divisées par 100. On peut donc supposer que les ordres sont 2 par
rapport & H. Pour le confirmer, on peut ajouter sur le graphe la pente représentant ’ordre 2 et
vérifier qu’elle est paralléle aux droites d’erreur.

Partie 4

slopeMP = ( np.log(errmp[-1]) - np.log(errmp[0]) ) / ( np.log(H[-1]) - np.
—log(H[O0]) )

slopeTrap = ( np.log(errtrap[-1]) - np.log(errtrapl[0]) ) / ( np.log(H[-1]) - np.
—~log(H[0]) )

slopeSim = ( np.log(errSim[-1]) - np.log(errSim[0]) ) / ( np.log(H[-1]1) - np.
—log(H[O0]) )

print(f'La convergence numérique est environ de ')
print (f'Rectangle : {slopeMP:.2f}')
print(f'Trapeze : {slopeTrap:.2f}')
print(f'Simpson : {slopeSim:.2f}')

La convergence numérique est environ de
Rectangle : 1.99

Trapeze : 1.99

Simpson : 1.99

Les graphiques sont paralléles a la droite H? et donc l'ordre est 2 pour toutes les méthodes. Pour
la méthode du point milieu et du trapéze, c’est 'ordre auquel on s’attend d’aprés la théorie. Par
contre, pour Simpson, on pouvait s’attendre & un ordre 4. Le probléme vient du fait que la fonction
n’est pas trés réguliére, puisque f € C°([—1,1]) mais f ¢ C*([—1,1]) puisque sa dérivée n’est pas
continue en x = 0. Dans la théorie, on demande f € C*([—1,1]) pour assurer 'ordre 4. On obtient
tout de méme l'ordre 2 car, mis & part en x = 0, la fonction f est trés réguliére.

Partie 5 Si on regarde 'erreur pour la méthode de Simpson avec N = 99 et N = 100 sous-
intervalles
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[70]: print (np.abs( Simpson( a, b, 99, f) - Iexact ) )
print (np.abs( Simpson( a, b, 100, f) - Iexact ) )

1.7004959483424287e-05
3.5117464491918327e-11

On obtient des valeurs d’environ 1.70 1072 et 3.51 1071, Les erreurs sont treés différentes ! Voila
pourquoi:

e si N est pair, le point = 0 est un point z; (pour i = N/2) exactement entre deux sous-
intervalles. La fonction f est réguliére & droite et & gauche, en particulier, on retrouve 'ordre
4 par rapport a H de chaque coté.

e si N est impair, le point x = 0 est au milieu d’un sous-intervalle. La fonction f n’est pas
réguliére dans cet intervalle, ce qui donnt un ordre de convergence plus petit.

Partie 6 Il faut relancer les parties 2 et 3 avec N= [2,10,100,1000] & la place de N =
[1,9,99,999]

4 Reésolution de systémes linéaires

4.1 Meéthodes Directes

D’abord quelques exemples d’utilisations de la factorisation LU et de Choleski, ensuite on passe aux
methodes itéreatives

4.1.1 Exercice 1 série 8

On considére le systéme linéaire Ax = b o :

36 7 4
A= 11 4|, b=]|5
2 4 8 6

1. Calculez la factorisation LU de la matrice A avec Python & l’aide du code ci-dessous.

2. Résolvez le systéme linéaire Ax = b en utilisant la factorisation trouvée au point précédent
(Ne plus utiliser Python. Mais ici on va le faire)

3. Calculez le déterminant de la matrice A en utilisant sa factorisation LU.

[71]: # <mporting libraries used in this motebook
import numpy as np
import matplotlib.pyplot as plt

# scipy.linalg.lu : LU decomposition

from scipy.linalg import lu

# scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky
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import pprint

np.set_printoptions(precision=4, suppress=True, linewidth=120)

Partie 1
[72]: A = np.array([[3, 6, 7],
[1, 1, 41,
(2, 4, 8] 1)

# LU factorisation with pivoting
P, L, U = 1u(p)

print("A = P L U")
pprint.pprint (P.dot(L.dot(U)) )

print("P:")
pprint.pprint (P)

print ("L:")
pprint.pprint (L)

print ("U:")
pprint.pprint (U)

A=PLTU

array([[3., 6., 7.],
[1., 1., 4.7,
[2., 4., 8.11)

P:

array([[1., 0., 0.],
[0., 1., 0.1,
0., 0., 1.1

L:

array([[ 1. , 0. , O. 1,
[ 0.3333, 1. , O. 1,
[ 0.6667, -0. , 1. 1D

U:

array([[ 3. , 6. , 7. 1,
[ o. , -1. , 1.6667],
[ o. , 0. , 3.333311)

Partie 2 Si P est I'identité, A = LU.
1. résolvez pour y tel que Ly = b par substitution progressive
2. résolvez pour x tel que Ux =y par substitution retrograde

Si P n’est pas l'identité, A = PLU.

o3



Attention, une matrice de permutation est une matrice orthogonale car les colonnes sont orthonor-
mées. Donc P! = PT. Du coup : PTA= LU et

Ax=b < PTAx = PTb & LUx = P'b.
Alors il faut modifier les calculs précédants comme suit:
1. résolvez pour y tel que Ly = PTb par substitution progressive

2. résolvez pour x tel que Ux =y par substitution retrograde

[73]: def subst_progressive(L, b):
substitution progressive: résout y, L*y = Db
Input:
- L: matrice carrée nzn, triangulaire inférieure
- b: vector de dimension n
Output:

- y: vector de dimension n
mnnn

# Initialrsation de la solution
y = np.zeros(L.shape[1])

# La premiére ligne de Ly = b est L_{11} y_1 = b_1

# Ensutte pour la ligne k on connait y_1, ..., y_{k-1} et elle s'écrit
# L_{kk} y k =b_k - ( L_{k1} y_1 + ... L_{kk-1} y_{k-1} )
for k in range(L.shape[0]):

# sum_k est ( L_{ki1} y_ 1 + ... L_{kk-1} y_{k-1} )

sum_k = 0

for j in range(k):
sum_k += L[k, jl*y[j]
y[k] = 1/L[k,k]*(b[k]-sum_k)
return y

def subst_retrograde(U, y):
substitution retrograde: résout pour z, Urxz = y
Input:
- U: matrice carrée nzn, triangulaire supérieure
- y: vector de dimension n
Output:

- x: vector de dimension n
nnn

# Initralisation de la solution
x = np.zeros(U.shape[1])

# La derniére ligne de Yz = y est U_{nn} z_n = y_n
# Ensuite pour la ligne k on comnait z_n, ..., z_{k+1} et elle s'écrit
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[74]:

[75]:

[75]:

# U {kk} z_k = y_k - ( U_{kk+1} z_{k+1} + ... U_{kn} y_{n} )
for k in reversed(range(U.shape[0])):

# sum_k est ( U_{kk+1} x_{k+1} + ... U_{kn} y_{n} )

sum_k = 0

for j in range(k+1, U.shape[0]):

sum_k += Ulk,jl*x[j]

x[k] = 1/U[k,k]*(y[k]-sum_k)

return x

b = np.array([4, 5, 6])
Ptb = P.T.dot(b)

y = subst_progressive(L, Ptb)
print("y =", y)

X = subst_retrograde(U, y)
print("x =", %)

# check the restdual of the equation
print("residual =",b - A.dot(x))

y = [4. 3.6667 3.3333]
x=[3. -2. 1.]
residual = [0. 0. 0.]

Partie 3
det A = det P det L det U

# scipy.linalg.det : determinant
from scipy.linalg import det

det (P) *det (L) *det (U)

—10.0

4.1.2 Critére de Sylvester

Les mineurs principaux d’une matrice A € R"*" sont les déterminants des matrices A, =
(ai,j)lgi,jgp, p = 1, ey n.

Critére de Sylvester: une matrice symétrique A € R™*™ est définie positive si et seulement si les
mineurs principaux de A sont tous positifs.

4.1.3 Exercice 2 série 8

On considére le systéme linéaire Ax = b ou
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A=

N = O™

1 2
31
1 3
1. Déterminez pour quelles valeurs du paramétre réel € € R, la matrice A est symétrique définie

positive.

2. Soit maintenant € = 0. On veut résoudre le systéme Ax = b par une méthode directe; quelle
factorisation de la matrice A envisageriez-vous? Justifiez votre réponse.

3. En considérant ¢ = 2, vérifier que dans ce cas la matrice A est définie positive et calculer sa
factorisation de Cholesky A = LL”.

4. En supposant que b = (1,1,1)7 résolvez le systéme linéaire Ax = b en utilisant la factorisa-
tion de Cholesky calculée au point c).

Référence Python pour la factorisation de Cholesky : scipy.linalg.cholesky

Partie 1 En appliquant le critére de Sylvester, il suffit d’imposer

e >0,

e 1 11
det(l 3>—3€—1>O, = €>§.
det A=8z—11>0,

Partie 2 Si e = 0 la matrice A est sym’etrique, mais elle n’est pas d’efinie positive; donc on ne
peut pas calculer la factorisation de Cholesky. On utilisera la m’ethode d’’elimination de Gauss avec
changement de pivot, puisque a1; = 0; par exemple, on peut consid’erer la matrice de permutation
P par lignes:

|

|
O = O
S O =
= o O

On peut facilement voir que A = PLU avec

1 0 0 1 3 1
L=10 1 0 et U=101 2
2 =51 0 0 11
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https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html

[76]:

[771:

Partie 3 Si e =2, la matrice A est syméetrique définie positive. Ici on va utiliser A = LLT. Les
éléments de la matrice L de la factorisation de Cholesky de A sont:

lh = Van=V2
) 1 1
— — - Qa —_
21 T
5
lyp = y|ax—13, = \/g
1
l31 = I as1 = V2
1
I3z = Iy (a2 — l31lo1) =0
I3z = \/a33 — (1 +13) =1
c’est-a-dire: Y
2 0 0
7 V2
V20 1

# scipy.linalg.eigh :
from scipy.linalg import eigh
# scipy.linalg.eig : etgenvalues of a matric
from scipy.linalg import eig

epsilon = 2

A = np.array([[epsilon, 1, 2],
(1, 3, 11,
[2, 1, 31 D

# Is A symmetric ?

print (f 'max(abs(A-AT)) = {np.max(np.abs(A-A.T))}

# What are the etgenvlues of $4% ? (usually,
—we can use eigh )

1k, v = eigh(A)

print (f'The eigenvalues of A are {1k}')

# Cholesky factorisation: lower :
L = cholesky(A, lower=True)
print(f"\n A = L°T L = {L.dot(L.T)}\n")

print (f"L = {L}")

max(abs(A-AT)) = 0

return lower-triangular matriz, A

etgenvalues for symmetric matric

D)

use eig, but here A4 is symmetric,

I J5=H

The eigenvalues of A are [0.4242 2.1873 5.3885]

A=LTL-=[[2. 1. 2.]
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L = [[1.4142 0. 0. ]
[0.7071 1.5811 0. ]
[1.4142 0. 1. 1]

Partie 4
b = np.array([1,1, 1])

y = np.linalg.solve(L,b)
x = np.linalg.solve(L.T,y)

print(x)

# check the restdual of the equation
print(b - A.dot(x))

[0.4 0.2 0. ]
[0. 0. -0.]

4.1.4 Problémes de précision (Exercice 3 série 8)

Les erreurs d’arrondis peuvent causer des différences importantes entre la solution calculée par la
méthode d’élimination de Gauss (MEG) et la solution exacte. Cela arrive si le conditionnement de
la matrice du systéme est trés grand.

La matrice de Hilbert de taille n x n est une matrice symétrique définie par

1

R E— g =1,...
Z-+j_17 Z?] ) 7n

aij =

On peut construire une matrice de Hilbert de taille n quelconque en utilisant la commande A =
scipy.linalg.hilbert(n). Par exemple, pour n =4, on a:

1 1 1
L P
A=11 1 1 1
Pl d
i1 5 6 7
On considére les systémes linéaires A,x, = b, ou A, est la matrice de Hilbert de taille n avec
n = 4,6,8,10,12,14,...,20 tandis que b, est choisi de sorte que la solution exacte soit x, =
(17 17 Ty 1)T

1. Pour chaque n, calculez le conditionnement de la matrice
2. Résolvez le systéme linéaire par la factorisation LU et notez #-U la solution calculée.

3. Dessinez le graphique avec le conditionnement obtenu ainsi que lerreur rélative ||x, —
xEU| /(1% (ot || - || est la norme euclidienne d'un vecteur, |x|| = vxT -x). Utilisez une
échelle logarithmique pour 'axe .
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4. Sur le méme graphique, reportez le conditionnement de la matrice A, np.linalg.cond(A)

Répétez la méme chose avec la factorisation de Cholesky L = cholesky(A, lower=True) pour
n=4,6,8,10,12. Que se passe-t-il sin =147

[79]: from scipy.linalg import hilbert
[80]: Nrange = range(2,20,2)

err = []
cond = []

for n in Nrange :
A = hilbert(n)
P, L, U = 1u(A)

np.ones([n,1])

»
I

o
I

A . dot (x)

y = np.linalg.solve(L,P.T.dot(b))
xLU = np.linalg.solve(U,y)

err.append( np.linalg.norm(x-xLU) / np.linalg.norm(x) )
cond.append( np.linalg.cond(4) )

[81]: plt.plot(Nrange, err, 'b:.',6Nrange, cond, 'g:.')

plt.xlabel('n'); plt.ylabel('err');
# plt.zscale('log')
plt.yscale('log')

plt.grid(True)

plt.show()

1018
1013
o EEEECEo RS
= 103
[
102
10-7

10712

[82]: Nrange = range(2,13,2)
err = []
cond = []
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[83]:

[84]:

for n in Nrange
A = hilbert(n)

L = cholesky(A, lower=True)
x = np.ones([n,1])

b = A.dot(x)

y = np.linalg.solve(L,b)

xCho = np.linalg.solve(L.T,y)

err.append( np.linalg.norm(x-xCho) / np.linalg.norm(x) )
cond.append( np.linalg.cond(4) )

plt.plot(Nrange, err, 'b:.',Nrange, cond, 'g:.')
plt.xlabel('n'); plt.ylabel('err');
# plt.zscale('log')
plt.yscale('log')
plt.grid(True)
plt.show()

107 [ T

- »

_ 103
® 102
1077
10712 '
2 4 6 8 10 12
n
n =14
A = hilbert(n)
# L = cholesky(4, lower=True)
1k, v = eigh(A)
print(f'1k[0] = {1k[0]:0.5e} , the matrix is not positive definite. Let''s,
—verify with the first eigenvector')

1k[0] = -9.13148e-18 , the matrix is not positive definite. Lets verify with the

first eigenvector

La premiére valeur propre est négative, cela signifie que (v, Av) = (v, \v) = A\(v,v) = \||v|? < 0,
ol v est le vecteur propre associé a cette valeur propre A négative.
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Vérifions:
[85]: print ( A.dot(v[0]).T.dot(v[0]) )

0.007555533559357492

Pourquoi ? En vérité, le calcul des valeurs et vecteurs propres de A a aussi un probléme d’arrondis
a cause du conditionnement. On peut en effet vérifier que le rapport entre les composantes de v et
Av n’est ni égale & A\, ni & une autre constante :

[86]: print(v[0]/A.dot(v[0]) )

[ -0. -0. -0. 0.0001 -0.0008 0.0052 -0.0292 0.1421
-0.6044 -2.2364 7.0956 18.675 -37.1359
40.0708]
[ 1:
[]:

4.2 Meéthodes itératives

[87]: # importing libraries used in this notebook
import numpy as np
import matplotlib.pyplot as plt

# scipy.linalg.eig : etgenvalues of a matric
from scipy.linalg import eig

# scipy.linalg.lu : LU decomposition

from scipy.linalg import lu

# scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky

# scipy.linalg.hilbert : Hilbert matriz

from scipy.linalg import hilbert

np.set_printoptions(precision=4, suppress=True, linewidth=120)

4.3 Méthode de Richardson
A et b donnés; on cherche 4 approximer la solution x de Ax = b.

Soit x(© donné, r® =b — AxO pour k =0,1,2,... :

trouvez z*) tel que Pz*) = ()

choisissez ay,

(4D ) o a5 H)
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4.3.1 Exemple 1

On considére la matrice A et le terme de droite b suivants

1 2 3 4 1
5 6 7 8 -1
A= 9 10 11 12 b= 1
13 14 15 16 -1
4.3.2 Meéthode de Jacobi
La diagonale de A est
10 0 0
06 0 O
D= 0 0 11 o0 |’
0 0 0 16

Prenond a« = 1 et P = D. La méthode de Richardson dans ce cas correspond & la méthode de
Jacobi et s’écrit comme suit :

[88]: A = np.array([[1,2,3,4],
[5’6,7’8] >
[9,10,11,12],

[13,14,15,16]11)
b = np.array([1,-1,1,-1])
# Diagonale de 4
P = np.diag(np.diag(A))

alpha = 1

# Initialisation, par exemple

k=0
xk = np.array([1,0,0,0])
# résidu

rk = b- A.dot(xk)
[89]: # Une itération de Richardson

# résidu préconditionné :
zk = np.linalg.solve(P,rk)

# correction de la solution, z(k+1) :
xkl = xk + alpha*zk

# résidu

rk = b- A.dot(xkl)

# Préparer la prochaine itération
xk = xki
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print (xk)
[ 1. -1. -0.7273 -0.875 ]

Si on execute plusieurs fois ces itérations, la méthode ne converge pas. Pourquoi ?

Dans ce cas, la matrice d’itération de la méthode de Richardson est égale a

0 -2 -3 —4
Cim o7 14| —B/6 0 —7/6  —4/3
B=D"(D-A)=I-D"A= ~9/11 —10/11 0  —12/11

—13/16 —14/16 —15/16 0

[90]: # Jacobi
# the first diag extracts the diagonal of A, the second one builds a diagonal,

—matriz starting from a vector

D = np.diag(np.diag(A))

# effictently computing the Jacobi iteration matriz without explicitely,
—computing the inverse of D
Bj = np.linalg.solve(D, (D-4))

# What are the eigenvlues of Bj ?

1k, v = eig(Bj)

print(f'The eigenvalues of Bj are {lk}\n')

print(f'The spectral radius of Bj is {np.max(np.abs(lk)):.2f} > 1, therefore the,
—Jacobi method does not converge')

The eigenvalues of Bj are [-3.9362+0.j 1.9362+0.j 1. +0.j 1. +0. 3]

The spectral radius of Bj is 3.94 > 1, therefore the Jacobi method does not

converge

4.3.3 Meéthode de Gauss-Seidel

Prenond o = 1 et P la partie triangulaire inférieure de A avec la diagonale. La méthode de
Richardson dans ce cas correspond a la méthode de Gauss-Seidel et s’écrit comme suit :

[91]: # Gauss-Seidel
# Return a copy of an array with elements above the k-th diagonal set to zero.

Pgs = np.tril(A, k=0)

# effictently computing the Gauss-Siedel iteration matriz without explicitely,
—computing the inverse of D
Bgs = np.linalg.solve(Pgs, (Pgs-A))

# What are the eigenvlues of Bgs ?

1k, v = eig(Bgs)
print(f'The eigenvalues of Bgs are {lk}\n')
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print(f'The spectral radius of Bgs is {np.max(np.abs(lk)):.2f} > 1, therefore,
—the Gauss-Seidel method does not converge')

The eigenvalues of Bgs are [0. +0.j 2.0682+0.j 1. +0.j 1. +0.3]

The spectral radius of Bgs is 2.07 > 1, therefore the Gauss-Seidel method does
not converge

La méthode de Gauss-Seidel appliqué & cette matrice ne converge pas.

4.3.4 Exercice

Réprenez ces deux méthodes avec la matrice

N =~ DN
N O

1
3
5

= W W W

2 3 4
A = nptarray([[S,Q’l,o]:[3,4’3’2])[3,2,5,2]:[1,2,3,4]])

1. Vérifiez si Jacobi et Gauss-Seidel convergent a ’aide de la matrice d’itérations
2. Calculez les premier 10 itérations de ces méthodes.

4.4 Exemple 2

Considerez la matrice A et le vecteur b suivants

3 2 1 A
A=l14 1| b=|5
2 4 8 6

Exprimez (sans calculer) P, B, et p(B) dans le cas de Jacobi et Gauss-Seidel.

[92]: A = np.array([[3, 2, 1],
(1, 4, 1],
(2, 4, 8] 1)

[93]:  # Jacobt
# first diag extract the diagonal of A, the second builds a diagonal matrix,
—starting from a vector
D = np.diag(np.diag(A))

Bj = np.linalg.solve(D, (D-4))

# What are the eigenvlues of $Bj$ 2

1k, v = eig(Bj)

print (f'The eigenvalues of Bj are {lk}\n')

print(f'The spectral radius of Bj is {np.max(np.abs(1lk)):.2f} < 1, therefore,
—Jacobi converges')
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[94] :

The eigenvalues of Bj are [-0.7026+0.j 0.4205+0.j 0.2821+0.j]

The spectral radius of Bj is 0.70 < 1, therefore Jacobi converges

# Gauss-Setrdel
# Return a copy of an array with elements above the k-th diagonal zeroed.
Pgs = np.tril(A,k=0)

Bgs = np.linalg.solve(Pgs, (Pgs-A))

# What are the etgenvlues of $Bgs$ ?

1k, v = eig(Bgs)

print(f'The eigenvalues of Bgs are {1k} whose moduli are {np.absolute(lk)} \n')
print(f'The spectral radius of Bgs is {np.max(np.absolute(lk)):.2f} < 1,
—therefore Gauss-Seidel converges')

The eigenvalues of Bgs are [0. +0.j 0.1667+0.1179j 0.1667-0.1179j] whose
moduli are [O. 0.2041 0.2041]

The spectral radius of Bgs is 0.20 < 1, therefore Gauss-Seidel converges

4.5 Exemple 3 - Jacobi et Gauss-Seidel avec relaxation

Nous avons vu que la méthode de Jacobi appliquée a la matrice

=W W W
DO DN DN
w ot W
=N N O

ne converge pas, alors que celle de Gauss-Seidel converge.

Nous allons utiliser la méthode de Richardson stationnaire avec un parameétre de relaxation «
constant pour voir si on peut améliorer la convergence.

On va utiliser la méthode de Richardson stationnaire avec un parameétre de relaxation « constant
pour voir si on peut améliorer la convergence.

Partie 1 - Matrices d’itérations La matrice d’itérations pour la méthode de Richardson est
B(ag) = I — o, P~'A. En particulier, pour o constant, nous pouvons faire un graphique du rayon
spectral p(B(«)) dans les cas d’un préconditionneur égale a la diagonale de A (similaire a Jacobi)
ou au triangle inférieur de A (similaire & Gauss-Seidel):

Voici comment voir que B(ag) =1 —ayP7 1A :

Pour Richardson préconditionné nous avons que

Pz = pr) 4oy (b — Az)
Pz — b+ (P — g A)z®
2 ) = 0 P~ + PH(P — a Az

65



On reconnait la matric d’itération en B(ay) = P~H(P — ayA) = I — ap P71 A)

[95]: A

np.array([[3,2,1,0],
[3,4,3,2],
[3,2,5,2]1,
[1,2,3,411)
D = np.diag(np.diag(A))
Pgs = np.tril(A,k=0)

Alphas = np.linspace(0, 2, 3001)

rhoBj
rhoBgs

(]
(]

for alpha in Alphas :
Bgs = np.linalg.solve(Pgs, (Pgs-alphaxA))
Bj = np.linalg.solve(D, (D-alpha*A))

1k, v = eig(Bj)
rhoBj .append( np.max(np.abs(lk)) )

1k, v = eig(Bgs)
rhoBgs . append ( np.max(np.abs(1lk)) )

plt.plot(Alphas, rhoBj, 'b:', label=r'$\rho(B_J(\alpha))$')
plt.plot(Alphas, rhoBgs, 'g:', label=r'$\rho(B_{GS}(\alpha))$')

plt.xlabel(r'$\alpha$'); plt.ylabel(r'$\rho$');
plt.title('Spectral radius')

plt.grid(True)

plt.legend(['$\\rho(B_J(\\alpha))$', '$\\rho(B_{GS}(\\alpha))$'])

plt.show()
Spectral radius
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On constate que:

1. En utilisant P = D, Richardson converge pour o 5 0.8 and the optimal one is for o = 0.75
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2. En utilisant P égal au triangle inférieur de A, Richardson converge pour a g 2 ; le parameétre
optimale est o =~ 1.5

Partie 2 - Implémentation de la Méthode de Richardson Définissez une fonction Python
qui implémente la méthode de Richardson stationnaire avec la structure suivante:

def Richardson(A, b, x0, P, alpha, maxIterations, tolerance)
# Stationary Richardson method to approxrimate the solution of Ax=b

# INPUT

# xz0 : initial guess

# P : preconditioner

# alpha : constant relazxation parameter

# mazlterations : mazimum number of iterations

# tolerance : tolerance for relative residual

# OUTPUT

# zk : approxzimate solution to the linear system
# rk : wvector of relative norm of the residuals

La méthode de Richardson, comme toute méthode iterative a besoin d’un critére d’arrét. Dans ce
cas, le plus simple est de poser les critéres suivants:

1. On fixe le nombre maximal d’itérations
2. Le résidu relatif est plus petit qu’une tolérance e :

Ib — Ax®|
bl

On s’arréte dés que 'un des ces critiéres est rempli.

[96]: def Richardson(A, b, x0, P, alpha, maxIterations, tolerance)
# Stationary Richardson method to approximate the solution of Az=b

# INPUT :

# x0 : wnttial guess

# P : preconditioner

# alpha : constant relazation parameter

# mazlIterations : mazximum number of tterations

# tolerance : tolerance for relative residual

# OUTPUT

# zk : approximate solution to the linear system
# rk : wvector of relative norm of the residuals

# we do mot keep track of all the sequence, just the last two entries
xk = x0
rk = b - A.dot(xk)

RelativeResidualNorm = []
for k in range(maxIterations)

zk
xk

np.linalg.solve(P,rk)
xk + alphax*zk
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[97]1:

[98]:

rk = b - A.dot(xk)

# you can vertify that this is equivalent to
# rk = vk - alpha*4.dot (zk)
RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if ( RelativeResidualNorm[-1] < tolerance )
print(f'Richardson converged in {k+1} iterations with a relative
—residual of {RelativeResidualNorm[-1]:1.3e}')
return xk, RelativeResidualNorm

print(f'Richardson did not converge in {maxIterations} iterations, the
—relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}')
return xk, RelativeResidualNorm

Partie 3 - Utilisation de la Méthode de Richardson Utilisez la fonction Richardson pour
approcher la solution de Ax = b pour b = (0,1, —1,1) avec une tolérance sur le résidu relatif de
1076 et le vecteur nul comme point initial et un nombre maximum d’itérations de 200

1. En utilisant P = D, avec : a = 0.7,0.75,0.79,0.81,0.9
2. En utilisant P égal au triangle inférieur de A, avec : a = 1,1.5,1.95,2.05

Comment interprétez-vous ces résultats ?

b = np.array([0,1,-1,1]1)
# Define the initial guess
x0 = Oxb # trick to have the right size for z0

tolerance = 1e-6
maxIter = 200

# Jacobi-like preconditioner
P = np.diag(np.diag(A))
legend = []

for alpha in [0.7, 0.75, 0.79,0.81, 0.9]
x,relRes = Richardson(A,b,x0,P,alpha,maxIter,tolerance)
print(relRes[-1])
plt.plot( relRes, ':')
legend.append(str(alpha))

plt.legend(legend)
plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')

plt.yscale('log')
plt.show()
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[99]:

Richardson converged in 79 iterations with a relative residual of 8.984e-07

8.984498815385382e-07

Richardson converged in 77 iterations with a relative residual of 7.593e-07

7.592562065358359e-07

Richardson did not converge in 200 iterations, the relative residual is
3.379e-06

3.378918951868571e-06

Richardson did not converge in 200 iterations, the relative residual is
8.699e-02

0.08698843985290847

Richardson did not converge in 200 iterations, the relative residual is
2.576e+16

2.575559592693911e+16

Relative residuals
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# Gauss-Seidel-like preconditioner
P = np.tril(A,k=0)
legend = []

for alpha in [1, 1.5, 1.95,2.05]
x,relRes = Richardson(A,b,x0,P,alpha,maxIter,tolerance)
print(relRes[-1])
plt.plot( relRes, ':')
legend. append(str(alpha))

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals"')
plt.yscale('log')

plt.show()

200

Richardson converged in 30 iterations with a relative residual of 9.521e-07

9.520753485686893e-07

Richardson converged in 22 iterations with a relative residual of 7.144e-07

7.144137957248418e-07
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Richardson did not converge in 200 iterations, the relative residual is
1.071e-04

0.00010708766426366904

Richardson did not converge in 200 iterations, the relative residual is
5.283e+04

52829.70703107408

Relative residuals

10°

0 25 50 75 100 125 150 175 200

Partie 4 - Implémentation de la Méthode du Gradient Préconditionné Définissez une
fonction Python qui implémente la méthode de Gradient Préconditionné et qui a la structure

def PrecGradient(A, b, x0, P, maxIterations, tolerance)
# Preconditioned Gradient method to approximate the solution of Az=b

# INPUT

# x0 : initial guess

# P : preconditioner

# mazIterations : mazimum number of iterations

# tolerance : tolerance for relative residual

# OUTPUTS

# zk : approxzimate solution to the linear system
# rk : wvector of relative norm of the residuals

[100]: def PrecGradient(A, b, x0, P, maxIterations, tolerance)
# Preconditioned Gradient method to approxzimate the solution of Az=b

# INPUT

# z0 : tnttral guess

# P : preconditioner

# mazlterations : maximum number of iterations

# tolerance : tolerance for relative residual

# OUTPUTS

# zk : approzimate solution to the linear system
# rk : vector of relative norm of the residuals

# we do not keep track of all the sequence, just the last two entries
xk = x0
rk = b - A.dot(xk)
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RelativeResidualNorm = []
for k in range(maxIterations)

zk = np.linalg.solve(P,rk)
Azk = A.dot(zk)

alphak = zk.dot(rk) / zk.dot(Azk)

xk

xk + alphak*zk

rk = b - A.dot(xk)
# you can verify that this is equivalent to
# rk = rk - alphak*4.dot (zk)
RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if ( RelativeResidualNorm[-1] < tolerance )

print(f'Gradient converged in {k+1} iterations with a relative

—residual of {RelativeResidualNorm[-1]:1.3e}')
return xk, RelativeResidualNorm

print(f'Graident did not converge in {maxIterations} iterations, the
—relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}')
return xk, RelativeResidualNorm

Partie 5 - Implémentation de la Méthode du Gradient Conjugué Préconditionné
Définissez une fonction Python qui implémente la méthode du Gradient Conjugué Préconditionné
avec la structure suivante:

def PrecConjugateGradient(A, b, x0, P, maxIterations, tolerance)
# Preconditionate Conjugate Gradient method to approxrimate the solution of Ax=b

# INPUT

# x0 : initial guess

# P : preconditioner

# mazlterations : mazimum number of iterations

# tolerance : tolerance for relative residual

# OUTPUTS

# zk : approximate solution to the linear system
# rk : wector of relative morm of the residuals

[101]: def PrecConjugateGradient(A, b, x0, P, maxIterations, tolerance)
# Preconditionate Conjugate Gradient method to approxzimate the solution of,

—Az=b
# INPUT
# x0 : initial guess
# P : preconditioner

# mazlterations : maximum number of iterations
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# tolerance : tolerance for relative residual

# OUTPUTS
# zk : approzimate solution to the linear system
# rk : wector of relative norm of the residuals

# we do mot keep track of all the sequence, just the last two entries

xk = x0

rk = b - A.dot(xk)

zk = np.linalg.solve(P,rk)
pk = zk

RelativeResidualNorm = []
for k in range(maxIterations)

Apk = A.dot(pk)
alphak = pk.dot(rk) / pk.dot(Apk)

xk = xk + alphak*pk

rk = rk - alphak*Apk
# you can verify that this is equivalent to
# rk = b - Ad.dot(zk)

zk = np.linalg.solve(P,rk)

betak = Apk.dot(zk) / pk.dot(Apk)
pk = zk - betak*pk

RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if ( RelativeResidualNorm[-1] < tolerance )
print (f'Conjugate Gradient converged in {k+1} iterations with a;
—relative residual of {RelativeResidualNorm[-1]:1.3e}')
return xk, RelativeResidualNorm

print (f'Conjugate Gradient did not converge in {maxIterations} iterationms,
—the relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}"')
return xk, RelativeResidualNorm

Partie 6 - Utilisation de la Méthode du Gradient Preconditioné et du Gradient Con-
jugué Préconditionné Utilisez les fonctions PrecGradient et PrecConjugateGradient pour
approcher la solution de Ax = b pour b = (0,1, -1, 1)T avec une tolérance sur le résidu relatif de
1076 et le vecteur nul comme point initial, et un nombre maximum d’itérations de 200

1. En utilisant P = D
2. En utilisant P égal au triangle inférieur de A
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Comment interprétez-vous ces résultats 7

[102]: legend = []

# Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot( relRes, ':')

legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient (A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot( relRes, ':')

legend.append('Conj Gradient, P=D')

# Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot( relRes, ':')

legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot( relRes, ':')

legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals"')
plt.yscale('log')

plt.show()

Gradient converged in 62 iterations with a relative residual of 8.146e-07
8.145842032913786e-07

Conjugate Gradient converged in 31 iterations with a relative residual of
6.323e-07

6.323181670011519e-07

Gradient converged in 25 iterations with a relative residual of 9.177e-07
9.177277863663321e-07

Conjugate Gradient converged in 31 iterations with a relative residual of
6.529e-07
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6.529042663207426e-07

Relative residuals

- Gradient, P=D
10-1 Conj Gradient, P=D
- Gradient, lower A
10-2 = Conj Gradient, lower A
9 1073
04 T T e
10-° .
T

4.6 Autres Exemples

Répétez les expériences numériques ci-dessous pour approcher les solutions de

2 1 < 1 > 2 2 ( 1 > 5 7 < 1 >
X = X = et X = .
1 3 0 -1 3 0 7 10 0
Pour quelles matrices et méthodes vous attendez-vous a une convergence 7 Pour la derniére matrice,
le résultat n’est pas celui attendu, pourquoi ?

[103]: b = np.array([1,0])
# Define the initial guess
x0 = np.array([1,1])

tolerance = 1le-6

maxIter = 10

A = np.array([[2,1],[1,3]1])

# A4 = np.array([[2,2],[-1,3]])
# A = np.array([[5,7],[7,10]])

legend = []

# To complete: similarly to previous exzample:

# 1) Jacobi, Gauss-Seidel (simple)

# 2) PrecGradient and PrecConjGradient, with

# both Jacobi-like and Gauss-Seidel-like preconditioning

# 1) Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)

print(relRes[-1])
plt.plot( relRes, ':')
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legend.append (' Jacobi')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot( relRes, ':')

legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot( relRes, ':')

legend.append('Conj Gradient, P=D')

# Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(relRes[-1])

plt.plot( relRes, ':')
legend.append('Gauss-Seidel')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot( relRes, ':')

legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot( relRes, ':')

legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')

plt.show()

Richardson did not converge in 10 iterations, the relative residual is 5.751e-04
0.0005751203645832735

Gradient converged in 10 iterations with a relative residual of 4.401e-07
4.40060404871371e-07

Conjugate Gradient converged in 2 iterations with a relative residual of
4.710e-16

4.710277376051325e-16

Richardson converged in 9 iterations with a relative residual of 5.954e-07
5.953741807340762e-07

Gradient converged in 7 iterations with a relative residual of 5.098e-07
5.098498742819304e-07
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Conjugate Gradient converged in 2 iterations with a relative residual of
3.511e-16
3.510833468576701e-16

Relative residuals

10t
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4 -8 \
=10 - Gradient, P=D
10-1 N e Conj Gradient, P=D
-~ Gauss-Seidel
10-14 - Gradient, lower A
-~ Conj Gradient, lower A

0 2 4 6 8
n

La matrice de Hilbert Peut-on utiliser une méthode de Richardson pour résoudre le probléme
du mauvais conditionnement de la matrice de Hilbert ?7

[104]: n = 10
A = hilbert(n)
xexact = np.ones(n)
b = A.dot(xexact)

# Define the initial guess
x0 =D

tolerance = 1e-6
maxIter = 10

legend = []

# To complete: similarly to previous exzample:

# 1) Jacobi, Gauss-Seidel (simple)

# 2) PrecGradient and PrecConjGradient, with

# both Jacobi-like and Gauss-Setdel-like preconditioning

# 1) Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)

print (f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}t\n')

plt.plot( relRes, ':')

legend.append (' Jacobi')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
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print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot( relRes, ':')

legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)

print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}r\n')

plt.plot( relRes, ':')

legend.append('Conj Gradient, P=D')

# Gauss-Serdel-like precondtioner
P = np.tril(A,k=0)

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)

print (f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot( relRes, ':')

legend. append('Gauss-Seidel')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)

print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot( relRes, ':')

legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)

print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}r\n')

plt.plot( relRes, ':')

legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')

plt.show()

Richardson did not converge in 10 iterations, the relative residual is 4.305e+08
The relatove residual and absolute error are : 4.305e+08 1.847e+09

Graident did not converge in 10 iterations, the relative residual is 2.066e-02
The relatove residual and absolute error are : 2.066e-02 8.555e-01

Conjugate Gradient converged in 5 iterations with a relative residual of
2.692e-08
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The relatove residual and absolute error are : 2.692e-08 2.280e-02

Richardson did not converge in 10 iterations, the relative residual is 2.883e-03
The relatove residual and absolute error are : 2.883e-03 4.243e-01

Graident did not converge in 10 iterations, the relative residual is 1.158e-03
The relatove residual and absolute error are : 1.158e-03 4.149e-01

Conjugate Gradient did not converge in 10 iterations, the relative residual is

6.569e-04
The relatove residual and absolute error are : 6.569e-04 4.205e-01
Relative residuals
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106 I R Gradient, P=D
I . -~ Conj Gradient, P=D
103 [ - < Gauss-Seidel
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-
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[ 1:

4.7 Compléments

[105]: | # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

# scipy.linalg.lu : LU decomposition

from scipy.linalg import lu

# scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky

from scipy.linalg import hilbert

from IterativeMethodsLib import *

Dans le cas d’une matrice mal conditionnée, on peut essayer d’utiliser la factorisation LU ou de
Cholesky comme préconditionneur. Mais cela ne marche pas forcément ...

[106]: n
A

4
hilbert(n)
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[107]:

D = np.diag(np.diag(A))

MaxIterations = 1000

x = np.ones([n,1])
b = A.dot(x)
alpha = 0.5

# we do mot keep track of all the sequence, just the last two entries
xk = b
rk = b - A.dot(xk)

RelativeError = []
residualNorm = []

# We rewrite Richardson for the sake of the example:
for k in range(MaxIterations)

zk = np.linalg.solve(D,rk)
xk = xk + alphaxzk
rk = rk - alpha*A.dot(zk)

#rk = b - A.dot(zk)

RelativeError.append( np.linalg.norm(x-xk) / np.linalg.norm(x) )
residualNorm.append( np.linalg.norm(rk) )

#plt.plot(range(MazIterations), RelativeError, 'b:.')
plt.plot(range(MaxIterations), RelativeError, 'b:.',range(MaxIterations),
—residualNorm, 'g:.')

plt.xlabel('n'); plt.ylabel('err');
# plt.zscale('log')
plt.yscale('log')

plt.grid(True)

plt.legend(['Rel err','res'])
plt.show()
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[108]: n

10
hilbert (n)

=
I

# epsilon = 2

#4 = np.array([[epsilon, 1, 2],
# (1, 3, 1],

# (2, 1, 3] 1)

# B = np.diag(np.diag (4, k=1),k=1) + np.diag(np.diag(4, k=0),k=0) + np.diag(np.
wdiag(4, k=-1),k=-1)

# L = cholesky(B, lower=True)

P, L, U= lu(h)

MaxIterations = 30

x = np.ones([n,1])
b = A.dot(x)
alpha = 0.5

# we do mnot keep track of all the sequence, just the last two entries
xk = b
rk = b - A.dot(xk)

RelativeError = []
residualNorm = []

for k in range(MaxIterations)

#y = np.linalg.solve(L,rk)
# zk = np.linalg.solve(L.T,y)

y = np.linalg.solve(L,P.T.dot(rk))
zk = np.linalg.solve(U,y)

xk = xk + alphaxzk
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[109]:

[]:

rk = rk - alpha*A.dot(zk)
#rk = b - A.dot(zk)

RelativeError.append( np.linalg.norm(x-xk) / np.linalg.norm(x) )

residualNorm.append( np.linalg.norm(rk) )

#plt.plot(range(MazIterations), RelativeError, 'b:.')

plt.plot(range(MaxIterations), RelativeError, 'b:.',range(MaxIterations),

—residualNorm, 'g:.')

plt.xlabel('n'); plt.ylabel('err');
# plt.zscale('log')
plt.yscale('log')

plt.grid(True)

plt.legend(['Rel err','res'])

plt.show()
| - Rel err
M === N N |
10-3
5
10-°
T
0 5 10 15 20 ” 3b

4.8 Problémes d’arrondis

Voyons comment 'ordre dans la somme des ligne d’une matrice de Hilbert change le résultat. Pour
rappel, la matrice de Hilbert de taille n x n est une matrice symétrique définie par

1

W

donc la somme d’une ligne s; est

On peut la calculer de maniére exacte
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[110]: import fractions
import numpy as np
from scipy.linalg import hilbert

[111]: def

SumHilbertLines (n)
s = []
for i in range(n)
s.append (fractions.Fraction(0,1))
for j in range(n)
s[i] = s[i] + fractions.Fraction(l,i+j-1+2)
# print (f's[{i}] = {s[<]}')

return s

Differents méthodes pour faire la somme :

[112]: def

def

def

##
def

regularSum(A)
return np.sum(A,axis=1)

dotSum(A)

n = A.shapel[0]

X = np.ones(n)

return A.dot(x)

onebyoneSum (A)

A shape[0]

s = np.zeros(n)
for i in range(n)

n

for j in range(n)
s[i] = s[i] + A[i,j]

return s

kahan_sum(a, axis=0):
""'Kahan summation of the numpy array along an aTis.

s = np.zeros(a.shape[:axis] + a.shapelaxis+1:])
c = np.zeros(s.shape)

for i in range(a.shape[axis]):
# https://stackoverflow.com/a/42817610/353337
y = al[(slice(None),) * axis + (i,)] - ¢
t=8+y
c=(t-8) -y
s = t.copyQ

return s
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def kahanSum(A)
## Kahan Sum

n = A.shape[0]
b = np.zeros(n)
for k in range(n)
blk] = kahan_sum(A[k,:])
return b

##

def kahanSortedSum(A)
n = A.shape[0]
b = np.zeros(n)
for k in range(n)
ind = np.argsort(np.abs(Alk,:]), axis=0)
b[k] = kahan_sum(A[k,ind])

return b
##

def sortedSum(A)
n = A.shape[0]
b = np.zeros(n)
for k in range(n)
ind = np.argsort(np.abs(Alk,:]), axis=0)
b[k] = np.sum(A[k,ind])

return b

[113]: n = 1000
s = SumHilbertLines (n)

A = hilbert(n)

s_r = regularSum(A)
s_d = dotSum(A)

s_o = onebyoneSum(A)
s_s = sortedSum(A)
s_kr = kahanSum(A)

s_ks = kahanSortedSum(A)
[114]: print(np.max(np.abs(s - s_r)))

print(np.max(np.abs(s - s_d)))
print (np.max(np.abs(s - s_o0)))
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print (np.max(np.abs(s - s_s)))
print(np.max(np.abs(s - s_kr)))
print(np.max(np.abs(s - s_ks)))

.881784197001252e-16
.7763568394002505e-15
.769962616701378e-15
.881784197001252e-16
.881784197001252e-16
.881784197001252e-16

0 0 00 O+~

5 Deérivée numérique

Soit f : [a,b] — R, de classe C! et zq € [a,b]. La dérivée f'(z,) est donnée par

f(zo+h) — f(=0)

f/($0) = ;}E& h )
_  Jim [@) = fl@o—h)
h—0+ h
_ hmf(iﬂo+h)—f(ff0—h)
h—0 2h

Soient xg € [a,b], (Dy) une approximation de f’(zo) et (D?y) une approximation de f”(z).
On appelle

e différence finie progressive ’approximation

p_ flzo+h) = f(zo)

(Dy) A

e différence finie rétrograde 'approximation

r_ flzo) = flwo—h)

(Dy) .

e différence finie centrée ’approximation

c:f(l’o+%h)—f(xo—%h)

(Dy) -

e différence finie centrée d’ordre 2 ’approximation

o _ flzo+h) —2f(x0) + f(xo — h)

(DQy) 12
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[115]: | # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

Les différences finies progressive, rétrograde et centrée approchent la dérivée de la fonction au le
point xg.

[116]: | # Define a function and a point xz0
f = lambda x : 0.25*%(x-4)#*%*3 - 4*x(x-4)**2 +6
x0 =5

# Choosing finite difference stize
h=4

# Defininig first order finite differences

DP = ( f(xO + h) - £(x0) ) / h
DR = ( £(x0) - £(x0-h) ) / h
DC = ( £(x0 + h/2) - £(x0-h/2) ) / h

# defining the straight lines with slope equal to the FDs
dfp = lambda x : f(x0) + DP*(x-x0)

dfr = lambda x : f(x0) + DR*(x-x0)

dfc = lambda x : f(x0-h/2) + DCx(x-x0+h/2)

# Drowing points
z = np.linspace(-5, 22, 100)

plt.plot(z, dfp(z), 'g:', z, dfr(z), 'b:', z, dfc(z), 'r:' )
plt.plot(z, f(z), 'k', x0,f(x0),'ro")

plt.xlabel('x'); plt.ylabel('$f(x)$');
plt.legend(['$D~P$', '$D-R$', '$D~C$', '$£$'1)
plt.show()

200

100

-100

X,

= -200
-300

-400

-500

-5 0 5 10 15 20

La différence finie d’ordre 2 approche la deuxiéme dérivée de la fonction au le point xg.
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Pour le voir graphiquement, on peut dessiner une fonction quadratique qui a la forme

pa(a) = F(wo) + (Dy)° (& — 70) + (D) (z — wo)?

[117]: | # Define a function and a point x0
f = lambda x : 0.25%(x-4)**3 - 4% (x-4)**2 +6
x0 =5

# Choosing finite difference size
h=14

# Defininig first order centered finite differences
DC = ( £(x0 + h/2) - £(x0-h/2) ) / h

# Defininig second order centered finite differences
D2 = ( £(x0 + h) - 2% £(x0) + £(x0-h) ) / (h**2)

# defining the parabola going through (z_0, y_0)
parabola = lambda x : f£(x0) + DCx(x-x0) + 0.5 * D2 * (x-x0)**2

# Drowing points
z = np.linspace(-5, 22, 100)

plt.plot(z, parabola(z), 'g:' )
plt.plot(z, f(z), 'k', x0,f(x0),'ro")

plt.xlabel('x'); plt.ylabel('$f(x)$');
plt.legend(['parabola', '$£$'])
plt.show()

200
........ parabola

o — f

-200

—400

fx)

-600

-800

—1000

5.1 Exercice

Il s’agit de vérifier numériquement que
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|f'(z0) — (Dy)¥'| = O(R").

On pose xg = 1, f(z) =sin(z) Vz € R
Calculez I'erreur commise en utilisant la différence finie progressive.
Quelle est la valeur de I'erreur pour h=0.17

Ensuite vérifiez numériquement I’ordre pour (Dy)f et (Dy)°.

[118]: def DPerror(f,df, x0,h)
# formule de differences finies
DP = ( £(x0 + h) - £(x0) ) / h
err = abs(DP-df (x0));
return err

def DRerror(f,df, x0,h)
# formule de differences finies
DR = ( £(x0) - £(x0-h) ) / h
err = abs(DR-df (x0));
return err

def DCerror (f,df, x0,h)
# formule de differences finies
DC = ( £(x0 + h/2) - £(x0-h/2) ) / h
# Similarly, i1t s possible to define
#DC = ( f(z0 + h) - f(z0-h) ) / (2+h)
err = abs(DC-df (x0));
return err

# This function just provides a line to compare the convergence in a log-log,
—plot.

from FiniteDifferencelLib import sampleConvergence

# sampleConvergence(h,order,ref)

# computes a pseudo order of convergence on h

# ref is a reference mazimum value

x0 = 0.2
h = 2*xnp.linspace(-32,-1,10)
plt.plot(h, DPerror(mnp.sin, np.cos, x0, h) , 'o' )

plt.plot(h, DRerror(mp.sin, np.cos, x0, h) , 'x' )
plt.plot(h, DCerror(np.sin, np.cos, x0, h) , 'x' )

plt.plot(h, sampleConvergence(h, 1, le-1) , ':',
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h, sampleConvergence(h, 2, le-1) , ':')

plt.xlabel('h'); plt.ylabel('Error');

plt.legend(['DP error', 'DR error', 'DC error', '$0(h~1)$', '$0(h~2)$'1)
plt.xscale('log')

plt.yscale('log')

plt.show()
1073 . - e
10°° " o .
N & .

_ 10 5. ¥ :

<] - -

0 112 LA e DPerror
10 - DR error
1071 e « DCerror

e — 1
10-18 o(h?)
. O(hz)

107° 1077 10-° 103 1071

5.2 Exercice

Il s’agit de vérifier numériquement que

|f"(wo) = (D*y)| = O(h?).

On pose zp =1, f(z) =sin(z) Vo € R
Calculez I'erreur commise par ce schéma.

Que vaut I'erreur pour h=0.17

[119]: def D2error(f,df, x0,h)
# formule de differences finies
D2 = ( £(x0 + h) - 2% £(x0) + £(x0-h) ) / (h*x2)
err = abs(D2-4df (x0));
# print(' z0 Je h Je erreur Je \n',z0,h,err)

return err
x0 = 0.2

df

lambda x : -np.sin(x)

h = 2*#np.linspace(-10,-1,10)

plt.plot(h, D2error(np.sin, df, x0, h) , 'o' )

plt.plot(h, sampleConvergence(h, 1, 1le-2) , ':',
h, sampleConvergence(h, 2, le-2) , ':')
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plt.xlabel('h'); plt.ylabel('D2 error');
plt.legend(['D2 error', '$0h~1)$', '$0h~2)$']1)
plt.xscale('log')

plt.yscale('log')

plt.show()
-2 .
10 e D2 error e
1073 oth’) e .
- 0(h?) e
_ 10 R
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5.3 Exercice

Il s’agit de vérifier numériquement que

3f(xo) —4f(xo — h) + f(xo — 2h)

o = O(h?).

f'(xo) —

Cette formule de différences finies est a l'origine du schéma "BDF2’’ pour résoudre numériquement
des équations différentielles (Chapitre 9 du livre).

On pose zg = 1, f(z) =sin(z) Vz € R
Calculez I'erreur commise par ce schéma.

Que vaut U'erreur pour h=0.17

[120]: def bdf2error(f,df, x0,h)
# formule de differences finies BDF2
diff = (3%£(x0)-4*f(x0-h)+f(x0-2xh))/(2xh);
err = abs(diff-df(x0));
# print(' =0 Je h Je erreur Je \n',z0,h,err)

return err
x0 = 0.2
h = 2**np.linspace(-10,-1,10)
plt.plot(h, bdf2error(np.sin, np.cos, x0, h) , 'o' )

plt.plot(h, sampleConvergence(h, 1, le-1) , ':',
h, sampleConvergence(h, 2, le-1) , ':')
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[121]:

[122]:

plt.xlabel('h'); plt.ylabel('BDF2 error');
plt.legend(['BDF2 error', '$0(h~1)$', '$0(h~2)$'])
plt.xscale('log')

plt.yscale('log')

plt.show()
07y, BDF2 error o e
10-2 o(h1) . 8
- oh?) -
5 102 ¢
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6 Equations Différentielles Ordinaires

6.1 Probléme de Cauchy

f: Ry xR — R continue, yo € donné. On cherche y : t € I C4— y(t) € qui satisfait le probléme

suivant
{ y'(t) = ft,yt))  Vtel
y(to) = yo

Exemple Ecrivez la discretisation par la méthode d’Euler progressive et rétrograde du probléme
de Cauchy
{ y(t)=—tyt)>  vte[0,4]
y(to) =2

La solution de ce probléme est y(t) = H% Avec les méthodes de Euler Proressive et Rétrograde,

Heun, Crank-Nicolson, et Euler modifié.

# amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from OrdinaryDifferentialEquationsLib import,,
—forwardEuler,backwardEuler,Heun,CrankNicolson,modifiedEuler

f = lambda t,x : —T*XK*2
yO = 2; tspan=[0, 4]
Nh = 20
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for method in [forwardEuler,backwardEuler,Heun,CrankNicolson,modifiedEuler]

t, y = method(f, tspan, yO, Nh)
plt.plot(t, y,'o-")
plt.plot(t, y,'o-")

y = lambda t : 2/(1+t**2)

t = np.linspace(tspan[0],tspan[1],100)

plt.plot(t, y(t),'-")

# labels, title, legend

plt.xlabel('$t$'); plt.ylabel('$y$"')

plt.
—legend(['forwardEuler', 'backwardEuler', 'Heun','CrankNicolson', 'modifiedEuler','$y(t)$'])

plt.grid(True)

plt.show()
2.0 —e— forwardEuler
—o— backwardEuler
15 —e— Heun
—e— CrankNicolson
—e— modifiedEuler
>10 —— y(t)
0.5
0.0 05 10 15 2.0 25 30 35 40

6.2 Euler Progressif

Ecrivez une fonction forwardEuler qui approche la solution du probléme

y'(t) = ft,y(®), t € (To,Ty), y(0) = yo,
en utilisant la méthode d’Euler progressif. L’entéte de la fonction doit étre la suivante:

def forwardEuler( fun, interval, yO, N )

# FORWARDEULER Solwve differential equations using the forward Euler method.
[T, U] = FORWARDEULER( FUN, INTERVAL, YO, N ), with INTERVAL = [TO, TF],
integrates the system of differential equations y'=f(t, y) from time TO
to time TF, with inttial condition Y0, using the forward Euler method on
an equispaced grid of N intervals. Functton FUN(T, Y) must return
a column vector corresponding to f(t, y). Each rTow in the solution
# array U corresponds to a time returned in the column wvector T.

HOR OB ™ ®

Une fois écrite la fonction forwardEuler, utilisez les commandes suivantes pour calculer la solution:

f = lambda t,x : ( 2/15%xx(1-x/1000) ) # C=2/15 et B = 1000
tsp = [0,100]
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[123]:

yO = 100; Nh = 25;
t25,u25 = forwardEuler(f,tsp,y0,Nh)

plt.plot(t25,u25,'0")

Approchez la solution de I’équation différentielle

2
/() = To(1 - /1000), ¢ € (0,100), y(0) = 100,

avec Nj = 25.

Que se passe-t-il avec N = 77 Discutez les résultats obtenus.

# amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

[124]: def forwardEuler( fun, interval, yO, N )

[125] :

# FORWARDEULER Solve differential equations using the forward Euler method.

# [T, U] = FORWARDEULER( FUN, INTERVAL, Y0, N ), with INTERVAL = [TO, TF],
# integrates the system of differential equations y'=f(t, y) from time TO

# to time TF, with initial condition Y0, using the forward Euler method on
# an equispaced grid of N intervals. Function FUN(T, Y) must return

# a column vector corresponding to f(t, y). Each row in the solution

# array U corresponds to a time returned in the column vector T.

# time step

h = ( interval[1] - interval[0] ) / N

# time snapshots
t = np.linspace( interval[0], interval[1], N+1 )

# 2nitralize the solution vector
u = np.zeros(N+1)
ul0] = yO

# time loop (n=0,...,n, but array indeces in Matlab start at 1)
for n in range(N)

uln+1] = uln] + h * fun( tlnl], ulnl )

return t, u

Nous pouvons alors résoudre 'exercice avec les commandes:

f = lambda t,x : ( 2/15*%x*(1-x/1000) ) # (C=2/15 et B = 1000
sp = [0,100]

y0 = 100; Nh = 25;

t25,u25 = forwardEuler(f,tsp,y0,Nh)

plt.plot(t25,u25,'0")
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[126] :

# labels, title, legend

plt
plt
plt
plt
plt

.xlabel('$t_n$'); plt.ylabel('$u_n$'); #plt.title('data’)
-legend(['$u_n$'])

.title('$u_n\\approx u(t_n)$")

.grid(True)

.show ()

1000 3 . . . . e o o o o
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Pour résoudre le probléme avec N, = 7 et tracer le graphe de la solution, on utilise les commandes

suivantes:
Nh =7
t7,u7 = forwardEuler(f,tsp,y0,Nh);

plt.plot(t25,u25, 'o-")
plt.plot(t7,u7,'o-")

#1

plt.

plt

plt.
plt.
plt.

abels, title, legend

xlabel('$t_n$'); plt.ylabel('$u_n$'); #plt.title('data’)
.legend (['$N_h=25%"','$N_h=7$"'])

title('$u_n\\approx u(t_n)$"')

grid(True)

show ()
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[1:

[127]:

Solutions de ’équation différentielle y'(t) = %(1 —y/1000), ¢t € (0,100), y(0) = 100 pour diverses
valeurs de Njy,.

On voit que la solution avec N, = 7 est oscillante et ne tend pas vers 1000 lorsque ¢ — oo: en effet,
la condition de stabilité sur le pas de discretisation Np, n’est pas satisfaite.

6.3 Euler Retrograde

Ecrivez une fonction Matlab backwardEuler qui approche la solution du probléme

y'(t) = ft,y(®), t € (To,Ty), y(0) = yo,
en utilisant la méthode d’Euler progressif. L’entéte de la fonction doit étre la suivante:

def backwardEuler( fun, interval, yO, N )

# BACKWARDEULER Solve differential equations using the backward Euler method.
[T, U] = BACKWARDEULER( FUN, INTERVAL, YO0, N ), with INTERVAL = [T0, TF],
integrates the system of differential equations y'=f(t, y) from time TO
to time TF, with initial condition Y0, using the backward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution

HOoR R ™ B w

array U corresponds to a time returned in the column vector T.
from scipy.optimize import fsolve

Vous disposez de la fonction scipy.optimize.fsolve pour résoudre une équation non-linéaire
(fsolve cache plusieurs méthodes de resolution, comme Newton ou le point fixe).

Exemple d’utilisation de fsolve: on peut chercher le zéro de F prés de x0 en utilisant le code
suivant:

from scipy.optimize import fsolve
a=5; h=0.1;
F = lambda x : a + np.sin(x) - h*x;

x0 = ath
zero = fsolve(F, x0)

print(f 'F({zero[0]:5.2f}) = {F(zero)[0]:4.1e}")

Approchez la solution de I’équation différentielle

2
/() = T2 (1 - /1000), ¢ € (0,100), y(0) = 100,

avec Np = 25. Que se passe-t-il avec N = 77 Discuter les résultats obtenus.

# amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt
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[128]:

from scipy.optimize import fsolve
a=5; h=20.1;
F = lambda x : a + np.sin(x) - h*x;

= ath

zero = fsolve(F, x0)

print (f'F({zero[0]:5.2f}) = {F(zero)[0]:4.1e}")

F(41.80) = -8.7e-13

[129]: def backwardEuler( fun, interval, yO, N )

# BACKWARDEULER Solve differential equations using the backward Euler,

—method.

# [T, U] = BACKWARDEULER( FUN, INTERVAL, Y0, N ), with INTERVAL = [T0, TF],
integrates the system of differential equations y'=f(t, y) from time TO
to time TF, with initial condition Y0, using the backward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return

a column vector corresponding to f(t, y). Each row in the solution

array U corresponds to a time returned in the column vector T.

HOW R R W

from scipy.optimize import fsolve

# time step
h = ( interval[1] - intervall[0] ) / N

# time snapshots
t = np.linspace( interval[0], interval[1], N+1 )

# 2nitralize the solution vector
u = np.zeros(N+1)
ul0] = yO

# time loop (n=0,...,n, but array indeces in Matlab start at 1)
for n in range(N)
# non-linear function
F = lambda x : u[n] + h * fun(t[n+1],x) - x
# solve the mon-linear equation using the butlt-in matladb function,

—"fsolve"

# to compute u[n+1]
uln+1] = fsolve( F, uln]);
# uln+1] = fsolve( F, uln]+ h * fun( t[n], uln] ));

# NOTE:

# in the call of fsolve, a more accurate initial guess ts obtained
# by replacing uln] with the forward euler method:

# uln+1] = fsolve( F, u(n) + h * fun( t(n), u(n) ), options );
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[130]:

[131]:

return t, u

Nous pouvons alors résoudre 'exercice avec les commandes:

f = lambda t,x : ( 2/15*x*(1-x/1000) ) # C=2/15 et B = 1000
tsp = [0,100]
y0 = 100; Nh = 25;

t25,u25 = backwardEuler (f,tsp,y0,Nh)
plt.plot(t25,u25,'0")

# labels, title, legend

plt
plt
plt
plt
plt

.xlabel('$t_n$'); plt.ylabel('$u_n$'); #plt.title('data’)
.legend(['$u_n$']1)

.title('$u_n\\approx u(t_n)$")

.grid(True)

.show ()
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Pour résoudre le probléme avec Ny = 7 et tracer le graphe de la solution, on utilise les commandes

suivantes:
Nh = 7
t7,u7 = backwardEuler(f,tsp,y0,Nh);

plt.plot(t25,u25, 'o-")
plt.plot(t7,u7,'o-")

# 1
plt
plt
plt
plt
plt

abels, title, legend

.xlabel('$t_n$'); plt.ylabel('$u_n$'); #plt.title('data’)
.legend (['$N_h=25$"', '$N_h=7$"'])

.title('$u_n\\approx u(t_n)$')

.grid(True)

.show ()

/Users/simone/opt/anaconda3/1ib/python3.7/site-
packages/scipy/optimize/minpack.py:175: RuntimeWarning: The iteration is not
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[]:
[]:

making good progress, as measured by the

improvement from the last five Jacobian evaluations.

warnings.warn(msg, RuntimeWarning)
/Users/simone/opt/anaconda3/lib/python3.7/site-
packages/scipy/optimize/minpack.py:175: RuntimeWarning: The iteration is not
making good progress, as measured by the

improvement from the last ten iteratioms.

warnings.warn(msg, RuntimeWarning)

Un = u(ts)

1000
800
600

c
S 400

200

tn

Solutions de ’équation différentielle y'(t) = Zl—g(l —y/1000), ¢t € (0,100), y(0) = 100 pour diverses
valeurs de Njy,.

On voit que fsolve n’arrive pas a resoudre I’équation non-linéaire pour N = 7. Il faut chercher
un meilleur x0.

Dans backwardEuler, replacez le u[n]
u[n+1] = fsolve( F, ulnl);

par la solution correspondante & la méthode d’Euler progressive, i.e.
u[n+1] = fsolve( F, uln]+ h * fun( t[n], uln] ));

Maintenant, pas seulement fsolve trouve une solution, mais en plus 'approximation de 'EDO ne
présente pas d’oscillations.

6.4 Stabilité

On considére le probléme de Cauchy

{y'@ =-2y(t), t>0
y(0) =1

La solution exacte de ce probléme est y(t) = e~ %

97



Résolvez ce probléme par les méthodes d’Euler Progressive et Rétrograde sur 'intervalle [0, 10] avec
un pas de temps h = 0.9 et 1.1.

[132]: 1 = -2

lambda t,x : 1*x

yO = 1; tspan=[0, 10]

h =1.1; Nh = np.ceil((tspan[1] - tspan[0])/h).astype(int)
t_EP, y_EP = forwardEuler(f, tspan, yO, Nh)

t_ER, y_ER backwardEuler (f, tspan, yO, Nh)

'_h
Il

plt.plot(t_EP, y_EP,'o-")
plt.plot(t_ER, y_ER,'o-")

y = lambda t : np.exp(lxt)

t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, y(t),'-")

# labels, title, legend
plt.xlabel('$t$'); plt.ylabel('$y$')
plt.legend(['EP','ER', '$y(t)$'])
plt.grid(True)

plt.show()

1.0
” /\ /\
> 0.0

—0. —e— EP

ER
— t
_10 y(t)
2 4
t

6.5 Convergence

w

On considére le probléme de Cauchy

Resolvez ce probléme par les méthodes d’Euler progressive et de Heun sur 'intervalle [0, 12] avec
un pas de temps h = 0.4.

La solution exacte est y(t) = e~ 0-1t4sin(t) - Op remarque que la solution obtenue par la méthode

de Heun est beaucoup plus précise que celle d’Euler progressive. Par ailleurs, on peut voir que si
on réduit le pas de temps, la solution obtenue par la méthode d’Euler progressive s’approche de la
solution exacte.
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[133]:

[134]:

f = lambda t,y : (np.cos(t) - 0.1)*y

tspan = [0,12]; yO = 1;

h = 0.4; Nh = np.ceil((tspan[1] - tspan[0])/h).astype(int)

t_EP, y_EP = forwardEuler(f, tspan, yO, Nh)
t_H, y_H = Heun(f, tspan, yO, Nh)

plt.plot(t_EP, y_EP,'o-")
plt.plot(t_H, y_H,'o-")

y = lambda t : np.exp(-0.1xt+np.sin(t))
t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, y(t),'-")

# labels, title, legend
plt.xlabel('$t$'); plt.ylabel('$y$')
plt.legend(['EP', 'Heun', '$y(t)$'1)
plt.grid(True)

plt.show()

print("Figure: Approximation par le méthodes de Euler Retrograde et Heun.")

2.5

2.0 74

15 //
>

1.0

0.5

0.0

—e— EP
Heun
— y(®

Figure: Approximation par le méthodes de Euler Retrograde et Heun.

tspan = [0,12]; yO = 1;

NhRange = [30, 50, 100, 500]

for Nh in NhRange :
t, y = forwardEuler(f,tspan,y0,Nh)
plt.plot(t, y,'-")

yt = lambda t : np.exp(-0.1*t+np.sin(t))
t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, yt(t),':")

# labels, title, legend
plt.xlabel('$t_n$'); plt.ylabel('$u_n$')
plt.legend(NhRange+['$y(t)$'1)

99

10

12




[135]:

plt.title('$u_n\\approx u(t_n)$')

plt.grid(True)

plt.show()

print("Figure: Solutions obtenues par la méthode d'Euler progressive poury,
—différents pas de temps.")

Up = u(ty)
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Figure: Solutions obtenues par la méthode d'Euler progressive pour différents
pas de temps.

On veut, maintenant, estimer 'ordre de convergence de ces deux méthodes. Pour cela, on résout le
probléme avec différents pas de temps et on compare les résultats obtenus a l'instant ¢t = 6 avec la
solution exacte.

tspan=[0,6]

NhRange = [30, 50, 100, 500]

errEP = []

errH = []

# Solution at end time

y6 = yt(tspan([1])

for Nh in NhRange :
# Forward Euler
t, y = backwardEuler (f,tspan,y0,Nh)
# Error at the end of the simulation
errEP.append( np.abs(y6 - y[-1] ) )

# Heun

[t, y] = Heun(f, tspan, yO0, Nh);

# Error at the end of the simulation
errH.append( np.abs(y6 - y[-1] ) )

h = (tspan[1] - tspan[0])/np.array(NhRange)

plt.loglog(h,errEP, 'o-b',h,errH, 'o-r'")
plt.loglog(h,h*(errEP[0]/h[0]),": "' b, (h**2*(errH[0] /h[0]*%2)),"':")
plt.xlabel('$h$'); plt.ylabel('$|y(6)-u_{N_h}|$")
plt.legend(['EP', 'Heun', '$h$','$h~2$'])
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[136] :

[137]:

plt.title('Decay of the error')
plt.grid(True)
plt.show()

print("Figure: Erreurs en échelle logarithmique commises par les méthodes" +
" d'Euler progressive et de Heun dans le calcul de y(6).")
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Figure: Erreurs en échelle logarithmique commises par les méthodes d'Euler
progressive et de Heun dans le calcul de y(6).

La figure montre, en échelle logarithmique, les erreurs commises par les deux méthodes en fonction
de h. On voit bien que la méthode d’Euler progressive converge & ’ordre 1 tandis que celle de Heun
a lordre 2.

6.6 Stabilité

On considére le probléme de Cauchy

{y’(t) = —2y(t), t>0
y(0) =1

La solution exacte de ce probléme est y(t) = e=%

Résolvez ce probléme par les méthodes d’Euler Progressive et Rétrograde sur I'intervalle [0, 10] avec
un pas de temps h = 0.9 et 1.1.

# importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from OrdinaryDifferentialEquationsLib import,,
—forwardEuler,backwardEuler,Heun,CrankNicolson,modifiedEuler

=
]

-2
lambda t,x : 1*x

Hh
Il
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yO = 1; tspan=[0, 10]

h = 1.1; Nh = np.ceil((tspan[1] - tspan[0])/h).astype(int)
t_EP, y_EP = forwardEuler(f, tspan, yO, Nh)

t_ER, y_ER = backwardEuler(f, tspan, yO, Nh)

plt.plot(t_EP, y_EP,'o-")
plt.plot(t_ER, y_ER,'o-"')

y = lambda t : np.exp(lxt)

t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, y(t),'-")

# labels, title, legend
plt.xlabel('$t$'); plt.ylabel('$y$')
plt.legend(['EP','ER', '$y(t)$'])
plt.grid(True)

plt.show()
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