Analyse Numérique Vendredi 9 mai 2025
Prof. Simone Deparis EPFL

Série 11 (Corrigé)

Mardi prochain : Parcourez les chapitres 5 et 6.1 des notebooks Jupyter et résolvez les
exercices qui y sont proposés.

Partiellement en classe vendredi

Exercice 1

On considere 'équation différentielle suivante

{y’(t) = —ty*(t), t>0
y(0) = 2.

On veut résoudre cette équation avec les méthodes d’Euler progressive et Euler rétro-
grade, dans l'intervalle [0, 4] avec N}, = 20 sous-intervalles. Ceci équivaut a un pas de temps
h = 0.2 et donc a approcher la solution exacte y(t,) aux instants ¢, = nh, n = 0,1,...20
(donc t,, = 0.2,0.4,0.6, .. .) par une solution numérique u,,.

On veut utiliser les programmes Python créé précédemment en utilisant les appels de
fonction suivants :

— Fuler progressive

f = lambda t,x = —t*x**2
Nh = 20; tspan = [0,4]; y® = 2
t_EP, y_EP = forwardEuler(f, tspan, y®, Nh)

Les variables de sortie t_EP et y_EP contiennent respectivement la suite des instants
t,, et les valeurs u,, correspondantes calculées par la méthode.

— Fuler rétrograde
La fonction beuler utilise la méme syntaxe :

t_ER, y_ER = backwardEuler(f, tspan, y0, Nh);

Comparer la solution exacte et celles obtenues par les méthodes d’Euler progressive et
rétrograde. Pour cela afficher la solution exacte et celles obtenues par les deux méthodes
sur un méme graphe.

Sol. : Cette équation différentielle peut étre résolut analystiquement par séparation de
variables.

dy 1 1
Yo ftdt =y =S e= y(t) = ———
/_y2 / Y 5t He=y(t) ot 1p
1 2
4(0) Wit) = 1o

f = lambda t,x : —t kX K K2
y0 = 2; tspan=[0, 4]
Nh = 20
t_EP, y_EP = forwardEuler(f, tspan, y0, Nh)
t_ER, y_ER = backwardEuler(f, tspan, y0, Nh)

plt.plot(t_EP, y_EP, 0—")
plt.plot(t_ER, y_ER, '0—")

y = lambda t : 2/(1+t*%*2)

t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, y(t), —)

labels, title, legend

plt.xlabel('$t3); plt.ylabel('$yd ")
plt.legend(['EP’, 'ER’, '$y(t)$ 1D
plt.grid(True)

plt.show()

plt.savefig("EX007 fig.pdf", dpi=150)

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

Exercice 2

On considere le probleme de Cauchy suivant :

{ y'(t) = —ey?(t) tell,3]
y(1) =2

a) Ecrivez la méthode d'Euler rétrograde pour approcher la solution y(t).

b) Réécrivez la méthode d’Euler rétrograde sous la forme

Up+1 = <-;O(UnJrl; n, h7 un)7

ou n, h,u, sont considérés de parametres, et écrivez le schéma de Newton pour ré-
soudre cette équation non linéaire.

Sol. :
a) Il vaut mieux d’abord identifier les différentes données du probléme :

ft,z) = —elz?, to=1,T=3,1 = [ty, T1, Yo = 2

Soit h > 0 le pas de temps (fixé) et Ny = % = % (On suppose que Ny est
entier).

Soient t, = to+nh = 14+nh pour n =0,1, ..., Ny, on cherche une approximation
up, de y(t,). La méthode d’Euler progressif s’écrit

_ bt 2 _
Upg1 — Up = —he"Hus | n=20,1,2..
Uy = 2

Donc on a une équation quadratique a résoudre a chaque pas de temps :

_ 1+nh+h, 2 _
{un+1—un—he b n=20,1,2,..

Uy = 2
On peut écrire la méthode d’Fuler rétrograde de la facon suivante :
Unt1 = Q(Uni1; 0y hyuy) = —he T2+, (1)
On a donc ¢(x) = —he " 22 Alors on peut rééerire comme suit
x = @(x;n, h,u,) = —(he™)2 + u,.
Trowver x (c-d-d lapprozimation wu, 1) est équivalent a calculer le zéro de la fonction
F(z) =2 —¢p(z) = x + (he")z® — u,,

ot on a omis les parametres n, h,w,. On écrit la méthode de Newton pour la fonction
dip

(k)
F($) et F/(:L‘) =1—--=1+ 2h€1+nh+hl’

(k+1) _ (k) _
v -7 F'(z(®) dx

Donc on trouve

m(k) + h61+nh+h($(k))2 —u,
1 4+ 2heltnhthy(k) T
2) + 2hel+nh+h(m(k))2 — k) _ hel+nh+h(a:(k))2 —u, hel+nh+h(x(k))2 —u,

1 + 2heltnhthg (k)] + Qheltnhth (k)

L) (k)

Exercice 3

On considere la méthode de Crank—Nicolson

Un41 — Un
h

Uo = Yo,

:;[f(tnaun)+f(tn+17un+1)], n=20,1,...

h étant le pas de temps, pour approcher la solution du probleme de Cauchy

{y’(t) = f(t,y(t), te(0,7),

(3)

dont la solution exacte est y(t) = e*.

1. Ecrivez le schéma de Crank—Nicolson pour I'approximation numérique du probléme
de Cauchy .

2. Résolvez cette équation et donnez une expression explicite de u,, en fonction de h, A
et n.

3. Trouvez en fonction de A les valeurs de h pour lesquelles la méthode de Crank—
Nicolson appliqué a ce probleme est telle que u,, — 0. On dira que la méthode de
Crank—Nicolson est absolument stable pour ces valeurs de h et A.

Sol. :

1. Le schéma de Crank—Nicolson pour le probleme modeéle considéré s’écrit :

h
Upp1 = Uy + §(Aun + M),

'LL()Il.

En particulier, on peut mettre (4) sous la forme suivante :

h
1+ 2
Up1 = —7 Unp,
: 1—ZA (5)

Chaque schéma donne une équation de récurrence qui définit la suite u,, n € N, de
la fagon suivante : ug est égal a la valeur initiale y(to) = 1 et les valeurs u,, pour tout
n > 0 se calculent grace a l’expression (@ appliquée de maniére répétée (on trouve u,
a partir de ug, ug a partir de uy, etc...).

2. Pour le schéma de Crank—Nicolson, on a

1y
Up = 2| (6)
1—=A
2
3. Une suite définie par
Up ="

converge vers zéro pour n — 0o si et seulement si

vl < 1.
X , . . h h
D’apres @, le schéma de Crank—Nicolson correspond a v = |1+ 5)\ 1-— 5)\ .
h h
Vu que hA < 0, on a 1—|—§)\ < 1—5)\ et donc
1
2| < 1.
1—=X
2

En particulier, |v| < 1, donc u, — 0 lorsque n — oo sans aucune condition sur le pas
de temps h. On dit que le schéma de Crank—Nicolson est inconditionnellement stable.

Python

Exercice 4

Ecrire une fonction forwardEuler qui approche la solution du probleme

y'(t) = ft,y(), t € (To,Ty), y(0) = yo, (7)

en utilisant la méthode d’Euler progressif. L’entéte de la fonction doit étre la suivante :

def forwardEuler(fun, interval, y0, N)
FORWARDEULER Solve differential equations using the forward Euler

method.

[T, U] = FORWARDEULER(FUN, INTERVAL, YO, N), with INTERVAL = [TO,
TF],

integrates the system of differential equations y’=f(t, y) from time
TO

to time TF, with initial condition YO, using the forward Euler method
on

an equispaced grid of N intervals. Function FUN(T, Y) must return

a column vector corresponding to f(t, y). Each row in the solution

array U corresponds to a time returned in the column vector T.

Une fois écrite la fonction forwardEuler, utiliser les commandes suivantes pour calculer
la solution :

f = lambda t,x : (2/15%x*%(1—x/1000)) # C=2/15 et B = 1000
tsp = [0,100]

y0 = 100; Nh = 25;

t25,u25 = forwardEuler(f,tsp,y0,Nh)

plt.plot(t25,u25, 0")

Approcher la solution de ’équation différentielle

(1) = 241 y/1000), ¢ € (0,100), y(0) = 100,

15
avec N;, = 25.
Que se passe-t-il avec N, = 77 Discuter les résultats obtenus.
Sol. :
def forwardEuler(fun, interval, y0, N)
FORWARDEULER Solve differential equations using the forward Euler
method.
[T, U] = FORWARDEULER(FUN, INTERVAL, YO, N), with INTERVAL = [TO, TF],
integrates the system of differential equations y’=f(t, y) from time TO
to time TF, with initial condition YO, using the forward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column wvector T.
time step
h = (interval[1l] — interval[®]) / N
time snapshots
t = np.linspace(interval[0®], interval[1], N+1)
initialize the solution vector
u = np.zeros(N+1)
ul0] = y0
time loop (n=0,...,n, but array indeces in Matladb start at 1)

for n in range(N)

u[n+1] = u[n] + h * fun(t[n], uln])

return t, u

Pour résoudre le probléeme avec N, = 7 et tracer le graphe de la solution, on utilise les

commandes suivantes :

Nh

=7

t7,u7 = forwardEuler(f,tsp,y0,Nh);

plt
plt

.plot(t25,u25, o—")
.plot(t7,u7, 'o—")

labels, title, legend

plt
plt
plt
plt

.xlabel('$t n$); plt.ylabel('$u n$"); #plt.title(’data’)
.legend ([$N h=25%", SN h=7$%"1)

.title('$u_nl\approz w(t_n)$")

.grid(True)

‘plt.show()

Solutions de I'équation différentielle y'(t) = %’(1 —y/1000), t € (0,100), y(0) = 100
pour diverses valeurs de Ny,.

On voit que la solution avec Ny =T est oscillante et ne tend pas vers 1000 lorsque t —
oo :en effet, la condition de stabilité sur le pas de discretisation Ny, n’est pas satisfaite.

Exercice 5

Ecrivez une fonction Python backwardEuler qui approche la solution du probléme

y(t) = f(ty(t), t € (To,Ty), y(0) = o, (8)

en utilisant la méthode d’Euler rétrograde. L’entéte de la fonction doit étre la suivante :

def backwardEuler(fun, interval, y®, N)
BACKWARDEULER Solve differential equations using the backward Euler

method.

[T, U] = BACKWARDEULER(FUN, INTERVAL, YO, N), with INTERVAL = [TO,
TF],

1integrates the system of differential equations y’=f(t, y) from time
TO

to time TF, with initial condition YO, using the backward Euler
method on

an equispaced grid of N intervals. Function FUN(T, Y) must return

a column vector corresponding to f(t, y). Each row in the solution

array U corresponds to a time returned in the column vector T.

from scipy.optimize import fsolve

Remarque : Une fois écrite la fonction backwardEuler. Vous disposez de la fonction
‘scipy.optimize.fsolve‘ pour résoudre une équation non-linéaire (fsolve cache plusieurs mé-
thodes de resolution, comme Newton ou le point fixe).

on peut chercher le zéro de ‘F* pres de ‘x0° en utilisant le code suivant :

from scipy.optimize import fsolve
a=5; h=20.1;
F = lambda x : a + np.sin(x) — h*x;

x0 = a+h
zero = fsolve(F, x0)

print (£ 'F({zero[0]:5.2f}) = {F(zero)[0]:4.1e}")

Approcher la solution de I’équation différentielle

2
y/(t) = T5(1— /1000, t € (0,100), y(0) = 100,

avec Nj, = 25. Que se passe-t-il avec N, = 77 Discuter les résultats obtenus.
Sol. :

def backwardEuler(fun, interval, y0, N)
BACKWARDEULER Solve differential equations using the backward Euler
method.
[T, U] = BACKWARDEULER(FUN, INTERVAL, YO, N), with INTERVAL = [TO,
TF],
integrates the system of differential equations y’=f(t, y) from time TO
to time TF, with initial condition YO, using the backward Euler method

**

on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column wvector T.
from scipy.optimize import fsolve

time step
h = (interval[l] — interval[0]) / N

time snapshots
t = np.linspace(interval[®], interval[1l], N+1)

initialize the solution wvector
u = np.zeros(N+1)
ul®] = yo0

time loop (n=0,...,n, but array indeces in Matlab start at 1)
for n in range(N)
non-linear function
F = lambda x : u[n] + h * fun(t[n+1],x) — x
solve the non-linear equation using the built-in matlab function
"fsolve”
to compute u[n+1]
ul[n+1] = fsolve(F, uln]);
uln+1] = fsolve(F, wln]+ h * fun(t[n], wln]));

NOTE:

in the call of fsolve, a more accurate intitial guess %s obtained
by replacing uln] with the forward euler method:

uln+1] = fsolve(F, w(n) + h * fun(t(n), u(n)), options);

return t, u

Nous pouvons alors résoudre [’exercice avec les commandes :

f = lambda t,x : (2/15*x*(1—x/1000)) # C=2/15 et B = 1000
tsp = [0,100]

y® = 100; Nh = 25;

t25,u25 = backwardEuler(f, tsp,y0,Nh)

plt.plot(t25,u25, 0"

labels, title, legend

plt.xlabel(‘%t n$D; plt.ylabel($u n$); #plt.title(’data’)
plt.legend ([$u n$ 1)

plt.title(Su_n|\approz u(t _n)$"

plt.grid(True)

plt.show()

Pour résoudre le probléme avec N, = 7 et tracer le graphe de la solution, on utilise les
commandes suivantes :

Nh = 7
t7,u7 = backwardEuler(f, tsp,y0®,Nh);

plt.plot(t25,u25, '0o—")
plt.plot(t7,u7, 0o—")

labels, title, legend

plt.xlabel('$t n$); plt.ylabel('$u n$’); #plt.title(’data’)
plt.legend (['$N h=25%", '$N h=73'1)

plt.title(Su_n|\approz u(t n)$"

plt.grid(True)

plt.show()

Solutions de l'équation différentielle y'(t) = 2£(1 — y/1000), ¢ € (0,100), y(0) = 100
pour diverses valeurs de Np,.

On voit que fsolve n'arrive pas d resoudre ’équation non-linéaire pour Ny = 7. Il faut
chercher un meilleur ‘z0°

Dans backwardEuler, replacez le u[n] dans u[n+1] = fsolve(F, ul[nl); par la solution
correspondante a la méthode d’Euler progressive, i.e. u[n+1] = fsolve(F, u[n]+ h * fun(
t[n], uln]));

Maintenant, pas seulement fsolve trouve une solution, mais en plus l'approzimation de
I’EDO ne présente pas d’oscillations.

Exercice 6

On considere une population de y individus dans un environnement ou au plus B = 1000
individus peuvent coexister. On suppose qu’initialement le nombre d’individus est yg = 100
et que le facteur de croissance est égal a une constante C'. Le modele de I’évolution de la
population considérée sur 100 années est le suivant :

/(0 =yt (1- 1) € 0,100 500) =)

ol t est mesuré en années, et C'=2/15 an™ .

Soit w, lapproximation de y(t,), ou t, = nh, n = 0,1,2,..., N, h = 100/N;, étant
le pas de temps, N, étant le nombre de pas temporels. Plus N, est grand, plus le pas de
temps est petit et plus I'approximation sera précise.

1.

Ecrire les schémas d’Euler progressif (explicite) et rétrograde (implicite) pour calculer
une approximation u, de y(t,) (donner les équations de récurrence définissant la suite
u,, dans les deux cas).

On prend h = 1/12 an; donner la valeur u; qui approche le nombre d’individus y(t;)
au temps t; (donc apres 1 mois), obtenue) par la méthode d’Euler progressive, puis
i) par la méthode d'Euler rétrograde. Suggestion : resoudre a la main I’équation pour
trouver la nouvelle valeur u;,1.

. En utilisant la méthode d’Euler progressif (copier et modifier la fonction forwardEu-

ler.m créé précédemment), calculer les valeurs approchées u,, n = 0,1,..., N, en
Python, pour N, = 20.

4. Tracer un graphe de la solution numérique trouvée en fonction du temps.

. Faire a nouveau le calcul précédent, mais en prenant N, = 1000 ; tracer la nouvelle

solution numérique.

. D’apres les résultats trouvés, combien d’années sont nécessaires pour que la population

atteigne le nombre de 900 individus ? Suggestion : utiliser la commande find.

Sol. :

. En général, un schéma numérique pour le calcul des approrimations u, des valeurs

y(ty,), s’écrit sous la forme d’une équation de récurrence définissant u,,1 en fonction
de la valeur u,, trouvée au pas précedent. Dans notre cas, le schéma d’Euler progressif
est donné par

Upi1 = Up + hCuy, (1 — 1;1) ,
ug = 100,

tandis que celui d’Euler rétrograde s’écrit

Upt1 = Up + hCUL 4 (1 — urgl> ;

Avec les valeurs données, aprés un mois la valeur approchée du nombre d’individus
que l'on calcule par la méthode d’Euler progressive est

— 100+ = 2100 (1 100) — 101
= 1215 1000/ —

Pour calculer l’approximation selon le schéma d’Euler rétrograde, il faut résoudre une
équation avec uy comme inconnue :

1
hC’Eu% + (1 — hC)uy —up = 0.

Dans ce cas, la solution n’est pas unique. On a deux racines :

B
~ 2hC

Uy

[—(1 _hO)+ \/(1 ~ hC)? +4hC2 |

10

Néanmoins, seule la solution positive est acceptable (on rappelle que l'on cherche a
calculer un nombre d’individus). Celle-ci est donc

() 0%) 5
90 90 450

. On sait que le schéma d’Fuler progressif pour le probléme considéré est

u; = 1000 - 45 = 101.008958.

Upt1 = Up + hcun (1 - Un))

B
En Python, ceci s’écrit
C = 2/15; B=1000; # valeurs des paramtres C et B
y0 = 100
Nh = 20; # valeur de Nh
t®@ = 0; T = 100.; tsp = [tO®, T]
h = (T—t0®)/Nh; # pas de temps

f = lambda t,x : (C * x ¥ (1—x/B))
t, u = forwardEuler(f, tsp, y0, Nh);

ot on a suivi la suggestion de [’énoncé.

. Pour tracer le graphe de la solution numérique en fonction du temps, il faut se rap-
peller que u, est la valeur approchée au temps t,, = nh. Donc on peut taper

plt.plot(t,u, o)

labels, title, legend
plt.xlabel ('t 7D ; plt.ylabel('$u n$ ")
plt.legend('EP")

plt.grid(True)

plt.show()

pour obtenir le graphe cherché.

. On utilise les mémes commandes qu’au point a), mais on change la valeur de Nh :

C = 2/15; B=1000; # valeurs des paramtres C et B
y® = 100

Nh = 1000; # valeur de Nh

t0 = 0; T = 100.; tsp = [tO, T]

h = (T—t0)/Nh; # pas de temps

f = lambda t,x : (C ¥ x ¥ (1—x/B))
tl, ul = forwardEuler(f, tsp, y0, Nh);

Ensuite on trace le nouveau graphe avec

11

plt.plot(t,u, 'o—")
plt.plot(tl,ul, —7)

labels, title, legend

plt.xlabel('t 7); plt.ylabel('$u n$ ")

plt.legend (['Nh=20", 'Nh=1000"1)

plt.grid(True)

plt.title("Solutions de | ’equation differentielle pour diverses wvaleurs

de N_h. ")
plt.plot([t®,T], [900,900], '¢—’,linewidth=0.2)

plt.savefig("EX020 fig.pdf", dpi=150)
plt.show()

Le résultat est affiché en fig. [1 On s’attend da ce que la solution correspondant a

Solutions de I'équation différentielle pour diverses valeurs de Np,.

1000 '/,,.—e—e—e—e—e e—e—o—<c—<—9
800
600 -
<
3>
400 -
200 4 , —e— Nh=20
¢ Nh=1000
20 40 60 80 100

FIGURE 1 — Solutions de I’équation différentielle pour diverses valeurs de Nj,.

Ny, = 1000 (en rouge) soit la plus précise, donc la plus proche de [’évolution exacte de
la population.

. On peut répondre soit en analysant le graphe de la solution numérique la plus pré-
cise (N, = 1000), en tracent la droite correspondent a ‘u=900° (avec la commande
plt.plot([t0,T], [960,900]1, '¢—',linewidth=0.2)), soit en utilisant la commande np.where
de numpy. On donne ici un exemple de comment utiliser cette fonction (*Remarque*™ :

st u est un vecteur, alors (u>=900) est aussi un vecteur, dont la composante *i*-éme
est égale a 1 si u(i) > 900, zéro autrement. La commande ‘where’ retourne alors le
vecteur des indices non-nuls de (u>=900) ; finalement, le premier élément du vecteur
résultant nous donne le plus petit de ces indices) :

index = np.where(ul >= 900)

i = index[0][0]; # le plus petit des indices 1

12

tels que u(i)> =900
T = h+*i
print (T)

Donc la population atteint le nombre de 900 individus apres T = 33 ans.

Copyright 2012-2020 © Prof. Alfio Quarteroni, Simone Deparis.

13

