
Analyse Numérique
Simone Deparis

June 4, 2023

Contents

1 Equations non-linéaires 2
1.1 Méthode de Newton . 2
1.2 Methode de point fixe . 7

1.2.1 Exercice (1, Série 3) . 7
1.2.2 Critères d’arrêt . 13

2 Interpolation et approximation de données 15
2.1 Position du problème . 15

2.1.1 Interpolation de données . 15
2.1.2 Interpolation de fonctions . 17
2.1.3 Matrice de Vandermonde . 18
2.1.4 Alternatives : polyfit et polyval . 20

2.2 Interpolation de Lagrange . 21
2.2.1 Base de Lagrange . 21
2.2.2 Polynôme d’interpolation . 23

2.3 Interpolation d’une fonction continue . 24
2.3.1 Erreur d’interpolation . 25
2.3.2 Interpolation de Chebyshev . 29

2.4 Interpolation par intervalles . 31
2.4.1 Interpolation linéaire par morceaux . 31
2.4.2 Exercice . 32
2.4.3 Exercice . 32
2.4.4 Erreur d’interpolation linéaire par morceaux 33
2.4.5 Interpolation quadratique par morceaux . 33

2.5 Approximation au sens des moindres carrés . 35

3 Intégration numérique 40
3.1 3.1 Formules de quadrature sur [−1, 1] . 40
3.2 Intégration Numérique : Exercices . 40

3.2.1 Exercice Série 6, Ex 5 : Formule de Simpson 41
3.2.2 Exercice Série 6, Ex 6 : Degré d’exactitude d’une formule de quadrature . . . 44
3.2.3 Exercice Série 6, Ex 7 : Convergence pour fonction non-lisse 49

4 Résolution de systèmes linéaires 52
4.1 Méthodes Directes . 52

4.1.1 Exercice 1 série 8 . 52
4.1.2 Critère de Sylvester . 55

1

4.1.3 Exercice 2 série 8 . 55
4.1.4 Problèmes de précision (Exercice 3 série 8) . 58

4.2 Méthodes itératives . 61
4.3 Méthode de Richardson . 61

4.3.1 Exemple 1 . 62
4.3.2 Méthode de Jacobi . 62
4.3.3 Méthode de Gauss-Seidel . 63
4.3.4 Exercice . 64

4.4 Exemple 2 . 64
4.5 Exemple 3 - Jacobi et Gauss-Seidel avec relaxation 65
4.6 Autres Exemples . 74
4.7 Compléments . 78
4.8 Problèmes d’arrondis . 81

5 Dérivée numérique 84
5.1 Exercice . 86
5.2 Exercice . 88
5.3 Exercice . 89

6 Equations Différentielles Ordinaires 90
6.1 Problème de Cauchy . 90
6.2 Euler Progressif . 91
6.3 Euler Retrograde . 94
6.4 Stabilité . 97
6.5 Convergence . 98
6.6 Stabilité . 101

1 Equations non-linéaires

Objectif : trouver les zéros (ou racines) d’une fonction f : [a, b]→ R :

α ∈ [a, b] : f(α) = 0

3.1 Dichotomie

(Enlevé pour l’examen)

[1]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

1.1 Méthode de Newton

Soit f : R→ R une fonction différentiable.

Soit x(0) un point donné. On considère l’équation de la droite y(x) qui passe par le point
(x(k), f(x(k))) et qui a comme pente f ′(x(k)),

y(x) = f ′(x(k))(x− x(k)) + f(x(k)).

2

On définit x(k+1) comme étant le point où cette droite intersecte l’axe x, c’est-à-dire y(x(k+1)) = 0.
On en déduit que :

x(k+1) = x(k) − f(x(k))

f ′(x(k))
, k = 0, 1, 2

[2]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

Exercice (5, Série 1) On cherche les zéros de la fonction

f(x) =
1

2
sin
(πx

2

)
+ 1− x .

1. Vérifiez qu’il y a au moins un zéro α dans l’intervalle [0, 2].

2. Ecrivez la méthode de Newton pour trouver le zéro α de la fonction f(x) et calculez la première
itération à partir de la valeur initiale x(0) = 1.

3. Calculez les zéros α de la fonction f avec la méthode de Newton (fonction newton que vous
devrez écrire)

def Newton(F, dF, x0, tol, nmax) :
NEWTON Find the zeros of a nonlinear equations.
NEWTON(F,DF,X0,TOL,NMAX) tries to find the zero X of the
continuous and differentiable function F nearest to X0 using
the Newton method. DF is a function which take X and return the derivative of F.
If the search fails an error message is displayed.
#
returns the value of the
residual R in X,the number of iterations N required for computing X and
INC the increments computed by Newton.

return x, r, n, inc

Choisissez x(0) = 1 comme point de départ pour la méthode et utilisez une tolérance tol = 10−4 sur
la valeur absolue de l’incrément entre deux itérations successives |x(k+1) − x(k)|.

Dans le cas de la méthode de Newton, l’incrément est une bonne approximation de l’erreur.

[3]: def Newton(F, dF, x0, tol, nmax) :
'''
NEWTON Find the zeros of a nonlinear equations.
NEWTON(F,DF,X0,TOL,NMAX) tries to find the zero X of the
continuous and differentiable function F nearest to X0 using
the Newton method. DF is a function which take X and return the derivative␣

↪→of F.
If the search fails an error message is displayed.

Outputs : [x, r, n, inc, x_sequence]

3

x : the approximated root of the function
r : the absolute value of the residualin X
n : the number of iterations N required for computing X and
inc : the increments computed by Newton.
x_sequence : the sequence computed by Newton
'''

Initial values
n = 0
xk = x0

initialisation of loop components
increments (in abs value) at each iteration
inc = []
in case we wish to plot the sequence
x = [x0]

diff : last increment,
diff = tol + 1 # initially set larger then tolerance

Loop until tolerance is reached
while (diff >= tol and n <= nmax) :

Newton iteration
deltax = F(xk) / dF(xk)
xk1 = xk - deltax

increments
diff = np.abs(deltax)
inc.append (diff)

prepare the next loop
n = n + 1
xk = xk1
x.append(xk)

Final residual
rk1 = np.abs(F(xk1))

Warning if not converged
if n > nmax :

print('Newton stopped without converging to the desired tolerance ')
print('because the maximum number of iterations was reached')

return xk1, rk1, n, inc, np.array(x)

[4]: f = lambda x : 0.5*np.sin(np.pi*x/2)+1-x
df = lambda x : 0.25*np.pi*np.cos(np.pi*x/2)-1

4

x0 = 1
tol = 1e-4
nmax = 10

zero, residual, niter, inc, x = Newton(f, df, x0, tol, nmax)

print(f'The zero computed is {zero:1.4f}')
print(f'Newton stoppedconverged in {niter} iterations');
print(f'with a residual of {residual:1.4e}.\n');

The zero computed is 1.4031
Newton stoppedconverged in 4 iterations
with a residual of 3.3120e-12.

[5]: from NonLinearEquationsLib import plotNewtonIterations

[6]: [a,b] = [0,3.5]
x0 = 3
zero, residual, niter, inc, x = Newton(f, df, x0, tol, nmax)

Rezise plots, which are usually too small
plt.figure(figsize=(12, 4))
plt.rcParams.update({'font.size': 12})

Subplot 1 over 2, 1st one
plt.subplot(121)

#plt.plot(range(MaxIterations), RelativeError, 'b:.')
plt.plot(range(niter), inc, 'b:.')

plt.xlabel('n'); plt.ylabel('$\\delta x$');
plt.grid(True)
#plt.xscale('log')
plt.yscale('log')
plt.legend(['$|\\delta x|$'])

Subplot 1 over 2, 2nd one
plt.subplot(122)

plotNewtonIterations (a,b,f,x,200)

plt.show()

Rezise plots, which are usually too small
plt.figure(figsize=(8, 4))

5

plt.rcParams.update({'font.size': 16})

plotNewtonIterations (a,b,f,x,200)
plt.savefig('Newton-iterations.png', dpi=600)
plt.show()

[7]: [a,b] = [-1,3.5]
z = np.linspace(a,b,200)
plt.plot(z,f(z), 'b-', x[6],f(x[6]), 'rx')
plt.ylabel('$f(x)$'); plt.xlabel('x');

Plot the x,y-axis

6

plt.plot([a,b], [0,0], 'k-',linewidth=0.1)
plt.plot([0,0], [np.min(f(z)),np.max(f(z))], 'k-',linewidth=0.1)

plt.legend(['f','$\\alpha$'])
plt.savefig('Newton-fx-alpha.png', dpi=600)

plt.show()

[]:

1.2 Methode de point fixe

1.2.1 Exercice (1, Série 3)

On considère les méthodes de point fixe x(n+1) = gi(x
(n)) (i = 1, 2, 3) avec:

g1(x
(n)) =

1

2
ex

(n)/2, g2(x
(n)) = −1

2
ex

(n)/2, g3(x
(n)) = 2 ln(2x(n)),

dont les fonctions d’itération gi(x) sont visualisées sur la figure plus bas

7

1. Pour chaque point fixe x̄ de la fonction d’itération gi (i = 1, 2, 3), on suppose d’avoir choisi
une valeur initiale x(0) proche de x̄. Etudiez si la méthode converge vers x̄.

2. Pour chaque fonction d’itération gi, déterminez graphiquement pour quelles valeurs initiales
x(0) la méthode de point fixe correspondante converge et vers quel point fixe.

3. Montrez que si x̄ est un point fixe de la fonction gi (i = 1, 2, 3), alors il est aussi un zéro de la
fonction f(x) = ex − 4x2 (dont le comportement est tracé sur la dernière figure).

4. Comment peut-on calculer les zéros de f?

L’exercice 2 est à faire sur papier, ici une indication par ordinateur

[8]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

[9]: from NonLinearEquationsLib import plotPhi, FixedPoint, plotPhiIterations

[10]: plt.rcParams['figure.figsize'] = [20, 5]

plt.subplot(1,3,1)
[a,b] = [-2,5]
phi1 = lambda x : np.exp(x/2)/2
plotPhi(a,b,phi1,'g_1')

plt.subplot(1,3,2)
[a,b] = [-2,5]
phi2 = lambda x : - np.exp(x/2)/2
plotPhi(a,b,phi2,'g_2')

plt.subplot(1,3,3)
[a,b] = [1e-1,5]
phi3 = lambda x : 2*np.log(2*x)
plotPhi(a,b,phi3,'g_3')

plt.show()

Graph of the fonction $f(x)=e^x-4x^2$
N = 100
z = np.linspace(a,b,N)
f = lambda x : np.exp(x) - 4*x*x

plt.subplot(1,3,1)
plt.plot(z,f(z),'k-')

plt.xlabel('x'); plt.ylabel('f(x)');
Plot the x,y-axis
plt.plot([a,b], [0,0], 'k-',linewidth=0.1)

8

plt.plot([0,0], [np.min(f(z)),np.max(f(z))], 'k-',linewidth=0.1)
plt.legend(['f(x)'])
plt.title('Graph of $f(x)=e^x-4x^2$')

plt.show()

9

Partie 1 Pour chaque point fixe x̄ de la fonction d’itération gi (i = 1, 2, 3), on suppose choisir une
valeur initiale x(0) proche de x̄. Etudiez si la méthode converge vers x̄.

On va utiliser la fonction FixedPoint qui se trouve dans NonLinearEquationsLib.py

def FixedPoint(phi, x0, a, b tol, nmax) :
'''
FixedPoint Find the fixed point of a function by iterative iterations
FixedPoint(PHI,X0,a,b, TOL,NMAX) tries to find the fixedpoint X of the a
continuous function PHI nearest to X0 using
the fixed point iterations method.
[a,b] : if the iterations exit the interval, the method stops
If the search fails an error message is displayed.

Outputs : [x, r, n, inc, x_sequence]
x : the approximated fixed point of the function
r : the absolute value of the residual in X : |phi(x) - x|
n : the number of iterations N required for computing X and
x_sequence : the sequence computed by Newton

...
return xk1, rk1, n, np.array(x)
'''

[11]: tol = 1e-2
nmax = 10

Choose fonction phi
[a,b] = [-2,5]
phi = phi1
label = 'phi_1'

Initial Point
x0 = 3
zero, residual, niter, x = FixedPoint(phi, x0, a,b, tol, nmax)

plt.subplot(131)
plotPhi (a,b,phi,label)
plt.plot(x,phi(x), 'rx')

plot the graphical interpretation of the Fixed Point method
plotPhiIterations(x)

plt.show()

10

[12]: tol = 1e-2
nmax = 10

Choose fonction phi
intervals = [[-2,5] , [-2,5] , [1e-2,5]]
phiFunctions = [phi1, phi2, phi3]
labels = ['phi_1', 'phi_2', 'phi_3']
Initial Points
initialPoints = [4.2,2,1]

alpha = np.empty(3)

for k in range(3) :
phi = phiFunctions[k]; x0 = initialPoints[k]
a = intervals[k][0]; b = intervals[k][1]
label = labels[k]

11

alpha[k], residual, niter, x = FixedPoint(phi, x0, a,b, tol, nmax)

plt.subplot(1,3,k+1)

plotPhi (a,b,phi,label)
plt.plot(x,phi(x), 'rx')

plot the graphical interpretation of the Fixed Point method
plotPhiIterations(x)

plt.show()

FixexPoint stopped without converging to the desired tolerance
because the maximum number of iterations was reached
FixexPoint stopped without converging to the desired tolerance
because the maximum number of iterations was reached

[13]: # Graph of the fonction $f(x)=e^x-4x^2$
N = 100
a,b = [-2,5]
z = np.linspace(a,b,N)
f = lambda x : np.exp(x) - 4*x*x

plt.subplot(1,3,1)
plt.plot(z,f(z),'k-')

Solutions found:
plt.plot(alpha,f(alpha),'ro')
plt.annotate("$\\alpha_1$", (alpha[0], 2))
plt.annotate("$\\alpha_2$", (alpha[1], 2))
plt.annotate("$\\alpha_3$", (alpha[2]+0.1, -4))

plt.xlabel('x'); plt.ylabel('f(x)');

12

Plot the x,y-axis
plt.plot([a,b], [0,0], 'k-',linewidth=0.1)
plt.plot([0,0], [np.min(f(z)),np.max(f(z))], 'k-',linewidth=0.1)
plt.legend(['f(x)','$\\alpha$'])
plt.title('Graph of $f(x)=e^x-4x^2$')

plt.show()

1.2.2 Critères d’arrêt

On a l’estimation

e(k) =
1(

1− φ′(ξ(k))
)(x(k+1) − x(k)). = γ(φ′(ξ(k)))(x(k+1) − x(k))

On cherche à obtenir |e(k)| ≈ ε (une tolérance choisie).

On trace un graphe de la fonction γ(t) = 1
1−t

13

[14]: # Graph of the fonction $f(t)=1/(1-t)$
N = 100
a,b = [-1,0.9]
z = np.linspace(a,b,N)
f = lambda x : 1/(1-x)

plt.subplot(1,3,1)
plt.plot(z,f(z),'k-')

plt.annotate("(-1,0.5)", (-1.2, 0.7))

plt.annotate("(0,1)", (-0.2, 1.2))

plt.plot([-1.2,1], [0,0], 'k-',linewidth=0.1)
plt.plot([0,0], [-1,10], 'k-',linewidth=0.1)

plt.xlabel('t'); plt.ylabel('1/(1-t)');
Plot the x,y-axis

plt.show()

14

2 Interpolation et approximation de données

2.1 Position du problème

2.1.1 Interpolation de données

Soit n ≥ 0 un nombre entier. Etant donnés (n+ 1) noeuds distincts x0, x1,. . . xn et (n+ 1) valeurs
y0, y1,. . . yn, on cherche un polynôme p de degré n, tel que

p(xj) = yj pour 0 ≤ j ≤ n.

Exemple On cherche le polynôme Πn de degré n = 4 tel que Πn(xj) = yj , j = 1, ..., 5 avec les
données suivantes

xk yk

1 3
1.5 4
2 2
2.5 5
3 1

[15]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

[16]: # Some data given: x=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1
x = np.linspace(1, 3, 5) # equivalent to np.array([1, 1.5, 2, 2.5, 3])
y = np.array([3, 4, 2, 5, 1])

Plot the points using matplotlib
plt.plot(x, y, 'ro')

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')
plt.legend(['data'])
plt.show()

15

Si ce polynôme existe, on le note p = Πn. On appelle Πn le polynôme d’interpolation des valeurs
yj aux noeuds xj , j = 0, . . . , n.

[17]: # Plot the interpolating function

Defining the polynomial function
def p(x):

coefficients of the interpolating polynomial
a = np.array([-140.0, 343.0, -872./3., 104.0, -40./3.])

value of the polynomial in all the points t
return a[0] + a[1]*x + a[2]*(x**2) + a[3]*(x**3) + a[4]*(x**4)

points used to plot the graph
z = np.linspace(1, 3, 100)

plt.plot(x, y, 'ro', z, p(z))
plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')
plt.legend(['data','$\Pi_2(x)$'])
plt.show()

16

2.1.2 Interpolation de fonctions

Soit f ∈ C0(I) et x0, . . . , xn ∈ I. Si on prend

yj = f(xj), 0 ≤ j ≤ n,

alors le polynôme d’interpolation Πn(x) est noté Πnf(x) et est appelé l’interpolant de f aux noeuds
x0,. . . xn.

Exemple Soient
x1 = 1, x2 = 1.75, x3 = 2.5, x4 = 3.25, x5 = 4

les points d’interpolation et
f(x) = x sin(2πx).

On cherche l’interpolant Πnf de degré n = 4

[18]: # defining the fonction that we want to interpolate
def f(x):

return x*np.sin(x*2.*np.pi)

The interpolation must occour at points x=1, 1.75, 2.5, 3.25, 4
x = np.linspace(1, 4, 5)

points used to plot the graph
z = np.linspace(1, 4, 100)

plt.plot(x, f(x), 'ro', z, f(z),':')

labels, title, legend
plt.xlabel('x'); plt.ylabel('$f(x)$'); #plt.title('data')
plt.legend(['$f(x_k)$','$f(x)$'])
plt.show()

[19]: # Plot the interpolating function

Defining the polynomial function
def p(x):

coefficients of the interpolating polynomial

17

a = np.array([0, 7.9012, -13.037, 5.9259, -0.79012])

value of the polynomial in all the points x
return a[0] + a[1]*x + a[2]*(x**2) + a[3]*(x**3) + a[4]*(x**4)

points where to evaluate the polynomial
z = np.linspace(1, 4, 100)

plt.plot(x, f(x), 'ro', z, f(z),':', z, p(z))
plt.xlabel('x'); plt.ylabel('$f(x)$'); #plt.title('data')
plt.legend(['$f(x_k)$','$f(x)$','$\Pi_n(x)$'])

plt.show()

2.1.3 Matrice de Vandermonde

Il est possible d’écrire un système d’équations et de trouver les coefficients de manière directe. Ce
n’est pas toujours la meilleure solution.

Nous cherchons les coefficients du polynôme p(x) = a0 + a1x + ... + anx
n qui satisfont les (n + 1)

équations p(xk) = yk, k = 0, ..., n, c’est-à-dire

a0 + a1xk + ...+ anx
n
k = yk, k = 0, ..., n

Ce système s’écrit sous forme matricielle

1 x0 x20 · · · xn0
...

...
1 xn x2n · · · xnn


a0...
an

 =

y0...
yn


Pour construire cette matrice, vous pouvez utiliser la fonction

Defining the mxn Vandermonde matrix
def VandermondeMatrix(x):

18

Input
x : +1 array with interpolation nodes
Output
Matrix of Vandermonde of size n x n

que vous pouvez importer avec la commande

from InterpolationLib import VandermondeMatrix

Exemple On cherche les coefficients du polynôme d’interpolation de degré n = 4 des valeurs
suivantes

xk yk

1 3
1.5 4
2 2
2.5 5
3 1

[20]: from InterpolationLib import VandermondeMatrix

Some data given: x=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1
x = np.linspace(1, 3, 5)
y = np.array([3, 4, 2, 5, 1])
n = x.size - 1

A = VandermondeMatrix(x)
print(A)

compute coefficients
a = np.linalg.solve(A, y) # Resouds Ax = b avec b=y et rends x

print the coefficients on screen
print('The coefficients a_0, ..., a_n are')
print(a)

The coefficients a_0, ..., a_n are
[-140. 343. -290.66666667 104. -13.33333333]

[21]: # Now we can define the polynomial
p = lambda x : a[0] + a[1]*x + a[2]*(x**2) + a[3]*(x**3) + a[4]*(x**4)

points used to plot the graph
z = np.linspace(1, 3, 100)

plt.plot(x, y, 'ro', z, p(z))
plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')
plt.legend(['data','p(x)'])

19

plt.show()

2.1.4 Alternatives : polyfit et polyval

Les fonctions polyfit et polyval de numpy font essentiellement la même chose que les paragraphes
ci-dessous. Plus tard nous verrons des méthodes plus performantes.

a = numpy.polyfit(x, y, n, ...) :

• input : x, y les données à interpoler, n le degré du polynôme recherché
• output : les coefficients du polynôme, dans l’ordre inverse de ce que nous avons vu !

[22]: # Some data given: x=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1
x = np.linspace(1, 3, 5)
y = np.array([3, 4, 2, 5, 1])
n = x.size - 1

a = np.polyfit(x,y,n)

Now we can define the polynomial, with coeffs in the reverse order !
p = lambda x : a[4] + a[3]*x + a[2]*(x**2) + a[1]*(x**3) + a[0]*(x**4)

We can also use polyval instead !
np.polyval(a,x)

points used to plot the graph
z = np.linspace(1, 3, 100)

plt.plot(x, y, 'ro', z, p(z), '.', z, np.polyval(a,z))
plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')
plt.legend(['data','p(x)','polyval'])
plt.show()

20

[]:

2.2 Interpolation de Lagrange

2.2.1 Base de Lagrange

On considère les polynômes ϕk, k = 0, . . . , n de degré n tels que

ϕk(xj) = δjk, k, j = 0, . . . , n,

où δjk = 1 si j = k et δjk = 0 si j 6= k. Explicitement, on a

ϕk(x) =
n∏

j=0,j 6=k

(x− xj)
(xk − xj)

.

[23]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

Exercice (théorique) Vérifiez que

1. B = {ϕk, k = 0, . . . , n} est une base de Pn(R)
2. Chaque polynôme ϕk est de degré n
3. ϕk(xj) = δjk, k, j = 0, . . . , n

[24]: # Defining the Lagrange basis functions
def phi(x,k,z):

the input variables are:
x : the interpolatory points
k : which basis function
z : where to evaluate the function

careful, there are n+1 interpolation points!
n = x.size - 1

21

init result to one, of same type and size as z
result = np.zeros_like(z) + 1

first few checks on k:
if (type(k) != int) or (x.size < 1) or (k > n) or (k < 0):

raise ValueError('Lagrange basis needs a positive integer k, smaller␣
↪→than the size of x')

loop on n to compute the product
for j in range(0,n+1) :

if (j == k) :
continue

if (x[k] == x[j]) :
raise ValueError('Lagrange basis: all the interpolation points need␣

↪→to be distinct')

result = result * (z - x[j]) / (x[k] - x[j])

return result

Exemple Pour n = 2, x0 = −1, x1 = 0, x2 = 1, les polynômes de la base de Lagrange sont

ϕ0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

1

2
x(x− 1),

ϕ1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
= −(x+ 1)(x− 1),

ϕ2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

1

2
x(x+ 1).

[25]: # plot the Lagrange Basis functions
x = np.linspace(-1., 1, 3)
z = np.linspace(-1.1, 1.1, 100)

plt.plot(z, phi(x,0,z), 'g', z, phi(x,1,z), 'r', z, phi(x,2,z),':')

plt.xlabel('x'); plt.ylabel('$\\varphi_{k}(x)$'); plt.title('Lagrange basis␣
↪→functions')

plt.legend(['$\\varphi_{0}$','$\\varphi_{1}$','$\\varphi_{2}$'])
plt.grid(True)
plt.show()

22

Exercice Visualisez la base de Lagrange associée aux points xk = 1, 1.5, 2, 2.5, 3. Evaluez sur le
graphique les valeurs de ϕk(xj)

[26]: # plot the Lagrange Basis functions
x = np.linspace(1., 3, 5)
z = np.linspace(0.9, 3.1, 100)

plt.plot(z, phi(x,0,z), 'g', z, phi(x,1,z), 'r', z, phi(x,2,z),':', z,␣
↪→phi(x,3,z),':', z, phi(x,4,z),':')

plt.xlabel('x'); plt.ylabel('phi(x)'); plt.title('Lagrange Basis functions')
plt.legend(['$\\varphi_0$','$\\varphi_1$','$\\varphi_2$',

'$\\varphi_3$','$\\varphi_4$'])
plt.grid(True)
plt.show()

2.2.2 Polynôme d’interpolation

Le polynôme d’interpolation Πn des valeurs yj aux noeuds xj , j = 0, . . . , n, s’écrit

Πn(x) =

n∑
k=0

ykϕk(x), (1)

23

car il vérifie Πn(xj) =
∑n

k=0 ykϕk(xj) = yj .

2.3 Interpolation d’une fonction continue

Soit f : [a, b]→ R continue et x0, . . . , xn ∈ [a, b] des noeuds distincts. Le polynôme d’interpolation
Πn(x) est noté Πnf(x) et est appelé l’interpolant de f aux noeuds x0, . . . , xn.

Si on prend
yk = f(xk), k = 0, ..., n,

alors on aura

Πnf(x) =
n∑
k=0

f(xk)ϕk(x).

Exercice Ecrivez une fonction Python qui a la définition suivante, en utilisant la fonction phi
définie plus haut. Ecrivez aussi un petit test sur la base de l’exercice précédent.

Lagrange Interpolation of data (x,y), evaluated at ordinate(s) z
def LagrangePi(x,y,z):

the input variables are:
x : the interpolatory points
y : the corresponding data at the points x
z : where to evaluate the function

Utilisez le fait que {ϕk, k = 0, ..., n} est une base des polynômes de degré ≤ n et que le vecteur y
représente les coordonnées du polynôme d’interpolation recherché par rapport à cette base, c’est-à-
dire

Πn(z) = y0ϕ0 + ...+ ynϕn

[27]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from InterpolationLib import LagrangeBasis as phi

[28]: # Lagrange Interpolation of data (x,y), evaluated at ordinate(s) z
def LagrangePi(x,y,z):

the input variables are:
x : the interpolatory points
y : the corresponding data at the points x
z : where to evaluate the function

{phi(x,k,.), k=0,...,n} is a basis of the polynomials of degree n
y represents the coordinates of the interpolating polynomial with respect␣

↪→to this basis.
Therefore LagrangePi(x,y,.) = y[0] phi(x,0,.) + ... + y[n] phi(x,n,.)

careful, there are n+1 basis functions!
n = x.size - 1

24

init result to zero, of same type and size as z
result = np.zeros_like(z)

loop on n to compute the product
for k in range(0,n+1) :

result = result + y[k] * phi(x,k,z)

return result

[29]: # vecteur des points d'interpolation
x = np.linspace(0, 1, 5)

vecteur des valeurs
y = np.array([3.38, 3.86, 3.85, 3.59, 3.49])

z = np.linspace(-0.1, 1.1, 100)
plt.plot(x, y, 'ro', z, LagrangePi(x,y,z))

plt.xlabel('x'); plt.ylabel('y');
plt.legend(['data','p(x)'])
plt.show()

2.3.1 Erreur d’interpolation

Soient x0, x1, . . ., xn, (n+ 1) nœuds équirépartis dans I = [a, b] et soit f ∈ Cn+1(I). Alors

max
x∈I
|f(x)−Πnf(x)| ≤ 1

2(n+ 1)

(
b− a
n

)n+1

max
x∈I
|f (n+1)(x)|. (2)

On remarque que l’erreur d’interpolation dépend de la dérivée (n+ 1)-ième de f .

Exercice On considère les points d’interpolation

x0 = 1, x1 = 1.75, x2 = 2.5, x3 = 3.25, x4 = 4

25

et la fonction
f(x) = x sin(2πx)

.

1. Calculez la base de Lagrange associée à ces points. D’abord sur papier, ensuite utilisez Python
pour en dessiner le graphique.

2. Calculez le polynôme d’interpolation Πn à l’aide de la base de Lagrange. D’abord sur papier,
ensuite avec Python.

3. Quelle est l’erreur théorique d’interpolation ?

Comportement pour n grand: eg, la fonction de Runge. Le fait que

lim
n→∞

1

2(n+ 1)

(
b− a
n

)n+1

= 0

n’implique pas forcément que maxx∈I |Enf(x)| tende vers zéro quand n→∞.

Soit f(x) =
1

1 + x2
, x ∈ [−5, 5]. Si on l’interpole dans des noeuds équirépartis, l’interpolant présente

des oscillations au voisinage des extrémités de l’intervalle.

[30]: # Runge fonction
f = lambda x : 1./(1+x**2)

Values of N to use
Nrange = [3,5,10]
plotting points
z = np.linspace(-5, 5, 100)

for n in Nrange :

x = np.linspace(-5,5,n+1)
y = f(x);

plt.plot(z, LagrangePi(x,y,z), ':')

plt.plot(z,f(z), 'b')
plt.xlabel('x'); plt.ylabel('y'); plt.title('Runge function')
plt.legend(Nrange)
plt.show()

26

sympy est une librairie pour le calcul symbolique en Python. Nous allons l’utiliser pour étudier le
comportement de l’erreur d’interpolation de la fonction de Runge.

[31]: # Using symbolic python to compute derivatives
import sympy as sp

define x as symbol
x = sp.symbols('x')

define Runge function
f = 1/(1+x**2)

pretty print the 5th derivative of f
f5 = sp.diff(f, x,5)
display f5
sp.init_printing(use_unicode=True)
display(f5)

evalf can be used to compute the value of a function at a given point
print('5th derivative evaluated at 3 :')
print(f5.evalf(subs={x: 3}))

240x
(
− 16x4

(x2+1)2
+ 16x2

x2+1
− 3
)

(x2 + 1)4

5th derivative evaluated at 3 :
-0.112320000000000

Pour définir une fonction qui accepte un array de valeur, il faut utiliser les lignes suivantes.

Ensuite on peut aussi dessiner le graphe . . .

[32]: # to evaluate a function at many given points, we need the following trick
diff_f_func = lambda t: float(sp.diff(f,x,k).evalf(subs={x: t}))
diff_f = np.vectorize(diff_f_func)

27

the derivative can be set with k (not very elegant...)
k = 4
print(diff_f(4.5))

plotting points
z = np.linspace(-5, 5, 100)
plot the derivative between -5 and 5

plt.plot(z,diff_f(z), 'b')
plt.xlabel('t'); plt.ylabel('y'); plt.title('Derivatives of Runge function')
plt.legend(Nrange)
plt.show()

0.0102402235718104

. . . ou évaluer le maximum pour plusieurs n et voir le comportement de max |f (n)| en fonction de
n.

[33]: # Plot max(abs(fn)) in the range -5,5
z = np.linspace(-5, 5, 100)

Nmax = 10
maxValFn = np.zeros(Nmax)
for k in range(Nmax):

maxValFn[k] = np.max(np.abs(diff_f(z)))

plt.plot(range(10), maxValFn)

plt.yscale('log')
plt.xlabel('n'); plt.ylabel('$\max|\partial f|$');
plt.title('Max of $|\partial^n f|$');
plt.show()

28

2.3.2 Interpolation de Chebyshev

Pour chaque entier positif n ≥ 1, pour i = 0, . . . n, on note

x̂i = − cos(πi/n) ∈ [−1, 1]

les points de Chebyshev et on définit

xi =
a+ b

2
+
b− a

2
x̂i ∈ [a, b],

pour un intervalle arbitraire [a, b]. Pour une fonction continue f ∈ C1([a, b]), le polynôme
d’interpolation Πnf de degré n aux noeuds {xi, i = 0, . . . , n} converge uniformément vers f quand
n→∞.

[34]: # Chebichev points on the interval [-1,1]

z = np.linspace(0,1, 100)
plt.plot(np.cos(np.pi*z), np.sin(np.pi*z))

n =5
z = np.linspace(0,1, n+1)
plt.plot(np.cos(np.pi*z), np.sin(np.pi*z), 'o')
plt.plot(np.cos(np.pi*z), 0*z, 'x')

for k in range(0,n+1) :
plt.plot([np.cos(np.pi*z[k]),np.cos(np.pi*z[k])],[0,np.sin(np.pi*z[k])],':')

plt.axis('equal')

plt.xlabel('t');
plt.title('Chebyshev points')
plt.show()

29

Exemple On reprend le même exemple mais on interpole la fonction de Runge dans les points de
Chebyshev. La figure montre les polynômes de Chebyshev de degrés n = 5 et n = 10. On remarque
que les oscillations diminuent lorsqu’on augmente le degré du polynôme.

[35]: # Runge fonction
f = lambda x : 1./(1+x**2)

Values of N to use
Nrange = [3,5,10]
plotting points
[a,b] = [-5,5]
z = np.linspace(a,b, 100)

for n in Nrange :

Chebyshev points on [-1,1]
hx = -np.cos(np.pi*np.linspace(0,n,n+1)/n)
mapped to [a,b]
x =(a+b)/2 + (b-a)/2*hx

y = f(x);

plt.plot(z, LagrangePi(x,y,z), ':')

plt.plot(z,f(z), 'b')
plt.xlabel('x'); plt.ylabel('y'); plt.title('Chebyshev interpolation')
plt.legend(Nrange)
plt.show()

30

[]:

2.4 Interpolation par intervalles

2.4.1 Interpolation linéaire par morceaux

Soit f : [a, b]→ R continue et a = x0 < . . . < xn = b.

On choisit une partition de [a, b] en N sous-intervalles de la forme [xi, xi+1], i = 0, ..., N − 1]. Sur
chaque sous-intervalle, on fait une interpolation de degré 1 avec les 2 noeuds xi, xi+1. Sur chaque
sous-intervalle Ii = [xi, xi+1], on interpole f|Ii par un polynôme de degré 1. Le polynôme par
morceaux (polynôme composite) qu’on obtient est noté ΠH

1 f(x) et on a:

ΠH
1 f(x) = f(xi) +

f(xi+1)− f(xi)

xi+1 − xi
(x− xi) pour x ∈ [xi, xi+1]

Dans le cas de données y, cela s’écrit

ΠH
1 (x) = yi +

yi+1 − yi
xi+1 − xi

(x− xi) pour x ∈ [xi, xi+1]

Le choix le plus simple est le suivant :

• on pose H = b−a
N

• ensuite xi = a+ iH pour i = 0, ..., N

[36]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from InterpolationLib import PiecewiseLinearInterpolation as PiH1

La fonction PiH1 implémente l’interpolation linéaire par morceaux pour des points équidistribués

def PiecewiseLinearInterpolation(a,b,N,f,z):
the input variables are:
a,b : x[0] = a, x[n] = b
f : the corresponding data at the points x
z : where to evaluate the function

31

2.4.2 Exercice

Soient xk, k = 0, ..., 4 des points équidistribués sur l’intervalle [1, 5] et yk =
(3.38, 3.86, 3.85, 3.59, 3.49) les valeurs d’une fonction en ces points.

• Dessinez le graphe de l’interpolateur par morceaux de cette fonction
• Calculez numériquement (sur papier) la valeur de ΠH

1 (4.5) et vérifiez le résultat sur le
graphique

[37]: # intervalle d'interpolation
a = 1; b = 5

vecteur des valeurs aux points equidistribué
y = np.array([3.38, 3.86, 3.85, 3.59, 3.49])
N = y.size-1
x = np.linspace(a,b,N+1)

z = np.linspace(a, b, 100)
plt.plot(x, y, 'ro', z, PiH1(a,b,N,y,z))

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')
plt.legend(['data','p(x)'])
plt.show()

2.4.3 Exercice

Dessinez le graphe de la fonction de Runge et l’interpolateur linéaire par morceaux sur l’intervalle
[−5, 5] pour N = 3, 5, 10

[38]: # interval and function
a = -5; b = 5
f = lambda x : 1/(1+x**2)

Values of N to use
Nrange = [3,5,10]
plotting points
z = np.linspace(-5, 5, 100)

32

for N in Nrange :
plt.plot(z, PiH1(a,b,N,f,z), ':')

plt.plot(z, f(z), 'b')
plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')
plt.legend(Nrange)
plt.show()

2.4.4 Erreur d’interpolation linéaire par morceaux

Théorème (Enlevé pourl’examen)

Remarque On peut aussi montrer que, si l’on utilise un polynôme de degré n (≥ 1) et si l’on dénote
EHn f(x) = f(x)−ΠH

n f(x), dans chaque sous-intervalle Ii, on trouve

max
x∈I
| EHn f(x) |≤ Hn+1

2(n+ 1)
max
x∈I
|f (n+1)(x)| .

2.4.5 Interpolation quadratique par morceaux

Soit f : [a, b] → R continue et a = x0 < . . . < xn = b. Sur chaque sous-intervalle [xi, xi+1], on fait
une interpolation de degré 2 avec les 3 noeuds xi, xi+ 1

2
, xi+1, où xi+ 1

2
est le milieu de [xi, xi+1].

Sur chaque sous-intervalle Ii = [xi, xi+1], on interpole f|Ii par un polynôme de degré 2. Le polynôme
par morceaux (polynôme composite) qu’on obtient est noté ΠH

2 f(x) et on a:

ΠH
2 f(x) = f(xi)ϕ

(i)
0 (x) + f(xi+ 1

2
)ϕ

(i)
1 (x) + f(xi+1)ϕ

(i)
2 (x) pour x ∈ [xi, xi+1]

où ϕ
(i)
0 (x), ϕ

(i)
1 (x), ϕ

(i)
0 (x) sont les polynômes de la base de Lagrange associés aux noeuds

(xi, xi+ 1
2
, xi+1).

[39]: from InterpolationLib import PiecewiseQuadraticInterpolation as PiH2

intervalle et fonction
a = -5; b = 5

33

f = lambda x : 1/(1+x**2)

Values of N to use
Nrange = [3,5,10]
plotting points
z = np.linspace(-5, 5, 100)

for N in Nrange :
plt.plot(z, PiH2(a,b,N,f,z), ':')

plt.plot(z, f(z), 'b')
plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')
plt.legend(Nrange)
plt.show()

Exercice Calculez l’erreur d’interpolation de la fonction de Runge dans l’intervalle [−5, 5] quand
on utilise l’interpolation linéaire par morceaux

1. Théoriquement
2. Faites un graphique qui montre la convergence en fonction de H = b−a

N = 10
N

3. Refaites le même exercice pour l’interpolation quadratique par morceaux

Remarque On s’attend à ce que l’erreur soit quadratique en H. Pour le voir il faut utiliser des
axes logarithmiques dans les deux directions.

Admettons que l’erreur converge quadratiquement vers 0 par rapport à H, e.g

err = lambda H : 3*H**2 + 2*H**3;

Comment est le graphique de cette fonction dans l’intervalle [10−6, 1] ? Que se passe-t-il si on
change les axes avec plt.xscale('log') et plt.yscale('log') ? Quelle est la pente de err dans
ce système ?

[40]: ## Assume the error is quadratic
err = lambda H : 10*H**2 + 20*H**3;

take h has powers of 2: 2^(-20),2^(-19), ..., 2^(-1)

34

h = np.power(2,np.linspace(-20, -1, 20, endpoint=True))

plt.plot(h, err(h), 'b:.')

plt.xlabel('h'); plt.ylabel('err');

plt.xscale('log')
plt.yscale('log')

plt.grid(True)
try with and wothout equal axis
plt.axis('equal')
plt.show()

2.5 Approximation au sens des moindres carrés

Soit m ≥ 0 un nombre entier. Etant donnés (n+ 1) points distincts x0, x1,. . . xn et (n+ 1) valeurs
y0, y1,. . . yn, on cherche un polynôme p de degré m < n tel que

n∑
j=0

|yj − p(xj)|2 soit le plus petit possible.

On appelle polynôme aux moindres carrés de degré m le polynôme p̂n(x) de degré m tel que

n∑
j=0

|yj − p̂n(xj)|2 ≤
n∑
j=0

|yj − pn(xj)|2 ∀pm(x) ∈ Pm (3)

Nous cherchons les coefficients du polynôme p(x) = a0 + a1x+ ...+ amx
m qui satisfait au mieux les

(n+ 1) équations p(xk) = yk, k = 0, ..., n, c’est-à-dire

a0 + a1xk + ...+ amx
m
k = yk, k = 0, ..., n

Ce système s’écrit sous forme matricielle

35

1 x0 · · · xm0
...

...
1 xn · · · xmn


a0

...
am

 =

y0...
yn


Puisque m < n, on ne peut pas résoudre ce système de façon classique.

Il faut le résoudre au sens des moindres carrés, en considérant:

BTBa = BTy

Où B est la matrice (m+ 1)× (n+ 1) du système, a ∈ Rn+1 le vecteur des inconnues et y ∈ Rm+1

le vecteur des données.

Ce système linéaire est dit système d’équations normales. On peut montrer que les équations
normales sont équivalentes au problème de minimisation.

Remarque: La résolution de ce système demande parfois des méthodes plus avancées que
l’élimination de Gauss, comme la factorisation QR. Pour l’instant on va se contenter d’utiliser
np.linalg.solve

Pour construire cette matrice, vous pouvez utiliser la fonction

def VandermondeMatrix(x, m=0):
Input
x : +1 array with interpolation nodes
m : degree of the polynomial. If empty, chooses m=size(x)-1
Output
Matrix of Vandermonde of size m x n

que vous pouvez importer avec la commande

from InterpolationLib import VandermondeMatrix

Exemple On considère un test mécanique pour établir le lien entre contraintes (MPa =
100N/cm2) et déformations relatives (cm/cm) d’un échantillon de tissu biologique (disque inter-
vertébral, selon P. Komarek, Ch. 2 de Biomechanics of Clinical Aspects of Biomedicine, 1993, J.
Valenta ed., Elsevier).

Figures/disque.png

On cherche à approximer au sens des moindres carrés avec un polynôme p̂n de degré n = 1, 2, 3.
Les mesures effectuées sont les suivantes

sigma = np.array([0.00, 0.06, 0.14, 0.25, 0.31, 0.47, 0.50, 0.70]);
epsilon = np.array([0.00, 0.08, 0.14, 0.20, 0.22, 0.26, 0.27, 0.29]);

36

[41]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from InterpolationLib import VandermondeMatrix

[42]: # data given:
sigma = np.array([0.00, 0.06, 0.14, 0.25, 0.31, 0.47, 0.50, 0.70]);
epsilon = np.array([0.00, 0.08, 0.14, 0.20, 0.22, 0.26, 0.27, 0.29]);

degree of the polynomial
m = 1;

B = VandermondeMatrix(sigma,m)

print(B)

compute coefficients
a = np.linalg.solve(B.T.dot(B), B.T.dot(epsilon))

print the coefficients on screen
print('The coefficients a_0, ..., a_m are')
print(a)

The coefficients a_0, ..., a_m are
[0.06288442 0.39379615]

[43]: def polynomial(a,x):
m = a.size-1
\hat p = a_0 + a_1 x + ... + a_n x^m
is equal to the scalar product between the vectors a and (1, x, ..., x^m) :
return np.power(np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).dot(a)

points used to plot the graph, slightly larger than data
z = np.linspace(sigma[0]-0.1, sigma[-1]*1.1, 100)

plt.plot(sigma, epsilon, 'ro', z, polynomial(a,z),'b')
plt.xlabel('σ'); plt.ylabel('ϵ');
plt.legend(['data','$\hat p_n$'])
plt.show()

37

Exercice Depuis https://hsso.ch/fr/2012/b/14 on a téléchargé les données de la population suisse
dans le fichier Data/PopulationSuisse.csv.

Approximez l’évolution de la population avec un polynôme de degré n = 1, 2, 3, 7.

Ensuite faites l’hypothèse de croissance exponentielle de la population, c’est-à-dire p(x) = ea1x+a0

où a0 et a1 sont des paramètres. Comment utiliser l’approximation polynômiale dans ce contexte ?

[44]: # Data of the population has been dowloaded from https://hsso.ch/fr/2012/b/14
into the file Data/PopulationSuisse.csv
import pandas as pd

Read data from file 'PopulationSuisse.csv'
data = pd.read_csv("Data/PopulationSuisse.csv")
Preview the first 5 lines of the loaded data
data.head()

[44]: Année Population
0 1860 2506784
1 1870 2654394
2 1880 2924702
3 1888 2917754
4 1900 3315443

[45]: x = data['Année'].to_numpy()
y = data['Population'].to_numpy()

m = 9
B = VandermondeMatrix(x,m)

compute coefficients
a = np.linalg.solve(B.T.dot(B), B.T.dot(y))

print the coefficients on screen
print('The coefficients a_0, ..., a_n are')
print(y)

38

The coefficients a_0, ..., a_n are
[2506784 2654394 2924702 2917754 3315443 3753293 3880320 4066400 4265703
4714992 5429061 6269783 6365960 6873687]

[46]: def polynomial(a,x):
m = a.size-1
\hat p = a_0 + a_1 x + ... + a_n x^m
is equal to the scalar product between the vectors a and (1, x, ..., x^m) :
return np.power(np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).dot(a)

points used to plot the graph, slightly larger than data
z = np.linspace(x[0], 2020, 100)

plt.plot(x, y, 'ro', z, polynomial(a,z),'b')
plt.xlabel('année'); plt.ylabel('Population');
plt.legend(['data','$\hat p_n$'])
plt.show()

On assume une croissance exponentielle : population(x) = C ∗ ea1x = eao+a1x

En d’autres termes: log(population)(x) = ao + a1x

[47]: #

x = data['Année'].to_numpy()
y = np.log(data['Population'].to_numpy())

m = 1
B = VandermondeMatrix(x,m)

compute coefficients
a = np.linalg.solve(B.T.dot(B), B.T.dot(y))

print the coefficients on screen
print('The coefficients a_0, ..., a_n are')
print(a)

39

The coefficients a_0, ..., a_n are
[-0.01356599 0.00791249]

[48]: def expPolynomial(a,x):
m = a.size-1
\hat p = a_0 + a_1 x + ... + a_n x^m
is equal to the scalar product between the vectors a and (1, x, ..., x^m) :
return np.exp(np.power(np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).

↪→dot(a))

points used to plot the graph, slightly larger than data
z = np.linspace(x[0], 2020, 100)

plt.plot(x, np.exp(y), 'ro', z, expPolynomial(a,z),'b')
plt.xlabel('année'); plt.ylabel('Population');
plt.legend(['data','$\hat p_n$'])
plt.show()

[]:

3 Intégration numérique

3.1 3.1 Formules de quadrature sur [−1, 1]

(Enlevé pour l’examen)

3.2 Intégration Numérique : Exercices

[49]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

40

3.2.1 Exercice Série 6, Ex 5 : Formule de Simpson

On considère la fonction f : [a, b] → R dans C0([a, b]); on est intéressé à approcher l’intégrale
I(f) =

∫ b
a f(x) dx.

1. Ecrivez une fonction Simpson qui implémente la formule composite de Simpson pour
l’approximation de l’intégrale ci-dessus. Utilisez la structure suivante:

def Simpson(a, b, N, f) :
[a,b] : inteval
N : number of subintervals
f : fonction to integrate using the Simpson rule

2. Testez ensuite pour quels monômes f(x) = xd cette formule intègre exactement la fonction,
pour d = 0, 1, ... sur l’intervalle [1, 4], avec N = 1 et ensuite N = 10.

3. Vérifiez numériquement pour quelques polynômes que la fonction ainsi écrite est linéaire en f
pour N = 10

Suggestion: En utilisant une fonction lambda il est possible de décider le paramètre d d’un monôme
à un moment ultérieur:

monomial = lambda x : x**d

Partie 1
[50]: # This function just provides the Simpson quadrature rule.

def Simpson(a, b, N, f) :
[a,b] : inteval
N : number of subintervals
f : fonction to integrate using the trapezoidal rule

M=3

nodes = np.array([-1, 0, 1])
weights = np.array([1./3., 4./3., 1./3.])

size of the subintervals
H = (b - a) / N
points defining intervals
x = np.linspace(a,b,N+1)

Lh = 0;

z = np.zeros(M);

for k in range(N) :
left of the subinterval, also first quadrature point
z[0] = x[k]
right of the subinterval, also third quadrature point
z[2] = x[k+1]
mid point, , also second quadrature point

41

z[1] = (x[k] + x[k+1])/2
can also be computed as
z = (x[k] + x[k+1])/2 + nodes*(x[k+1] - x[k])/2

local quadrature:
Jgk = weights[0] * f(z[0]) + weights[1] * f(z[1]) + weights[2] * f(z[2])
or as a single sum
Jgk = sum(weights * f(z))

Lh = Lh + Jgk

approximate integral
return H/2 * Lh

Partie 2 ∫ 4

1
1dx = 3∫ 4

1
xddx =

1

d+ 1
xd+1|41 =

4d+1 − 1

d+ 1

[51]: # Checking simpson fonction
a = 1; b = 4;

with lambda fonctions, it is possible to determine a parameter (here d)
at a later moment
monomial = lambda x : x**d

recording for which degrees the integral s exact (up to epsilon)
exactDegree = -1
epsilon = 1e-12

[52]: N = 1
for d in range(7) :

intsim = Simpson(a, b, N, monomial)
intExact = (4**(d+1) - 1)/(d+1)
print(f'Simpson on x^{d} : {intsim:.6f} - {intExact:.6f} = {intsim-intExact:

↪→.6e}')
if np.abs(intsim-intExact) < epsilon :

exactDegree = d

print(f'Simpson with N = {N} is exact up to degree {exactDegree}')

Simpson on xˆ0 : 3.000000 - 3.000000 = -4.440892e-16
Simpson on xˆ1 : 7.500000 - 7.500000 = 0.000000e+00
Simpson on xˆ2 : 21.000000 - 21.000000 = 0.000000e+00
Simpson on xˆ3 : 63.750000 - 63.750000 = 0.000000e+00
Simpson on xˆ4 : 206.625000 - 204.600000 = 2.025000e+00

42

Simpson on xˆ5 : 707.812500 - 682.500000 = 2.531250e+01
Simpson on xˆ6 : 2536.781250 - 2340.428571 = 1.963527e+02
Simpson with N = 1 is exact up to degree 3

[53]: N = 10
exactDegree = -1

for d in range(7) :
intsim = Simpson(a, b, N, monomial)
intExact = (4**(d+1) - 1)/(d+1)
print(f'Simpson on x^{d} : {intsim:.6f} - {intExact:.6f} = {intsim-intExact:

↪→.6e}')
if np.abs(intsim-intExact) < epsilon :

exactDegree = d

print(f'Simpson with N = {N} is exact up to degree {exactDegree}')

Simpson on xˆ0 : 3.000000 - 3.000000 = -4.440892e-16
Simpson on xˆ1 : 7.500000 - 7.500000 = 0.000000e+00
Simpson on xˆ2 : 21.000000 - 21.000000 = 0.000000e+00
Simpson on xˆ3 : 63.750000 - 63.750000 = -1.421085e-14
Simpson on xˆ4 : 204.600202 - 204.600000 = 2.025000e-04
Simpson on xˆ5 : 682.502531 - 682.500000 = 2.531250e-03
Simpson on xˆ6 : 2340.449818 - 2340.428571 = 2.124623e-02
Simpson with N = 10 is exact up to degree 3

Partie 3 ∫ 4

1
1dx = 3∫ 4

1
xddx =

1

d+ 1
xd+1|41 =

4d+1 − 1

d+ 1

[54]: maxD = 5;
N = 10

p = lambda x : np.polyval(coefs,x)

pre-computing integrls of monomials up to degree maxD
intMono = np.zeros(maxD+1)
for d in range(maxD+1) :

intMono[d] = Simpson(a, b, N, monomial)

[55]: # generating random coefficients
coefs = np.random.rand(maxD+1)

evaluating Simpson on the polynomial :
intPoly = Simpson(a,b,N, p)

43

computing integral by linearity. Remeber that in polyval, the order of the␣
↪→coefficients is opposite !

intSum = 0
for d in range(maxD+1) :

intSum = intSum + coefs[maxD-d]*intMono[d]

print(f'Simpson on a_{d} + a_{d-1} x + ... + a_0x^{d} by linearity : \n'
f'\t {intPoly:.6f} - {intSum:.6f} = {intPoly-intSum:.6e}')

Simpson on a_5 + a_4 x + ... + a_0xˆ5 by linearity :
262.343120 - 262.343120 = 0.000000e+00

[]:

3.2.2 Exercice Série 6, Ex 6 : Degré d’exactitude d’une formule de quadrature

On considère la fonction f : [a, b] → R dans C0([a, b]); on est intéressé à approcher l’intégrale
I(f) =

∫ b
a f(x) dx.

Plus précisément on prend f(x) = sin(72 x) + ex − 1 avec a = 0 et b = 1 (f ∈ C∞([a, b])) et on peut
calculer I(f) = 2

7 (1− cos(72)) + e− 2.

1. Calculez une approximation de l’intégrale en utilisant les formules du rectangle, du trapèze et
de Simpson simples, c-à-d avec un seul intervalle.

2. Calculez une approximation de l’intégrale en utilisant les fonctions Midpoint, Trapezoidal
et Simpson (déjà codées). avec N = 10 sous-intervalles de même taille. On notera les valeurs
approchées de l’intégrale Icmp(f), Ict (f), and Ics(f), respectivement.

3. Répétez le point 2. avec N = 2k pour k = 2, . . . , 7 et calculez les erreurs Ecmp(f) := |I(f) −
Icmp(f)|, Ect (f) := |I(f)−Ict (f)|, et Ecs(f) := |I(f)−Ics(f)|. Dessinez les erreurs en fonction de
H = (b−a)/N sur une échelle logarithmique sur les deux axes. Quel est l’ordre de convergence
de ces méthodes ? Est-ce en accord avec la théorie ? Motivez votre réponse.

4. On prend maintenant f(x) = xd, a = 0 et b = 1, avec d ∈ N. L’intégrale de f vaut
I(f) = 1/(d+ 1). Vérifiez numériquement les degrés d’exactitude de chacune des formules de
quadrature du point 1. Pour cela, il faut choisir plusieurs valeurs de d = 0, 1, 2, Motivez
votre réponse.

[56]: import matplotlib.pyplot as plt
import numpy as np

from IntegrationLib import *

Partie 1
[57]: f = lambda x : np.sin(7/2*x) + np.exp(x) - 1

a = 0; b = 1
Iexact = 2/7*(1-np.cos(7/2)) + np.exp(1) - 2

44

x = np.linspace(a,b,1000)
y=f(x)

plt.plot(x, y, 'b')
plt.show()

[58]: intMD = (b-a) * f((a+b)/2)
intTrap = (b-a) * (f(a)+f(b))/2
intSimp = (b-a)/6 * (f(a) + 4*f((a+b)/2) + f(b))

print(f'exact \t rect \t\t trap \t\t Simpson')
print(f'{Iexact:.4f} \t {intMD:.4f} \t {intTrap:.4f} \t {intSimp:.4f}')

exact rect trap Simpson
1.2716 1.6327 0.6837 1.3164

Partie 2
[59]: N = 10

intMD = Midpoint(a,b,N,f)
intTrap = Trapezoidal(a,b,N,f)
intSimp = Simpson(a,b,N,f)

print(f'exact \t rect \t\t trap \t\t Simpson')
print(f'{Iexact:.4f} \t {intMD:.4f} \t {intTrap:.4f} \t {intSimp:.4f}')

exact rect trap Simpson
1.2716 1.2737 1.2673 1.2716

Partie 3
[60]: errmp = []

errtrap = []
errSim = []

N = 2**np.linspace(2,7,6).astype(int)

45

for n in N :
errmp.append(np.abs(Midpoint(a, b, n, f) - Iexact))
errtrap.append(np.abs(Trapezoidal(a, b, n, f) - Iexact))
errSim.append(np.abs(Simpson(a, b, n, f) - Iexact))

H = (b-a)/N
plt.plot(H, errmp, 'b:.', H, errtrap, 'c:*', H, errSim, 'g:*')

plt.plot(H, H**2 * (errmp[0]/H[0]**2)*5, 'k:', H, H**4 * (errSim[0]/H[0]**4)*5,␣
↪→'k:')

plt.legend(['rectangle', 'trapeze', 'Simpson', 'H^2', 'H^4'])
plt.xlabel('H'); plt.ylabel('err');

plt.xscale('log')
plt.yscale('log')
plt.grid(True)

[Pardon d’écrire en anglais..]

We recall that the errors Ecmp(f) = |ecmp(f)|, Ect (f) = |ect(f)|, and Ecs(f) = |ecs(f)| read, for a
sufficiently regular function f(x):

ecmp(f) = I(f)− Icmp(f) =
b− a

24
H2 f ′′(ξ), for some ξ ∈ [a, b], if f ∈ C2([a, b]),

ect(f) = I(f)− Ict (f) = −b− a
12

H2 f ′′(η), for some η ∈ [a, b], if f ∈ C2([a, b]),

ecs(f) = I(f)− Ics(f) = − b− a
16 · 180

H4 f (4)(ζ), for some ζ ∈ [a, b], if f ∈ C4([a, b]).

Since in this case f(x) ∈ C∞([a, b]), we expect the orders of accuracy (convergence orders of the
errors) to be equal to 2, 2, and 4 for the composite midpoint, trapezoidal, and Simpson quadrature
formulas, respectively. This is confirmed by the figure above, where we can observe that the plots
of the errors Emp(f) and Et(f) vs. H are, in log-log scale, parallel to the line representing the curve
(H,H2), thus indicating the order of accuracy (convergence order) 2 for the composite midpoint and
trapezoidal quadrature formulas. Similarly, the plot of the error Es(f) is, in log-log scale, parallel to

46

the line representing the curve (H,H4), from which we deduce the order of accuracy (convergence
order) 4 for the composite Simpson quadrature formula.

We notice that the orders of accuracy could be deduced by computing the errors for two dif-
ferent values of H, say H1 and H2; for example for a generic composite quadrature formula
we obtain the corresponding errors EcH1

(f) and EcH2
(f). If we assume that the error EcH(f)

can be expressed as EcH(f) = C Hα, with α > 0 and C a positive constant independent of H
and α, we can estimate the order of accuracy (convergence order) of the quadrature formula as
α = logβ

(
EcH2

(f)/EcH1
(f)
)
/ logβ (H2/H1), for any β > 1 and H1 and H2 “sufficiently small’ ’. For

the composite midpoint, trapezoidal, and Simpson quadrature formulas, we use the following com-
mands, for which the results (α = 2.01, 2.01, and 4.01, respectively) confirm the expected orders of
accuracy (convergence orders).

[61]: slopeMP = (np.log(errmp[-1]) - np.log(errmp[0])) / (np.log(H[-1]) - np.
↪→log(H[0]))

slopeTrap = (np.log(errtrap[-1]) - np.log(errtrap[0])) / (np.log(H[-1]) - np.
↪→log(H[0]))

slopeSim = (np.log(errSim[-1]) - np.log(errSim[0])) / (np.log(H[-1]) - np.
↪→log(H[0]))

print(f'La convergence numérique est environ de ')
print(f'Rectangle : {slopeMP:.2f}')
print(f'Trapeze : {slopeTrap:.2f}')
print(f'Simpson : {slopeSim:.2f}')

La convergence numérique est environ de
Rectangle : 2.01
Trapeze : 2.01
Simpson : 4.01

Partie 4 The function f(x) = xd is a polynomial of degree d for d ∈ N. The simple midpoint,
trapezoidal, and Simpson quadrature formulas possesses degree of exactness equal to 1, 1, and 3,
respectively.

[62]: N = 1
with lambda fonctions, it is possible to determine a parameter (here d)
at a later moment
monomial = lambda x : x**d

recording for which degrees the integral s exact (up to epsilon)
exactDegree = -1
epsilon = 1e-12

for d in range(7) :
intsim = Midpoint(a, b, N, monomial)
intExact = 1/(d+1)
print(f'Midpoint on x^{d} : {intsim:.6f} - {intExact:.6f} =␣

↪→{intsim-intExact:.6e}')

47

if np.abs(intsim-intExact) < epsilon :
exactDegree = d

print(f'Midpoint is exact up to degree {exactDegree}')

Midpoint on xˆ0 : 1.000000 - 1.000000 = 0.000000e+00
Midpoint on xˆ1 : 0.500000 - 0.500000 = 0.000000e+00
Midpoint on xˆ2 : 0.250000 - 0.333333 = -8.333333e-02
Midpoint on xˆ3 : 0.125000 - 0.250000 = -1.250000e-01
Midpoint on xˆ4 : 0.062500 - 0.200000 = -1.375000e-01
Midpoint on xˆ5 : 0.031250 - 0.166667 = -1.354167e-01
Midpoint on xˆ6 : 0.015625 - 0.142857 = -1.272321e-01
Midpoint is exact up to degree 1

[63]: for d in range(7) :
intsim = Trapezoidal(a, b, N, monomial)
intExact = 1/(d+1)
print(f'Trapezoidal on x^{d} : {intsim:.6f} - {intExact:.6f} =␣

↪→{intsim-intExact:.6e}')
if np.abs(intsim-intExact) < epsilon :

exactDegree = d

print(f'Trapezoidal is exact up to degree {exactDegree}')

Trapezoidal on xˆ0 : 1.000000 - 1.000000 = 0.000000e+00
Trapezoidal on xˆ1 : 0.500000 - 0.500000 = 0.000000e+00
Trapezoidal on xˆ2 : 0.500000 - 0.333333 = 1.666667e-01
Trapezoidal on xˆ3 : 0.500000 - 0.250000 = 2.500000e-01
Trapezoidal on xˆ4 : 0.500000 - 0.200000 = 3.000000e-01
Trapezoidal on xˆ5 : 0.500000 - 0.166667 = 3.333333e-01
Trapezoidal on xˆ6 : 0.500000 - 0.142857 = 3.571429e-01
Trapezoidal is exact up to degree 1

[64]: for d in range(7) :
intsim = Simpson(a, b, N, monomial)
intExact = 1/(d+1)
print(f'Simpson on x^{d} : {intsim:.6f} - {intExact:.6f} = {intsim-intExact:

↪→.6e}')
if np.abs(intsim-intExact) < epsilon :

exactDegree = d

print(f'Simpson is exact up to degree {exactDegree}')

Simpson on xˆ0 : 1.000000 - 1.000000 = 0.000000e+00
Simpson on xˆ1 : 0.500000 - 0.500000 = 0.000000e+00
Simpson on xˆ2 : 0.333333 - 0.333333 = 0.000000e+00
Simpson on xˆ3 : 0.250000 - 0.250000 = 0.000000e+00
Simpson on xˆ4 : 0.208333 - 0.200000 = 8.333333e-03
Simpson on xˆ5 : 0.187500 - 0.166667 = 2.083333e-02

48

Simpson on xˆ6 : 0.177083 - 0.142857 = 3.422619e-02
Simpson is exact up to degree 3

De ces simulations nous vérifions que les monômes f(x) = xd sont intégrées exactement pour les
degrées d = 0 et d = 1 dans le cas des formules du rectangle et du trapèze, et pour d = 0, 1, 2, 3
dans le cas de la formule de Simpson.

[]:

3.2.3 Exercice Série 6, Ex 7 : Convergence pour fonction non-lisse

[65]: import matplotlib.pyplot as plt
import numpy as np

from IntegrationLib import Midpoint
from IntegrationLib import Trapezoidal
from IntegrationLib import Simpson

On considère, sur l’intervalle [−1, 1], la fonction f suivante:

f(x) =

{
ex si x ≤ 0
1 si x > 0

On peut définir une telle fonction en utilisant la commande

f = lambda x : np.exp(x)*(x<=0) + (1)*(x>0)

1. Utilisez 1000 points équirépartis dans l’intervalle [−1, 1] pour afficher la fonction f (utilisez la
commande axis pour recadrer l’image).

2. On s’intéresse à présent à l’intégrale I =
∫ 1
−1 f(x) dx. On peut calculer la valeur de I

analytiquement et on trouve I = 2 − 1
e
∼= 1.6321. Calculez des valeurs approchées de I

en considérant les formules du point milieu, du trapèze et de Simpson avec N = 1, 9, 99, 999
où N est le nombre de sous-intervalles de formules composites. Utilisez les fonctions midpoint,
trapezoidal et simpson (déjà codées).

3. Reportez les erreurs calculées au point (b) dans un graphe montrant l’erreur en fonction de
H avec des échelles logarithmiques.

4. Estimez, à partir des graphes obtenus au point précédent, l’ordre de chacune des méthodes.
Comparez-les avec les ordres donnés au cours. Y a-t-il des différences? Pourquoi? (Regardez
les dérivées de f).

5. Pourquoi obtient-on de bien meilleurs résultats pour la méthode de Simpson avec un nombre
pair d’intervalles qu’avec un nombre impair (essayez avec N = 99 et ensuite N = 100)?

6. Refaites l’exercice avec N = 2, 10, 100, 1000.

Partie 1
[66]: f = lambda x : np.exp(x)*(x<=0) + (1)*(x>0)

a = -1; b = 1

49

x = np.linspace(a,b,1000)
y=f(x)

plt.plot(x, y, 'b')
plt.show()

Partie 2 On calcule tout d’abord la valeur exacte de l’intégrale, puis on calcule les erreurs, que
l’on stocke dans des vecteurs:

[67]: Iexact = 2 - np.exp(-1)

errmp = []
errtrap = []
errSim = []

N = [1,9,99,999]
#N = [2,10,100,1000]

for i in range(4) :
errmp.append(np.abs(Midpoint(a, b, N[i], f) - Iexact))
errtrap.append(np.abs(Trapezoidal(a, b, N[i], f) - Iexact))
errSim.append(np.abs(Simpson(a, b, N[i], f) - Iexact))

Partie 3
[68]: H = 2./np.array(N)

plt.plot(H, errmp, 'b:.', H, errtrap, 'c:*', H, errSim, 'g:*')

plt.plot(H, H**2 * (errmp[0]/H[0]**2)*5, 'k:', H, H**4 * (errSim[0]/H[0]**4)*5,␣
↪→'k:')

plt.legend(['rectangle', 'trapeze', 'Simpson', 'H^2', 'H^4'])
plt.xlabel('H'); plt.ylabel('err');

plt.xscale('log')

50

plt.yscale('log')
plt.grid(True)
plt.show()

Les graphes pour toutes les méthodes sont des droites. On remarque que lorsque H est divisé par
10, les erreurs sont environ divisées par 100. On peut donc supposer que les ordres sont 2 par
rapport à H. Pour le confirmer, on peut ajouter sur le graphe la pente représentant l’ordre 2 et
vérifier qu’elle est parallèle aux droites d’erreur.

Partie 4
[69]: slopeMP = (np.log(errmp[-1]) - np.log(errmp[0])) / (np.log(H[-1]) - np.

↪→log(H[0]))
slopeTrap = (np.log(errtrap[-1]) - np.log(errtrap[0])) / (np.log(H[-1]) - np.
↪→log(H[0]))

slopeSim = (np.log(errSim[-1]) - np.log(errSim[0])) / (np.log(H[-1]) - np.
↪→log(H[0]))

print(f'La convergence numérique est environ de ')
print(f'Rectangle : {slopeMP:.2f}')
print(f'Trapeze : {slopeTrap:.2f}')
print(f'Simpson : {slopeSim:.2f}')

La convergence numérique est environ de
Rectangle : 1.99
Trapeze : 1.99
Simpson : 1.99

Les graphiques sont parallèles à la droite H2 et donc l’ordre est 2 pour toutes les méthodes. Pour
la méthode du point milieu et du trapèze, c’est l’ordre auquel on s’attend d’après la théorie. Par
contre, pour Simpson, on pouvait s’attendre à un ordre 4. Le problème vient du fait que la fonction
n’est pas très régulière, puisque f ∈ C0([−1, 1]) mais f 6∈ C1([−1, 1]) puisque sa dérivée n’est pas
continue en x = 0. Dans la théorie, on demande f ∈ C4([−1, 1]) pour assurer l’ordre 4. On obtient
tout de même l’ordre 2 car, mis à part en x = 0, la fonction f est très régulière.

Partie 5 Si on regarde l’erreur pour la méthode de Simpson avec N = 99 et N = 100 sous-
intervalles

51

[70]: print (np.abs(Simpson(a, b, 99, f) - Iexact))
print (np.abs(Simpson(a, b, 100, f) - Iexact))

1.7004959483424287e-05
3.5117464491918327e-11

On obtient des valeurs d’environ 1.70 10−5 et 3.51 10−11. Les erreurs sont très différentes ! Voilà
pourquoi:

• si N est pair, le point x = 0 est un point xi (pour i = N/2) exactement entre deux sous-
intervalles. La fonction f est régulière à droite et à gauche, en particulier, on retrouve l’ordre
4 par rapport à H de chaque côté.

• si N est impair, le point x = 0 est au milieu d’un sous-intervalle. La fonction f n’est pas
régulière dans cet intervalle, ce qui donnt un ordre de convergence plus petit.

Partie 6 Il faut relancer les parties 2 et 3 avec N= [2,10,100,1000] à la place de N =
[1,9,99,999]

4 Résolution de systèmes linéaires

4.1 Méthodes Directes

D’abord quelques exemples d’utilisations de la factorisation LU et de Choleski, ensuite on passe aux
methodes itéreatives

4.1.1 Exercice 1 série 8

On considère le système linéaire Ax = b où :

A =


3 6 7

1 1 4

2 4 8

 , b =


4

5

6

 .

1. Calculez la factorisation LU de la matrice A avec Python à l’aide du code ci-dessous.

2. Résolvez le système linéaire Ax = b en utilisant la factorisation trouvée au point précédent
(Ne plus utiliser Python. Mais ici on va le faire)

3. Calculez le déterminant de la matrice A en utilisant sa factorisation LU .

[71]: # importing libraries used in this notebook
import numpy as np
import matplotlib.pyplot as plt

scipy.linalg.lu : LU decomposition
from scipy.linalg import lu
scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky

52

import pprint

np.set_printoptions(precision=4, suppress=True, linewidth=120)

Partie 1
[72]: A = np.array([[3, 6, 7],

[1, 1, 4],
[2, 4, 8]])

LU factorisation with pivoting
P, L, U = lu(A)

print("A = P L U")
pprint.pprint(P.dot(L.dot(U)))

print("P:")
pprint.pprint(P)

print ("L:")
pprint.pprint(L)

print ("U:")
pprint.pprint(U)

A = P L U
array([[3., 6., 7.],

[1., 1., 4.],
[2., 4., 8.]])

P:
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

L:
array([[1. , 0. , 0.],

[0.3333, 1. , 0.],
[0.6667, -0. , 1.]])

U:
array([[3. , 6. , 7.],

[0. , -1. , 1.6667],
[0. , 0. , 3.3333]])

Partie 2 Si P est l’identité, A = LU .

1. résolvez pour y tel que Ly = b par substitution progressive

2. résolvez pour x tel que Ux = y par substitution retrograde

Si P n’est pas l’identité, A = PLU .

53

Attention, une matrice de permutation est une matrice orthogonale car les colonnes sont orthonor-
mées. Donc P−1 = P T . Du coup : P TA = LU et

Ax = b⇔ P TAx = P Tb⇔ LUx = P Tb.

Alors il faut modifier les calculs précédants comme suit:

1. résolvez pour y tel que Ly = P Tb par substitution progressive

2. résolvez pour x tel que Ux = y par substitution retrograde

[73]: def subst_progressive(L, b):
"""
substitution progressive: résout y, L*y = b
Input:
- L: matrice carrée nxn, triangulaire inférieure
- b: vector de dimension n
Output:
- y: vector de dimension n
"""

Initialisation de la solution
y = np.zeros(L.shape[1])

La première ligne de Ly = b est L_{11} y_1 = b_1
Ensuite pour la ligne k on connait y_1, ..., y_{k-1} et elle s'écrit
L_{kk} y_k = b_k - (L_{k1} y_1 + ... L_{kk-1} y_{k-1})
for k in range(L.shape[0]):

sum_k est (L_{k1} y_1 + ... L_{kk-1} y_{k-1})
sum_k = 0
for j in range(k):

sum_k += L[k,j]*y[j]
y[k] = 1/L[k,k]*(b[k]-sum_k)

return y

def subst_retrograde(U, y):
"""
substitution retrograde: résout pour x, U*x = y
Input:
- U: matrice carrée nxn, triangulaire supérieure
- y: vector de dimension n
Output:
- x: vector de dimension n
"""

Initialisation de la solution
x = np.zeros(U.shape[1])

La dernière ligne de Yx = y est U_{nn} x_n = y_n
Ensuite pour la ligne k on connait x_n, ..., x_{k+1} et elle s'écrit

54

U_{kk} x_k = y_k - (U_{kk+1} x_{k+1} + ... U_{kn} y_{n})
for k in reversed(range(U.shape[0])):

sum_k est (U_{kk+1} x_{k+1} + ... U_{kn} y_{n})
sum_k = 0
for j in range(k+1, U.shape[0]):

sum_k += U[k,j]*x[j]
x[k] = 1/U[k,k]*(y[k]-sum_k)

return x

[74]: b = np.array([4, 5, 6])
Ptb = P.T.dot(b)

y = subst_progressive(L, Ptb)
print("y =", y)

x = subst_retrograde(U, y)
print("x =", x)

check the residual of the equation
print("residual =",b - A.dot(x))

y = [4. 3.6667 3.3333]
x = [3. -2. 1.]
residual = [0. 0. 0.]

Partie 3
detA = detP detL detU

[75]: # scipy.linalg.det : determinant
from scipy.linalg import det

det(P)*det(L)*det(U)

[75]: −10.0

4.1.2 Critère de Sylvester

Les mineurs principaux d’une matrice A ∈ Rn×n sont les déterminants des matrices Ap =
(ai,j)1≤i,j≤p, p = 1, ..., n.

Critère de Sylvester: une matrice symétrique A ∈ Rn×n est définie positive si et seulement si les
mineurs principaux de A sont tous positifs.

4.1.3 Exercice 2 série 8

On considère le système linéaire Ax = b où

55

A =

 ε 1 2
1 3 1
2 1 3

 .

1. Déterminez pour quelles valeurs du paramètre réel ε ∈ R, la matrice A est symétrique définie
positive.

2. Soit maintenant ε = 0. On veut résoudre le système Ax = b par une méthode directe; quelle
factorisation de la matrice A envisageriez-vous? Justifiez votre réponse.

3. En considérant ε = 2, vérifier que dans ce cas la matrice A est définie positive et calculer sa
factorisation de Cholesky A = LLT .

4. En supposant que b = (1, 1, 1)T , résolvez le système linéaire Ax = b en utilisant la factorisa-
tion de Cholesky calculée au point c).

Référence Python pour la factorisation de Cholesky : scipy.linalg.cholesky

Partie 1 En appliquant le critère de Sylvester, il suffit d’imposer


ε > 0,

det
(
ε 1
1 3

)
= 3ε− 1 > 0,

detA = 8ε− 11 > 0,

⇒ ε >
11

8
.

Partie 2 Si ε = 0 la matrice A est sym’etrique, mais elle n’est pas d’efinie positive; donc on ne
peut pas calculer la factorisation de Cholesky. On utilisera la m’ethode d’ ’elimination de Gauss avec
changement de pivot, puisque a11 = 0; par exemple, on peut consid’erer la matrice de permutation
P par lignes:

P =

 0 1 0
1 0 0
0 0 1

 .

On peut facilement voir que A = PLU avec

L =

 1 0 0
0 1 0
2 −5 1

 et U =

 1 3 1
0 1 2
0 0 11

 .

56

https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html

Partie 3 Si ε = 2, la matrice A est syméetrique définie positive. Ici on va utiliser A = LLT . Les
éléments de la matrice L de la factorisation de Cholesky de A sont:

l11 =
√
a11 =

√
2

l21 =
1

l11
· a21 =

1√
2

l22 =
√
a22 − l221 =

√
5

2

l31 =
1

l11
· a31 =

√
2

l32 =
1

l22
· (a32 − l31l21) = 0

l33 =
√
a33 − (l231 + l232) = 1

c’est-à-dire:

L =


√

2 0 0

1√
2

√
5

2
0

√
2 0 1

 .

[76]: # scipy.linalg.eigh : eigenvalues for symmetric matric
from scipy.linalg import eigh
scipy.linalg.eig : eigenvalues of a matrix
from scipy.linalg import eig

[77]: epsilon = 2
A = np.array([[epsilon, 1, 2],

[1, 3, 1],
[2, 1, 3]])

Is A symmetric ?
print(f'max(abs(A-AT)) = {np.max(np.abs(A-A.T))} ')

What are the eigenvlues of A ? (usually, use eig, but here A is symmetric,␣
↪→we can use eigh)

lk, v = eigh(A)
print(f'The eigenvalues of A are {lk}')

Cholesky factorisation: lower : return lower-triangular matrix, A = L L^T
L = cholesky(A, lower=True)
print(f"\n A = L^T L = {L.dot(L.T)}\n")

print (f"L = {L}")

max(abs(A-AT)) = 0
The eigenvalues of A are [0.4242 2.1873 5.3885]

A = LˆT L = [[2. 1. 2.]

57

[1. 3. 1.]
[2. 1. 3.]]

L = [[1.4142 0. 0.]
[0.7071 1.5811 0.]
[1.4142 0. 1.]]

Partie 4
[78]: b = np.array([1,1, 1])

y = np.linalg.solve(L,b)
x = np.linalg.solve(L.T,y)

print(x)

check the residual of the equation
print(b - A.dot(x))

[0.4 0.2 0.]
[0. 0. -0.]

4.1.4 Problèmes de précision (Exercice 3 série 8)

Les erreurs d’arrondis peuvent causer des différences importantes entre la solution calculée par la
méthode d’élimination de Gauss (MEG) et la solution exacte. Cela arrive si le conditionnement de
la matrice du système est très grand.

La matrice de Hilbert de taille n× n est une matrice symétrique définie par

aij =
1

i+ j − 1
, i, j = 1, . . . , n

On peut construire une matrice de Hilbert de taille n quelconque en utilisant la commande A =
scipy.linalg.hilbert(n). Par exemple, pour n = 4, on a:

A =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


On considère les systèmes linéaires Anxn = bn ou An est la matrice de Hilbert de taille n avec
n = 4, 6, 8, 10, 12, 14, . . . , 20 tandis que bn est choisi de sorte que la solution exacte soit xn =
(1, 1, · · · , 1)T .

1. Pour chaque n, calculez le conditionnement de la matrice

2. Résolvez le système linéaire par la factorisation LU et notez ~xLUn la solution calculée.

3. Dessinez le graphique avec le conditionnement obtenu ainsi que l’erreur rélative ‖xn −
xLUn ‖/‖xn‖ (où ‖ · ‖ est la norme euclidienne d’un vecteur, ‖x‖ =

√
xT · x). Utilisez une

échelle logarithmique pour l’axe y.

58

4. Sur le même graphique, reportez le conditionnement de la matrice A, np.linalg.cond(A)

Répétez la même chose avec la factorisation de Cholesky L = cholesky(A, lower=True) pour
n = 4, 6, 8, 10, 12. Que se passe-t-il si n = 14 ?

[79]: from scipy.linalg import hilbert

[80]: Nrange = range(2,20,2)
err = []
cond = []

for n in Nrange :
A = hilbert(n)
P, L, U = lu(A)

x = np.ones([n,1])

b = A.dot(x)

y = np.linalg.solve(L,P.T.dot(b))
xLU = np.linalg.solve(U,y)

err.append(np.linalg.norm(x-xLU) / np.linalg.norm(x))
cond.append(np.linalg.cond(A))

[81]: plt.plot(Nrange, err, 'b:.',Nrange, cond, 'g:.')

plt.xlabel('n'); plt.ylabel('err');
plt.xscale('log')
plt.yscale('log')
plt.grid(True)
plt.show()

[82]: Nrange = range(2,13,2)
err = []
cond = []

59

for n in Nrange :
A = hilbert(n)
L = cholesky(A, lower=True)

x = np.ones([n,1])

b = A.dot(x)

y = np.linalg.solve(L,b)
xCho = np.linalg.solve(L.T,y)

err.append(np.linalg.norm(x-xCho) / np.linalg.norm(x))
cond.append(np.linalg.cond(A))

[83]: plt.plot(Nrange, err, 'b:.',Nrange, cond, 'g:.')

plt.xlabel('n'); plt.ylabel('err');
plt.xscale('log')
plt.yscale('log')
plt.grid(True)
plt.show()

[84]: n = 14
A = hilbert(n)
L = cholesky(A, lower=True)
lk, v = eigh(A)

print(f'lk[0] = {lk[0]:0.5e} , the matrix is not positive definite. Let''s␣
↪→verify with the first eigenvector')

lk[0] = -9.13148e-18 , the matrix is not positive definite. Lets verify with the
first eigenvector

La première valeur propre est négative, cela signifie que (v, Av) = (v, λv) = λ(v,v) = λ‖v‖2 < 0,
où v est le vecteur propre associé à cette valeur propre λ négative.

60

Vérifions:

[85]: print (A.dot(v[0]).T.dot(v[0]))

0.007555533559357492

Pourquoi ? En vérité, le calcul des valeurs et vecteurs propres de A a aussi un problème d’arrondis
à cause du conditionnement. On peut en effet vérifier que le rapport entre les composantes de v et
Av n’est ni égale à λ, ni à une autre constante :

[86]: print(v[0]/A.dot(v[0]))

[-0. -0. -0. 0.0001 -0.0008 0.0052 -0.0292 0.1421
-0.6044 -2.2364 7.0956 18.675 -37.1359

40.0708]

[]:

[]:

4.2 Méthodes itératives

[87]: # importing libraries used in this notebook
import numpy as np
import matplotlib.pyplot as plt

scipy.linalg.eig : eigenvalues of a matrix
from scipy.linalg import eig
scipy.linalg.lu : LU decomposition
from scipy.linalg import lu
scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky
scipy.linalg.hilbert : Hilbert matrix
from scipy.linalg import hilbert

np.set_printoptions(precision=4, suppress=True, linewidth=120)

4.3 Méthode de Richardson

A et b donnés; on cherche à approximer la solution x de Ax = b.

Soit x(0) donné, r(0) = b−Ax(0) pour k = 0, 1, 2, ... :

trouvez z(k) tel que Pz(k) = r(k)

choisissez αk
x(k+1) = x(k) + αkz

(k)

r(k+1) = r(k) − αkAz(k).

61

4.3.1 Exemple 1

On considère la matrice A et le terme de droite b suivants

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 b =


1
−1
1
−1

 .

4.3.2 Méthode de Jacobi

La diagonale de A est

D =


1 0 0 0
0 6 0 0
0 0 11 0
0 0 0 16

 ;

Prenond α = 1 et P = D. La méthode de Richardson dans ce cas correspond à la méthode de
Jacobi et s’écrit comme suit :

[88]: A = np.array([[1,2,3,4],
[5,6,7,8],
[9,10,11,12],
[13,14,15,16]])

b = np.array([1,-1,1,-1])

Diagonale de A
P = np.diag(np.diag(A))
alpha = 1

Initialisation, par exemple
k=0
xk = np.array([1,0,0,0])
résidu
rk = b- A.dot(xk)

[89]: # Une itération de Richardson

résidu préconditionné :
zk = np.linalg.solve(P,rk)

correction de la solution, x(k+1) :
xk1 = xk + alpha*zk
résidu
rk = b- A.dot(xk1)

Préparer la prochaine itération
xk = xk1

62

print (xk)

[1. -1. -0.7273 -0.875]

Si on execute plusieurs fois ces itérations, la méthode ne converge pas. Pourquoi ?

Dans ce cas, la matrice d’itération de la méthode de Richardson est égale à

B = D−1(D −A) = I −D−1A =


0 −2 −3 −4
−5/6 0 −7/6 −4/3
−9/11 −10/11 0 −12/11
−13/16 −14/16 −15/16 0

 .

[90]: # Jacobi
the first diag extracts the diagonal of A, the second one builds a diagonal␣
↪→matrix starting from a vector

D = np.diag(np.diag(A))

efficiently computing the Jacobi iteration matrix without explicitely␣
↪→computing the inverse of D

Bj = np.linalg.solve(D,(D-A))

What are the eigenvlues of Bj ?
lk, v = eig(Bj)
print(f'The eigenvalues of Bj are {lk}\n')
print(f'The spectral radius of Bj is {np.max(np.abs(lk)):.2f} > 1, therefore the␣
↪→Jacobi method does not converge')

The eigenvalues of Bj are [-3.9362+0.j 1.9362+0.j 1. +0.j 1. +0.j]

The spectral radius of Bj is 3.94 > 1, therefore the Jacobi method does not
converge

4.3.3 Méthode de Gauss-Seidel

Prenond α = 1 et P la partie triangulaire inférieure de A avec la diagonale. La méthode de
Richardson dans ce cas correspond à la méthode de Gauss-Seidel et s’écrit comme suit :

[91]: # Gauss-Seidel
Return a copy of an array with elements above the k-th diagonal set to zero.
Pgs = np.tril(A, k=0)

efficiently computing the Gauss-Siedel iteration matrix without explicitely␣
↪→computing the inverse of D

Bgs = np.linalg.solve(Pgs,(Pgs-A))

What are the eigenvlues of Bgs ?
lk, v = eig(Bgs)
print(f'The eigenvalues of Bgs are {lk}\n')

63

print(f'The spectral radius of Bgs is {np.max(np.abs(lk)):.2f} > 1, therefore␣
↪→the Gauss-Seidel method does not converge')

The eigenvalues of Bgs are [0. +0.j 2.0682+0.j 1. +0.j 1. +0.j]

The spectral radius of Bgs is 2.07 > 1, therefore the Gauss-Seidel method does
not converge

La méthode de Gauss-Seidel appliqué à cette matrice ne converge pas.

4.3.4 Exercice

Réprenez ces deux méthodes avec la matrice

A =


3 2 1 0
3 4 3 2
3 2 5 2
1 2 3 4

 .

A = np.array([[3,2,1,0],[3,4,3,2],[3,2,5,2],[1,2,3,4]])

1. Vérifiez si Jacobi et Gauss-Seidel convergent à l’aide de la matrice d’itérations
2. Calculez les premier 10 itérations de ces méthodes.

4.4 Exemple 2

Considerez la matrice A et le vecteur b suivants

A =


3 2 1

1 4 1

2 4 8

 , b =

 4
5
6

 .

Exprimez (sans calculer) P , B, et ρ(B) dans le cas de Jacobi et Gauss-Seidel.

[92]: A = np.array([[3, 2, 1],
[1, 4, 1],
[2, 4, 8]])

[93]: # Jacobi
first diag extract the diagonal of A, the second builds a diagonal matrix␣
↪→starting from a vector

D = np.diag(np.diag(A))

Bj = np.linalg.solve(D,(D-A))
What are the eigenvlues of Bj ?
lk, v = eig(Bj)
print(f'The eigenvalues of Bj are {lk}\n')
print(f'The spectral radius of Bj is {np.max(np.abs(lk)):.2f} < 1, therefore␣
↪→Jacobi converges')

64

The eigenvalues of Bj are [-0.7026+0.j 0.4205+0.j 0.2821+0.j]

The spectral radius of Bj is 0.70 < 1, therefore Jacobi converges

[94]: # Gauss-Seidel
Return a copy of an array with elements above the k-th diagonal zeroed.
Pgs = np.tril(A,k=0)

Bgs = np.linalg.solve(Pgs,(Pgs-A))
What are the eigenvlues of Bgs ?
lk, v = eig(Bgs)
print(f'The eigenvalues of Bgs are {lk} whose moduli are {np.absolute(lk)} \n')
print(f'The spectral radius of Bgs is {np.max(np.absolute(lk)):.2f} < 1,␣
↪→therefore Gauss-Seidel converges')

The eigenvalues of Bgs are [0. +0.j 0.1667+0.1179j 0.1667-0.1179j] whose
moduli are [0. 0.2041 0.2041]

The spectral radius of Bgs is 0.20 < 1, therefore Gauss-Seidel converges

4.5 Exemple 3 - Jacobi et Gauss-Seidel avec relaxation

Nous avons vu que la méthode de Jacobi appliquée à la matrice

A =


3 2 1 0
3 4 3 2
3 2 5 2
1 2 3 4


ne converge pas, alors que celle de Gauss-Seidel converge.

Nous allons utiliser la méthode de Richardson stationnaire avec un paramètre de relaxation α
constant pour voir si on peut améliorer la convergence.

On va utiliser la méthode de Richardson stationnaire avec un paramètre de relaxation α constant
pour voir si on peut améliorer la convergence.

Partie 1 - Matrices d’itérations La matrice d’itérations pour la méthode de Richardson est
B(αk) = I − αkP−1A. En particulier, pour α constant, nous pouvons faire un graphique du rayon
spectral ρ(B(α)) dans les cas d’un préconditionneur égale à la diagonale de A (similaire à Jacobi)
ou au triangle inférieur de A (similaire à Gauss-Seidel):

Voici comment voir que B(αk) = I − αkP−1A :

Pour Richardson préconditionné nous avons que

Px(k+1) = Px(k) + αk(b−Ax(k))

Px(k+1) = αkb+ (P − αkA)x(k)

x(k+1) = αkP
−1b+ P−1(P − αkA)x(k)

65

On reconnait la matric d’itération en B(αk) = P−1(P − αkA) = I − αkP−1A)

[95]: A = np.array([[3,2,1,0],
[3,4,3,2],
[3,2,5,2],
[1,2,3,4]])

D = np.diag(np.diag(A))
Pgs = np.tril(A,k=0)

Alphas = np.linspace(0, 2, 3001)

rhoBj = []
rhoBgs = []

for alpha in Alphas :
Bgs = np.linalg.solve(Pgs,(Pgs-alpha*A))
Bj = np.linalg.solve(D,(D-alpha*A))

lk, v = eig(Bj)
rhoBj.append(np.max(np.abs(lk)))

lk, v = eig(Bgs)
rhoBgs.append(np.max(np.abs(lk)))

plt.plot(Alphas, rhoBj, 'b:', label=r'$\rho(B_J(\alpha))$')
plt.plot(Alphas, rhoBgs, 'g:', label=r'$\rho(B_{GS}(\alpha))$')

plt.xlabel(r'α'); plt.ylabel(r'ρ');
plt.title('Spectral radius')
plt.grid(True)
plt.legend(['$\\rho(B_J(\\alpha))$','$\\rho(B_{GS}(\\alpha))$'])
plt.show()

On constate que:

1. En utilisant P = D, Richardson converge pour α / 0.8 and the optimal one is for α ≈ 0.75

66

2. En utilisant P égal au triangle inférieur de A, Richardson converge pour α / 2 ; le paramètre
optimale est α ≈ 1.5

Partie 2 - Implémentation de la Méthode de Richardson Définissez une fonction Python
qui implémente la méthode de Richardson stationnaire avec la structure suivante:

def Richardson(A, b, x0, P, alpha, maxIterations, tolerance) :
Stationary Richardson method to approximate the solution of Ax=b
INPUT :
x0 : initial guess
P : preconditioner
alpha : constant relaxation parameter
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUT :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

La méthode de Richardson, comme toute méthode iterative a besoin d’un critère d’arrêt. Dans ce
cas, le plus simple est de poser les critères suivants:

1. On fixe le nombre maximal d’itérations
2. Le résidu relatif est plus petit qu’une tolérance ε :

‖b−Ax(k)‖
‖b‖

< ε

On s’arrête dès que l’un des ces critières est rempli.

[96]: def Richardson(A, b, x0, P, alpha, maxIterations, tolerance) :
Stationary Richardson method to approximate the solution of Ax=b
INPUT :
x0 : initial guess
P : preconditioner
alpha : constant relaxation parameter
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUT :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

we do not keep track of all the sequence, just the last two entries
xk = x0
rk = b - A.dot(xk)

RelativeResidualNorm = []
for k in range(maxIterations) :

zk = np.linalg.solve(P,rk)
xk = xk + alpha*zk

67

rk = b - A.dot(xk)

you can verify that this is equivalent to
rk = rk - alpha*A.dot(zk)
RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if (RelativeResidualNorm[-1] < tolerance) :

print(f'Richardson converged in {k+1} iterations with a relative␣
↪→residual of {RelativeResidualNorm[-1]:1.3e}')

return xk, RelativeResidualNorm

print(f'Richardson did not converge in {maxIterations} iterations, the␣
↪→relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}')

return xk, RelativeResidualNorm

Partie 3 - Utilisation de la Méthode de Richardson Utilisez la fonction Richardson pour
approcher la solution de Ax = b pour b = (0, 1,−1, 1)T avec une tolérance sur le résidu relatif de
10−6 et le vecteur nul comme point initial et un nombre maximum d’itérations de 200

1. En utilisant P = D, avec : α = 0.7, 0.75, 0.79, 0.81, 0.9
2. En utilisant P égal au triangle inférieur de A, avec : α = 1, 1.5, 1.95, 2.05

Comment interprétez-vous ces résultats ?

[97]: b = np.array([0,1,-1,1])
Define the initial guess
x0 = 0*b # trick to have the right size for x0

tolerance = 1e-6
maxIter = 200

[98]: # Jacobi-like preconditioner
P = np.diag(np.diag(A))
legend = []

for alpha in [0.7, 0.75, 0.79,0.81, 0.9] :
x,relRes = Richardson(A,b,x0,P,alpha,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append(str(alpha))

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')
plt.show()

68

Richardson converged in 79 iterations with a relative residual of 8.984e-07
8.984498815385382e-07
Richardson converged in 77 iterations with a relative residual of 7.593e-07
7.592562065358359e-07
Richardson did not converge in 200 iterations, the relative residual is
3.379e-06
3.378918951868571e-06
Richardson did not converge in 200 iterations, the relative residual is
8.699e-02
0.08698843985290847
Richardson did not converge in 200 iterations, the relative residual is
2.576e+16
2.575559592693911e+16

[99]: # Gauss-Seidel-like preconditioner
P = np.tril(A,k=0)
legend = []

for alpha in [1, 1.5, 1.95,2.05] :
x,relRes = Richardson(A,b,x0,P,alpha,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append(str(alpha))

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Richardson converged in 30 iterations with a relative residual of 9.521e-07
9.520753485686893e-07
Richardson converged in 22 iterations with a relative residual of 7.144e-07
7.144137957248418e-07

69

Richardson did not converge in 200 iterations, the relative residual is
1.071e-04
0.00010708766426366904
Richardson did not converge in 200 iterations, the relative residual is
5.283e+04
52829.70703107408

Partie 4 - Implémentation de la Méthode du Gradient Préconditionné Définissez une
fonction Python qui implémente la méthode de Gradient Préconditionné et qui a la structure

def PrecGradient(A, b, x0, P, maxIterations, tolerance) :
Preconditioned Gradient method to approximate the solution of Ax=b
INPUT :
x0 : initial guess
P : preconditioner
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUTS :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

[100]: def PrecGradient(A, b, x0, P, maxIterations, tolerance) :
Preconditioned Gradient method to approximate the solution of Ax=b
INPUT :
x0 : initial guess
P : preconditioner
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUTS :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

we do not keep track of all the sequence, just the last two entries
xk = x0
rk = b - A.dot(xk)

70

RelativeResidualNorm = []
for k in range(maxIterations) :

zk = np.linalg.solve(P,rk)
Azk = A.dot(zk)

alphak = zk.dot(rk) / zk.dot(Azk)

xk = xk + alphak*zk

rk = b - A.dot(xk)
you can verify that this is equivalent to
rk = rk - alphak*A.dot(zk)
RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if (RelativeResidualNorm[-1] < tolerance) :

print(f'Gradient converged in {k+1} iterations with a relative␣
↪→residual of {RelativeResidualNorm[-1]:1.3e}')

return xk, RelativeResidualNorm

print(f'Graident did not converge in {maxIterations} iterations, the␣
↪→relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}')

return xk, RelativeResidualNorm

Partie 5 - Implémentation de la Méthode du Gradient Conjugué Préconditionné
Définissez une fonction Python qui implémente la méthode du Gradient Conjugué Préconditionné
avec la structure suivante:

def PrecConjugateGradient(A, b, x0, P, maxIterations, tolerance) :
Preconditionate Conjugate Gradient method to approximate the solution of Ax=b
INPUT :
x0 : initial guess
P : preconditioner
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUTS :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

[101]: def PrecConjugateGradient(A, b, x0, P, maxIterations, tolerance) :
Preconditionate Conjugate Gradient method to approximate the solution of␣

↪→Ax=b
INPUT :
x0 : initial guess
P : preconditioner
maxIterations : maximum number of iterations

71

tolerance : tolerance for relative residual
OUTPUTS :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

we do not keep track of all the sequence, just the last two entries
xk = x0
rk = b - A.dot(xk)
zk = np.linalg.solve(P,rk)
pk = zk

RelativeResidualNorm = []
for k in range(maxIterations) :

Apk = A.dot(pk)
alphak = pk.dot(rk) / pk.dot(Apk)

xk = xk + alphak*pk

rk = rk - alphak*Apk
you can verify that this is equivalent to
rk = b - A.dot(xk)

zk = np.linalg.solve(P,rk)

betak = Apk.dot(zk) / pk.dot(Apk)
pk = zk - betak*pk

RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if (RelativeResidualNorm[-1] < tolerance) :

print(f'Conjugate Gradient converged in {k+1} iterations with a␣
↪→relative residual of {RelativeResidualNorm[-1]:1.3e}')

return xk, RelativeResidualNorm

print(f'Conjugate Gradient did not converge in {maxIterations} iterations,␣
↪→the relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}')

return xk, RelativeResidualNorm

Partie 6 - Utilisation de la Méthode du Gradient Preconditioné et du Gradient Con-
jugué Préconditionné Utilisez les fonctions PrecGradient et PrecConjugateGradient pour
approcher la solution de Ax = b pour b = (0, 1,−1, 1)T avec une tolérance sur le résidu relatif de
10−6 et le vecteur nul comme point initial, et un nombre maximum d’itérations de 200

1. En utilisant P = D
2. En utilisant P égal au triangle inférieur de A

72

Comment interprétez-vous ces résultats ?

[102]: legend = []

Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Conj Gradient, P=D')

Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Gradient converged in 62 iterations with a relative residual of 8.146e-07
8.145842032913786e-07
Conjugate Gradient converged in 31 iterations with a relative residual of
6.323e-07
6.323181670011519e-07
Gradient converged in 25 iterations with a relative residual of 9.177e-07
9.177277863663321e-07
Conjugate Gradient converged in 31 iterations with a relative residual of
6.529e-07

73

6.529042663207426e-07

4.6 Autres Exemples

Répétez les expériences numériques ci-dessous pour approcher les solutions de

(
2 1

1 3

)
x =

(
1
0

)
,

(
2 2

−1 3

)
x =

(
1
0

)
et

(
5 7

7 10

)
x =

(
1
0

)
.

Pour quelles matrices et méthodes vous attendez-vous à une convergence ? Pour la dernière matrice,
le résultat n’est pas celui attendu, pourquoi ?

[103]: b = np.array([1,0])
Define the initial guess
x0 = np.array([1,1])

tolerance = 1e-6
maxIter = 10
A = np.array([[2,1],[1,3]])
A = np.array([[2,2],[-1,3]])
A = np.array([[5,7],[7,10]])

legend = []

To complete: similarly to previous example:
1) Jacobi, Gauss-Seidel (simple)
2) PrecGradient and PrecConjGradient, with
both Jacobi-like and Gauss-Seidel-like preconditioning

1) Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')

74

legend.append('Jacobi')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Conj Gradient, P=D')

Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Gauss-Seidel')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Richardson did not converge in 10 iterations, the relative residual is 5.751e-04
0.0005751203645832735
Gradient converged in 10 iterations with a relative residual of 4.401e-07
4.40060404871371e-07
Conjugate Gradient converged in 2 iterations with a relative residual of
4.710e-16
4.710277376051325e-16
Richardson converged in 9 iterations with a relative residual of 5.954e-07
5.953741807340762e-07
Gradient converged in 7 iterations with a relative residual of 5.098e-07
5.098498742819304e-07

75

Conjugate Gradient converged in 2 iterations with a relative residual of
3.511e-16
3.510833468576701e-16

La matrice de Hilbert Peut-on utiliser une méthode de Richardson pour résoudre le problème
du mauvais conditionnement de la matrice de Hilbert ?

[104]: n = 10
A = hilbert(n)
xexact = np.ones(n)
b = A.dot(xexact)

Define the initial guess
x0 = b

tolerance = 1e-6
maxIter = 10

legend = []

To complete: similarly to previous example:
1) Jacobi, Gauss-Seidel (simple)
2) PrecGradient and PrecConjGradient, with
both Jacobi-like and Gauss-Seidel-like preconditioning

1) Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Jacobi')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)

76

print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Conj Gradient, P=D')

Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Gauss-Seidel')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Richardson did not converge in 10 iterations, the relative residual is 4.305e+08
The relatove residual and absolute error are : 4.305e+08 1.847e+09

Graident did not converge in 10 iterations, the relative residual is 2.066e-02
The relatove residual and absolute error are : 2.066e-02 8.555e-01

Conjugate Gradient converged in 5 iterations with a relative residual of
2.692e-08

77

The relatove residual and absolute error are : 2.692e-08 2.280e-02

Richardson did not converge in 10 iterations, the relative residual is 2.883e-03
The relatove residual and absolute error are : 2.883e-03 4.243e-01

Graident did not converge in 10 iterations, the relative residual is 1.158e-03
The relatove residual and absolute error are : 1.158e-03 4.149e-01

Conjugate Gradient did not converge in 10 iterations, the relative residual is
6.569e-04
The relatove residual and absolute error are : 6.569e-04 4.205e-01

[]:

4.7 Compléments

[105]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

scipy.linalg.lu : LU decomposition
from scipy.linalg import lu
scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky
from scipy.linalg import hilbert

from IterativeMethodsLib import *

Dans le cas d’une matrice mal conditionnée, on peut essayer d’utiliser la factorisation LU ou de
Cholesky comme préconditionneur. Mais cela ne marche pas forcément . . .

[106]: n = 4
A = hilbert(n)

78

D = np.diag(np.diag(A))

MaxIterations = 1000

x = np.ones([n,1])
b = A.dot(x)
alpha = 0.5

we do not keep track of all the sequence, just the last two entries
xk = b
rk = b - A.dot(xk)

RelativeError = []
residualNorm = []

We rewrite Richardson for the sake of the example:
for k in range(MaxIterations) :

zk = np.linalg.solve(D,rk)

xk = xk + alpha*zk
rk = rk - alpha*A.dot(zk)
#rk = b - A.dot(xk)

RelativeError.append(np.linalg.norm(x-xk) / np.linalg.norm(x))
residualNorm.append(np.linalg.norm(rk))

[107]: #plt.plot(range(MaxIterations), RelativeError, 'b:.')
plt.plot(range(MaxIterations), RelativeError, 'b:.',range(MaxIterations),␣
↪→residualNorm, 'g:.')

plt.xlabel('n'); plt.ylabel('err');
plt.xscale('log')
plt.yscale('log')
plt.grid(True)
plt.legend(['Rel err','res'])
plt.show()

79

[108]: n = 10
A = hilbert(n)

epsilon = 2
#A = np.array([[epsilon, 1, 2],
[1, 3, 1],
[2, 1, 3]])

B = np.diag(np.diag(A, k=1),k=1) + np.diag(np.diag(A, k=0),k=0) + np.diag(np.
↪→diag(A, k=-1),k=-1)

L = cholesky(B, lower=True)
P, L, U = lu(A)

MaxIterations = 30

x = np.ones([n,1])
b = A.dot(x)
alpha = 0.5

we do not keep track of all the sequence, just the last two entries
xk = b
rk = b - A.dot(xk)

RelativeError = []
residualNorm = []

for k in range(MaxIterations) :

y = np.linalg.solve(L,rk)
zk = np.linalg.solve(L.T,y)

y = np.linalg.solve(L,P.T.dot(rk))
zk = np.linalg.solve(U,y)

xk = xk + alpha*zk

80

rk = rk - alpha*A.dot(zk)
#rk = b - A.dot(xk)

RelativeError.append(np.linalg.norm(x-xk) / np.linalg.norm(x))
residualNorm.append(np.linalg.norm(rk))

[109]: #plt.plot(range(MaxIterations), RelativeError, 'b:.')
plt.plot(range(MaxIterations), RelativeError, 'b:.',range(MaxIterations),␣
↪→residualNorm, 'g:.')

plt.xlabel('n'); plt.ylabel('err');
plt.xscale('log')
plt.yscale('log')
plt.grid(True)
plt.legend(['Rel err','res'])
plt.show()

[]:

4.8 Problèmes d’arrondis

Voyons comment l’ordre dans la somme des ligne d’une matrice de Hilbert change le résultat. Pour
rappel, la matrice de Hilbert de taille n× n est une matrice symétrique définie par

aij =
1

i+ j − 1
, i, j = 1, . . . , n

donc la somme d’une ligne si est

si =

n∑
j=1

1

i+ j − 1
, i = 1, . . . , n

On peut la calculer de manière exacte

81

[110]: import fractions
import numpy as np
from scipy.linalg import hilbert

[111]: def SumHilbertLines (n) :
s = []
for i in range(n) :

s.append(fractions.Fraction(0,1))
for j in range(n) :

s[i] = s[i] + fractions.Fraction(1,i+j-1+2)
print (f's[{i}] = {s[i]}')

return s

Differents méthodes pour faire la somme :

[112]: def regularSum(A) :
return np.sum(A,axis=1)

def dotSum(A) :
n = A.shape[0]
x = np.ones(n)
return A.dot(x)

def onebyoneSum(A) :
n = A.shape[0]
s = np.zeros(n)
for i in range(n) :

for j in range(n) :
s[i] = s[i] + A[i,j]

return s

##
def kahan_sum(a, axis=0):

'''Kahan summation of the numpy array along an axis.
'''
s = np.zeros(a.shape[:axis] + a.shape[axis+1:])
c = np.zeros(s.shape)
for i in range(a.shape[axis]):

https://stackoverflow.com/a/42817610/353337
y = a[(slice(None),) * axis + (i,)] - c
t = s + y
c = (t - s) - y
s = t.copy()

return s

82

def kahanSum(A) :
Kahan Sum

n = A.shape[0]
b = np.zeros(n)
for k in range(n) :

b[k] = kahan_sum(A[k,:])
return b

##

def kahanSortedSum(A) :
n = A.shape[0]
b = np.zeros(n)
for k in range(n) :

ind = np.argsort(np.abs(A[k,:]), axis=0)
b[k] = kahan_sum(A[k,ind])

return b

##

def sortedSum(A) :
n = A.shape[0]
b = np.zeros(n)
for k in range(n) :

ind = np.argsort(np.abs(A[k,:]), axis=0)
b[k] = np.sum(A[k,ind])

return b

[113]: n = 1000
s = SumHilbertLines (n)

A = hilbert(n)

s_r = regularSum(A)
s_d = dotSum(A)
s_o = onebyoneSum(A)
s_s = sortedSum(A)
s_kr = kahanSum(A)
s_ks = kahanSortedSum(A)

[114]: print(np.max(np.abs(s - s_r)))
print(np.max(np.abs(s - s_d)))
print(np.max(np.abs(s - s_o)))

83

print(np.max(np.abs(s - s_s)))
print(np.max(np.abs(s - s_kr)))
print(np.max(np.abs(s - s_ks)))

8.881784197001252e-16
1.7763568394002505e-15
9.769962616701378e-15
8.881784197001252e-16
8.881784197001252e-16
8.881784197001252e-16

[]:

[]:

5 Dérivée numérique

Soit f : [a, b]→ R, de classe C1 et x0 ∈ [a, b]. La dérivée f ′(xo) est donnée par

f ′(x0) = lim
h→0+

f(x0 + h)− f(x0)

h
,

= lim
h→0+

f(x0)− f(x0 − h)

h
,

= lim
h→0

f(x0 + h)− f(x0 − h)

2h
.

Soient x0 ∈ [a, b], (Dy) une approximation de f ′(x0) et (D2y) une approximation de f ′′(x0).

On appelle

• différence finie progressive l’approximation

(Dy)P =
f(x0 + h)− f(x0)

h

• différence finie rétrograde l’approximation

(Dy)R =
f(x0)− f(x0 − h)

h

• différence finie centrée l’approximation

(Dy)C =
f(x0 + 1

2h)− f(x0 − 1
2h)

h

• différence finie centrée d’ordre 2 l’approximation

(D2y)C =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2

84

[115]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

Les différences finies progressive, rétrograde et centrée approchent la dérivée de la fonction au le
point x0.

[116]: # Define a function and a point x0
f = lambda x : 0.25*(x-4)**3 - 4*(x-4)**2 +6
x0 = 5

Choosing finite difference size
h = 4

Defininig first order finite differences
DP = (f(x0 + h) - f(x0)) / h
DR = (f(x0) - f(x0-h)) / h
DC = (f(x0 + h/2) - f(x0-h/2)) / h

defining the straight lines with slope equal to the FDs
dfp = lambda x : f(x0) + DP*(x-x0)
dfr = lambda x : f(x0) + DR*(x-x0)
dfc = lambda x : f(x0-h/2) + DC*(x-x0+h/2)

Drowing points
z = np.linspace(-5, 22, 100)

plt.plot(z, dfp(z), 'g:', z, dfr(z), 'b:', z, dfc(z), 'r:')
plt.plot(z, f(z), 'k', x0,f(x0),'ro')

plt.xlabel('x'); plt.ylabel('$f(x)$');
plt.legend(['D^P', 'D^R', 'D^C', 'f'])
plt.show()

La différence finie d’ordre 2 approche la deuxième dérivée de la fonction au le point x0.

85

Pour le voir graphiquement, on peut dessiner une fonction quadratique qui a la forme

p2(x) = f(x0) + (Dy)C (x− x0) +
1

2
(D2y) (x− x0)2

[117]: # Define a function and a point x0
f = lambda x : 0.25*(x-4)**3 - 4*(x-4)**2 +6
x0 = 5

Choosing finite difference size
h = 4

Defininig first order centered finite differences
DC = (f(x0 + h/2) - f(x0-h/2)) / h

Defininig second order centered finite differences
D2 = (f(x0 + h) - 2* f(x0) + f(x0-h)) / (h**2)

defining the parabola going through (x_0, y_0)
parabola = lambda x : f(x0) + DC*(x-x0) + 0.5 * D2 * (x-x0)**2

Drowing points
z = np.linspace(-5, 22, 100)

plt.plot(z, parabola(z), 'g:')
plt.plot(z, f(z), 'k', x0,f(x0),'ro')

plt.xlabel('x'); plt.ylabel('$f(x)$');
plt.legend(['parabola', 'f'])
plt.show()

5.1 Exercice

Il s’agit de vérifier numériquement que

86

∣∣f ′(x0)− (Dy)P
∣∣ = O(h1).

On pose x0 = 1, f(x) = sin(x) ∀x ∈ R

Calculez l’erreur commise en utilisant la différence finie progressive.

Quelle est la valeur de l’erreur pour h=0.1?

Ensuite vérifiez numériquement l’ordre pour (Dy)R et (Dy)C .

[118]: def DPerror(f,df, x0,h) :
formule de differences finies
DP = (f(x0 + h) - f(x0)) / h
err = abs(DP-df(x0));
return err

def DRerror(f,df, x0,h) :
formule de differences finies
DR = (f(x0) - f(x0-h)) / h
err = abs(DR-df(x0));
return err

def DCerror(f,df, x0,h) :
formule de differences finies
DC = (f(x0 + h/2) - f(x0-h/2)) / h
Similarly, it is possible to define
DC = (f(x0 + h) - f(x0-h)) / (2*h)
err = abs(DC-df(x0));
return err

This function just provides a line to compare the convergence in a log-log␣
↪→plot.

from FiniteDifferenceLib import sampleConvergence
sampleConvergence(h,order,ref) :
computes a pseudo order of convergence on h
ref is a reference maximum value

x0 = 0.2

h = 2**np.linspace(-32,-1,10)
plt.plot(h, DPerror(np.sin, np.cos, x0, h) , 'o')
plt.plot(h, DRerror(np.sin, np.cos, x0, h) , '*')
plt.plot(h, DCerror(np.sin, np.cos, x0, h) , '*')

plt.plot(h, sampleConvergence(h, 1, 1e-1) , ':',

87

h, sampleConvergence(h, 2, 1e-1) , ':')

plt.xlabel('h'); plt.ylabel('Error');
plt.legend(['DP error','DR error', 'DC error', '$O(h^1)$', '$O(h^2)$'])
plt.xscale('log')
plt.yscale('log')
plt.show()

5.2 Exercice

Il s’agit de vérifier numériquement que

∣∣f ′′(x0)− (D2y)
∣∣ = O(h2).

On pose x0 = 1, f(x) = sin(x) ∀x ∈ R

Calculez l’erreur commise par ce schéma.

Que vaut l’erreur pour h=0.1?

[119]: def D2error(f,df, x0,h) :
formule de differences finies
D2 = (f(x0 + h) - 2* f(x0) + f(x0-h)) / (h**2)
err = abs(D2-df(x0));
print(' x0 %e h %e erreur %e \n',x0,h,err)

return err

x0 = 0.2

df = lambda x : -np.sin(x)

h = 2**np.linspace(-10,-1,10)
plt.plot(h, D2error(np.sin, df, x0, h) , 'o')
plt.plot(h, sampleConvergence(h, 1, 1e-2) , ':',

h, sampleConvergence(h, 2, 1e-2) , ':')

88

plt.xlabel('h'); plt.ylabel('D2 error');
plt.legend(['D2 error', '$O(h^1)$', '$O(h^2)$'])
plt.xscale('log')
plt.yscale('log')
plt.show()

5.3 Exercice

Il s’agit de vérifier numériquement que

∣∣∣∣f ′(x0)− 3f(x0)− 4f(x0 − h) + f(x0 − 2h)

2h

∣∣∣∣ = O(h2).

Cette formule de différences finies est à l’origine du schéma "BDF2’ ’ pour résoudre numériquement
des équations différentielles (Chapitre 9 du livre).

On pose x0 = 1, f(x) = sin(x) ∀x ∈ R

Calculez l’erreur commise par ce schéma.

Que vaut l’erreur pour h=0.1?

[120]: def bdf2error(f,df, x0,h) :
formule de differences finies BDF2
diff = (3*f(x0)-4*f(x0-h)+f(x0-2*h))/(2*h);
err = abs(diff-df(x0));
print(' x0 %e h %e erreur %e \n',x0,h,err)

return err

x0 = 0.2

h = 2**np.linspace(-10,-1,10)
plt.plot(h, bdf2error(np.sin, np.cos, x0, h) , 'o')
plt.plot(h, sampleConvergence(h, 1, 1e-1) , ':',

h, sampleConvergence(h, 2, 1e-1) , ':')

89

plt.xlabel('h'); plt.ylabel('BDF2 error');
plt.legend(['BDF2 error', '$O(h^1)$', '$O(h^2)$'])
plt.xscale('log')
plt.yscale('log')
plt.show()

6 Equations Différentielles Ordinaires

6.1 Problème de Cauchy

f : R+ × R → R continue, y0 ∈ donné. On cherche y : t ∈ I ⊂+→ y(t) ∈ qui satisfait le problème
suivant {

y′(t) = f(t, y(t)) ∀t ∈ I
y(t0) = y0

où y′(t) =
dy(t)

dt
.

Exemple Écrivez la discretisation par la méthode d’Euler progressive et rétrograde du problème
de Cauchy {

y′(t) = −t y(t)2 ∀t ∈ [0, 4]
y(t0) = 2

La solution de ce problème est y(t) = 2
1+t2

Avec les méthodes de Euler Proressive et Rétrograde,
Heun, Crank-Nicolson, et Euler modifié.

[121]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from OrdinaryDifferentialEquationsLib import␣
↪→forwardEuler,backwardEuler,Heun,CrankNicolson,modifiedEuler

[122]: f = lambda t,x : -t*x**2
y0 = 2; tspan=[0, 4]
Nh = 20

90

for method in [forwardEuler,backwardEuler,Heun,CrankNicolson,modifiedEuler] :

t, y = method(f, tspan, y0, Nh)
plt.plot(t, y,'o-')
plt.plot(t, y,'o-')

y = lambda t : 2/(1+t**2)
t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, y(t),'-')
labels, title, legend
plt.xlabel('t'); plt.ylabel('y')
plt.
↪→legend(['forwardEuler','backwardEuler','Heun','CrankNicolson','modifiedEuler','$y(t)$'])

plt.grid(True)
plt.show()

6.2 Euler Progressif

Ecrivez une fonction forwardEuler qui approche la solution du problème

y′(t) = f(t, y(t)), t ∈ (T0, Tf), y(0) = y0,

en utilisant la méthode d’Euler progressif. L’entête de la fonction doit être la suivante:

def forwardEuler(fun, interval, y0, N) :
FORWARDEULER Solve differential equations using the forward Euler method.
[T, U] = FORWARDEULER(FUN, INTERVAL, Y0, N), with INTERVAL = [T0, TF],
integrates the system of differential equations y'=f(t, y) from time T0
to time TF, with initial condition Y0, using the forward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column vector T.

Une fois écrite la fonction forwardEuler, utilisez les commandes suivantes pour calculer la solution:

f = lambda t,x : (2/15*x*(1-x/1000)) # C=2/15 et B = 1000
tsp = [0,100]

91

y0 = 100; Nh = 25;
t25,u25 = forwardEuler(f,tsp,y0,Nh)

plt.plot(t25,u25,'o')

Approchez la solution de l’équation différentielle

y′(t) =
2 y

15
(1− y/1000), t ∈ (0, 100), y(0) = 100,

avec Nh = 25.

Que se passe-t-il avec Nh = 7? Discutez les résultats obtenus.

[123]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

[124]: def forwardEuler(fun, interval, y0, N) :
FORWARDEULER Solve differential equations using the forward Euler method.
[T, U] = FORWARDEULER(FUN, INTERVAL, Y0, N), with INTERVAL = [T0, TF],
integrates the system of differential equations y'=f(t, y) from time T0
to time TF, with initial condition Y0, using the forward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column vector T.

time step
h = (interval[1] - interval[0]) / N

time snapshots
t = np.linspace(interval[0], interval[1], N+1)

initialize the solution vector
u = np.zeros(N+1)
u[0] = y0

time loop (n=0,...,n, but array indeces in Matlab start at 1)
for n in range(N) :

u[n+1] = u[n] + h * fun(t[n], u[n])

return t, u

Nous pouvons alors résoudre l’exercice avec les commandes:

[125]: f = lambda t,x : (2/15*x*(1-x/1000)) # C=2/15 et B = 1000
tsp = [0,100]
y0 = 100; Nh = 25;
t25,u25 = forwardEuler(f,tsp,y0,Nh)

plt.plot(t25,u25,'o')

92

labels, title, legend
plt.xlabel('t_n'); plt.ylabel('u_n'); #plt.title('data')
plt.legend(['u_n'])
plt.title('$u_n\\approx u(t_n)$')
plt.grid(True)
plt.show()

Pour résoudre le problème avec Nh = 7 et tracer le graphe de la solution, on utilise les commandes
suivantes:

[126]: Nh = 7
t7,u7 = forwardEuler(f,tsp,y0,Nh);

plt.plot(t25,u25,'o-')
plt.plot(t7,u7,'o-')

labels, title, legend
plt.xlabel('t_n'); plt.ylabel('u_n'); #plt.title('data')
plt.legend(['$N_h=25$','$N_h=7$'])
plt.title('$u_n\\approx u(t_n)$')
plt.grid(True)
plt.show()

93

Solutions de l’équation différentielle y′(t) = 2 y
15 (1−y/1000), t ∈ (0, 100), y(0) = 100 pour diverses

valeurs de Nh.

On voit que la solution avec Nh = 7 est oscillante et ne tend pas vers 1000 lorsque t→∞: en effet,
la condition de stabilité sur le pas de discretisation Nh n’est pas satisfaite.

[]:

6.3 Euler Retrograde

Ecrivez une fonction Matlab backwardEuler qui approche la solution du problème

y′(t) = f(t, y(t)), t ∈ (T0, Tf), y(0) = y0,

en utilisant la méthode d’Euler progressif. L’entête de la fonction doit être la suivante:

def backwardEuler(fun, interval, y0, N) :
BACKWARDEULER Solve differential equations using the backward Euler method.
[T, U] = BACKWARDEULER(FUN, INTERVAL, Y0, N), with INTERVAL = [T0, TF],
integrates the system of differential equations y'=f(t, y) from time T0
to time TF, with initial condition Y0, using the backward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column vector T.
from scipy.optimize import fsolve

Vous disposez de la fonction scipy.optimize.fsolve pour résoudre une équation non-linéaire
(fsolve cache plusieurs méthodes de resolution, comme Newton ou le point fixe).

Exemple d’utilisation de fsolve: on peut chercher le zéro de F près de x0 en utilisant le code
suivant:

from scipy.optimize import fsolve
a = 5; h = 0.1;
F = lambda x : a + np.sin(x) - h*x;

x0 = a+h
zero = fsolve(F, x0)

print(f'F({zero[0]:5.2f}) = {F(zero)[0]:4.1e}')

Approchez la solution de l’équation différentielle

y′(t) =
2 y

15
(1− y/1000), t ∈ (0, 100), y(0) = 100,

avec Nh = 25. Que se passe-t-il avec Nh = 7? Discuter les résultats obtenus.

[127]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

94

[128]: from scipy.optimize import fsolve
a = 5; h = 0.1;
F = lambda x : a + np.sin(x) - h*x;

x0 = a+h
zero = fsolve(F, x0)

print(f'F({zero[0]:5.2f}) = {F(zero)[0]:4.1e}')

F(41.80) = -8.7e-13

[129]: def backwardEuler(fun, interval, y0, N) :
BACKWARDEULER Solve differential equations using the backward Euler␣

↪→method.
[T, U] = BACKWARDEULER(FUN, INTERVAL, Y0, N), with INTERVAL = [T0, TF],
integrates the system of differential equations y'=f(t, y) from time T0
to time TF, with initial condition Y0, using the backward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column vector T.
from scipy.optimize import fsolve

time step
h = (interval[1] - interval[0]) / N

time snapshots
t = np.linspace(interval[0], interval[1], N+1)

initialize the solution vector
u = np.zeros(N+1)
u[0] = y0

time loop (n=0,...,n, but array indeces in Matlab start at 1)
for n in range(N) :

non-linear function
F = lambda x : u[n] + h * fun(t[n+1],x) - x
solve the non-linear equation using the built-in matlab function␣

↪→"fsolve"
to compute u[n+1]
u[n+1] = fsolve(F, u[n]);
u[n+1] = fsolve(F, u[n]+ h * fun(t[n], u[n]));

NOTE:
in the call of fsolve, a more accurate initial guess is obtained
by replacing u[n] with the forward euler method:
u[n+1] = fsolve(F, u(n) + h * fun(t(n), u(n)), options);

95

return t, u

Nous pouvons alors résoudre l’exercice avec les commandes:

[130]: f = lambda t,x : (2/15*x*(1-x/1000)) # C=2/15 et B = 1000
tsp = [0,100]
y0 = 100; Nh = 25;
t25,u25 = backwardEuler(f,tsp,y0,Nh)

plt.plot(t25,u25,'o')

labels, title, legend
plt.xlabel('t_n'); plt.ylabel('u_n'); #plt.title('data')
plt.legend(['u_n'])
plt.title('$u_n\\approx u(t_n)$')
plt.grid(True)
plt.show()

Pour résoudre le problème avec Nh = 7 et tracer le graphe de la solution, on utilise les commandes
suivantes:

[131]: Nh = 7
t7,u7 = backwardEuler(f,tsp,y0,Nh);

plt.plot(t25,u25,'o-')
plt.plot(t7,u7,'o-')

labels, title, legend
plt.xlabel('t_n'); plt.ylabel('u_n'); #plt.title('data')
plt.legend(['$N_h=25$','$N_h=7$'])
plt.title('$u_n\\approx u(t_n)$')
plt.grid(True)
plt.show()

/Users/simone/opt/anaconda3/lib/python3.7/site-
packages/scipy/optimize/minpack.py:175: RuntimeWarning: The iteration is not

96

making good progress, as measured by the
improvement from the last five Jacobian evaluations.
warnings.warn(msg, RuntimeWarning)

/Users/simone/opt/anaconda3/lib/python3.7/site-
packages/scipy/optimize/minpack.py:175: RuntimeWarning: The iteration is not
making good progress, as measured by the

improvement from the last ten iterations.
warnings.warn(msg, RuntimeWarning)

Solutions de l’équation différentielle y′(t) = 2 y
15 (1−y/1000), t ∈ (0, 100), y(0) = 100 pour diverses

valeurs de Nh.

On voit que fsolve n’arrive pas à resoudre l’équation non-linéaire pour Nh = 7. Il faut chercher
un meilleur x0.

Dans backwardEuler, replacez le u[n]

u[n+1] = fsolve(F, u[n]);

par la solution correspondante à la méthode d’Euler progressive, i.e.

u[n+1] = fsolve(F, u[n]+ h * fun(t[n], u[n]));

Maintenant, pas seulement fsolve trouve une solution, mais en plus l’approximation de l’EDO ne
présente pas d’oscillations.

[]:

[]:

6.4 Stabilité

On considère le problème de Cauchy{
y′(t) = −2y(t), t > 0

y(0) = 1

La solution exacte de ce problème est y(t) = e−2t

97

Résolvez ce problème par les méthodes d’Euler Progressive et Rétrograde sur l’intervalle [0, 10] avec
un pas de temps h = 0.9 et 1.1.

[132]: l = -2
f = lambda t,x : l*x
y0 = 1; tspan=[0, 10]
h = 1.1; Nh = np.ceil((tspan[1] - tspan[0])/h).astype(int)
t_EP, y_EP = forwardEuler(f, tspan, y0, Nh)
t_ER, y_ER = backwardEuler(f, tspan, y0, Nh)

plt.plot(t_EP, y_EP,'o-')
plt.plot(t_ER, y_ER,'o-')

y = lambda t : np.exp(l*t)
t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, y(t),'-')
labels, title, legend
plt.xlabel('t'); plt.ylabel('y')
plt.legend(['EP','ER','$y(t)$'])
plt.grid(True)
plt.show()

6.5 Convergence

On considère le problème de Cauchy{
y′(t) = −y(0.1− cos(t)), t > 0

y(0) = 1

Resolvez ce problème par les méthodes d’Euler progressive et de Heun sur l’intervalle [0, 12] avec
un pas de temps h = 0.4.

La solution exacte est y(t) = e−0.1t+sin(t). On remarque que la solution obtenue par la méthode
de Heun est beaucoup plus précise que celle d’Euler progressive. Par ailleurs, on peut voir que si
on réduit le pas de temps, la solution obtenue par la méthode d’Euler progressive s’approche de la
solution exacte.

98

[133]: f = lambda t,y : (np.cos(t) - 0.1)*y

tspan = [0,12]; y0 = 1;
h = 0.4; Nh = np.ceil((tspan[1] - tspan[0])/h).astype(int)

t_EP, y_EP = forwardEuler(f, tspan, y0, Nh)
t_H, y_H = Heun(f, tspan, y0, Nh)

plt.plot(t_EP, y_EP,'o-')
plt.plot(t_H, y_H,'o-')

y = lambda t : np.exp(-0.1*t+np.sin(t))
t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, y(t),'-')
labels, title, legend
plt.xlabel('t'); plt.ylabel('y')
plt.legend(['EP','Heun','$y(t)$'])
plt.grid(True)
plt.show()
print("Figure: Approximation par le méthodes de Euler Retrograde et Heun.")

Figure: Approximation par le méthodes de Euler Retrograde et Heun.

[134]: tspan = [0,12]; y0 = 1;
NhRange = [30, 50, 100, 500]
for Nh in NhRange :

t, y = forwardEuler(f,tspan,y0,Nh)
plt.plot(t, y,'-')

yt = lambda t : np.exp(-0.1*t+np.sin(t))
t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, yt(t),':')
labels, title, legend
plt.xlabel('t_n'); plt.ylabel('u_n')
plt.legend(NhRange+['$y(t)$'])

99

plt.title('$u_n\\approx u(t_n)$')
plt.grid(True)
plt.show()
print("Figure: Solutions obtenues par la méthode d'Euler progressive pour␣
↪→différents pas de temps.")

Figure: Solutions obtenues par la méthode d'Euler progressive pour différents
pas de temps.

On veut, maintenant, estimer l’ordre de convergence de ces deux méthodes. Pour cela, on résout le
problème avec différents pas de temps et on compare les résultats obtenus à l’instant t = 6 avec la
solution exacte.

[135]: tspan=[0,6]
NhRange = [30, 50, 100, 500]
errEP = []
errH = []
Solution at end time
y6 = yt(tspan[1])
for Nh in NhRange :

Forward Euler
t, y = backwardEuler(f,tspan,y0,Nh)
Error at the end of the simulation
errEP.append(np.abs(y6 - y[-1]))

Heun
[t, y] = Heun(f, tspan, y0, Nh);
Error at the end of the simulation
errH.append(np.abs(y6 - y[-1]))

h = (tspan[1] - tspan[0])/np.array(NhRange)
plt.loglog(h,errEP,'o-b',h,errH,'o-r')
plt.loglog(h,h*(errEP[0]/h[0]),':',h,(h**2*(errH[0]/h[0]**2)),':')
plt.xlabel('h'); plt.ylabel('$|y(6)-u_{N_h}|$')
plt.legend(['EP','Heun','h','h^2'])

100

plt.title('Decay of the error')
plt.grid(True)
plt.show()

print("Figure: Erreurs en échelle logarithmique commises par les méthodes" +
" d'Euler progressive et de Heun dans le calcul de y(6).")

Figure: Erreurs en échelle logarithmique commises par les méthodes d'Euler
progressive et de Heun dans le calcul de y(6).

La figure montre, en échelle logarithmique, les erreurs commises par les deux méthodes en fonction
de h. On voit bien que la méthode d’Euler progressive converge à l’ordre 1 tandis que celle de Heun
à l’ordre 2.

[]:

6.6 Stabilité

On considère le problème de Cauchy{
y′(t) = −2y(t), t > 0

y(0) = 1

La solution exacte de ce problème est y(t) = e−2t

Résolvez ce problème par les méthodes d’Euler Progressive et Rétrograde sur l’intervalle [0, 10] avec
un pas de temps h = 0.9 et 1.1.

[136]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from OrdinaryDifferentialEquationsLib import␣
↪→forwardEuler,backwardEuler,Heun,CrankNicolson,modifiedEuler

[137]: l = -2
f = lambda t,x : l*x

101

y0 = 1; tspan=[0, 10]
h = 1.1; Nh = np.ceil((tspan[1] - tspan[0])/h).astype(int)
t_EP, y_EP = forwardEuler(f, tspan, y0, Nh)
t_ER, y_ER = backwardEuler(f, tspan, y0, Nh)

plt.plot(t_EP, y_EP,'o-')
plt.plot(t_ER, y_ER,'o-')

y = lambda t : np.exp(l*t)
t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, y(t),'-')
labels, title, legend
plt.xlabel('t'); plt.ylabel('y')
plt.legend(['EP','ER','$y(t)$'])
plt.grid(True)
plt.show()

[]:

102

	Equations non-linéaires
	 Méthode de Newton
	 Methode de point fixe
	Exercice (1, Série 3)
	Critères d'arrêt

	 Interpolation et approximation de données
	 Position du problème
	Interpolation de données
	Interpolation de fonctions
	Matrice de Vandermonde
	Alternatives : polyfit et polyval

	 Interpolation de Lagrange
	Base de Lagrange
	Polynôme d'interpolation

	 Interpolation d'une fonction continue
	Erreur d'interpolation
	Interpolation de Chebyshev

	 Interpolation par intervalles
	Interpolation linéaire par morceaux
	Exercice
	Exercice
	Erreur d'interpolation linéaire par morceaux
	Interpolation quadratique par morceaux

	 Approximation au sens des moindres carrés

	 Intégration numérique
	3.1 Formules de quadrature sur [-1,1]
	Intégration Numérique : Exercices
	Exercice Série 6, Ex 5 : Formule de Simpson
	Exercice Série 6, Ex 6 : Degré d'exactitude d'une formule de quadrature
	Exercice Série 6, Ex 7 : Convergence pour fonction non-lisse

	Résolution de systèmes linéaires
	Méthodes Directes
	Exercice 1 série 8
	Critère de Sylvester
	Exercice 2 série 8
	Problèmes de précision (Exercice 3 série 8)

	 Méthodes itératives
	Méthode de Richardson
	Exemple 1
	Méthode de Jacobi
	Méthode de Gauss-Seidel
	Exercice

	Exemple 2
	Exemple 3 - Jacobi et Gauss-Seidel avec relaxation
	Autres Exemples
	Compléments
	Problèmes d'arrondis

	 Dérivée numérique
	Exercice
	Exercice
	Exercice

	Equations Différentielles Ordinaires
	Problème de Cauchy
	Euler Progressif
	Euler Retrograde
	Stabilité
	Convergence
	Stabilité

