
Analyse Numérique Vendredi 9 mai 2025
Prof. Simone Deparis EPFL

Série 11 (Corrigé)

Mardi prochain : Parcourez les chapitres 5 et 6.1 des notebooks Jupyter et résolvez les
exercices qui y sont proposés.

Partiellement en classe vendredi
Exercice 1

On considère l’équation différentielle suivantey′(t) = −ty2(t), t > 0
y(0) = 2.

On veut résoudre cette équation avec les méthodes d’Euler progressive et Euler rétro-
grade, dans l’intervalle [0, 4] avec Nh = 20 sous-intervalles. Ceci équivaut à un pas de temps
h = 0.2 et donc à approcher la solution exacte y(tn) aux instants tn = nh, n = 0, 1, . . . 20
(donc tn = 0.2, 0.4, 0.6, . . .) par une solution numérique un.

On veut utiliser les programmes Python créé précédemment en utilisant les appels de
fonction suivants :

— Euler progressive
f = lambda t,x = −t∗x∗∗2
Nh = 20; tspan = [0,4]; y0 = 2

t_EP, y_EP = forwardEuler(f, tspan, y0, Nh)

Les variables de sortie t_EP et y_EP contiennent respectivement la suite des instants
tn et les valeurs un correspondantes calculées par la méthode.

— Euler rétrograde
La fonction beuler utilise la même syntaxe :
t_ER, y_ER = backwardEuler(f, tspan, y0, Nh);

Comparer la solution exacte et celles obtenues par les méthodes d’Euler progressive et
rétrograde. Pour cela afficher la solution exacte et celles obtenues par les deux méthodes
sur un même graphe.
Sol. : Cette équation différentielle peut être résolut analystiquement par séparation de
variables. ∫ dy

−y2 =
∫

tdt ⇒ y−1 = 1
2t2 + c ⇒ y(t) = 1

c + 1
2t2

y(0) = 2 = 1
C

⇒ y(t) = 2
1 + t2

1

f = lambda t,x : −t∗x∗∗2
y0 = 2; tspan=[0, 4]

Nh = 20

t_EP, y_EP = forwardEuler(f, tspan, y0, Nh)

t_ER, y_ER = backwardEuler(f, tspan, y0, Nh)

plt.plot(t_EP, y_EP, ’o−’)
plt.plot(t_ER, y_ER, ’o−’)

y = lambda t : 2/(1+t∗∗2)
t = np.linspace(tspan[0],tspan[1],100)

plt.plot(t, y(t), ’−’)
labels, title, legend
plt.xlabel(’ t ’); plt.ylabel(’y ’)
plt.legend([’EP’, ’ER’, ’$y(t)$ ’])
plt.grid(True)

plt.show()

plt.savefig("EX007_fig . pdf ", dpi=150)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

EP
ER
y(t)

Exercice 2

On considère le problème de Cauchy suivant :{
y′(t) = −ety2(t) t ∈ [1, 3]
y(1) = 2

a) Ecrivez la méthode d’Euler rétrograde pour approcher la solution y(t).
b) Réécrivez la méthode d’Euler rétrograde sous la forme

un+1 = φ(un+1; n, h, un),

où n, h, un sont considérés de paramètres, et écrivez le schéma de Newton pour ré-
soudre cette équation non linéaire.

2

Sol. :
a) Il vaut mieux d’abord identifier les différentes données du problème :

f(t, x) = −etx2, t0 = 1, T = 3, I = [t0, T], y0 = 2
Soit h > 0 le pas de temps (fixé) et Nh = T −t0

h
= 2

h
(On suppose que Nh est

entier).
Soient tn = t0 + nh = 1 + nh pour n = 0, 1, ..., Nh, on cherche une approximation

un de y(tn). La méthode d’Euler progressif s’écrit{
un+1 − un = −hetn+1u2

n+1 n = 0, 1, 2, ...
u0 = 2

Donc on a une équation quadratique à résoudre à chaque pas de temps :{
un+1 = un − he1+nh+hu2

n+1 n = 0, 1, 2, ...
u0 = 2

— On peut écrire la méthode d’Euler rétrograde de la façon suivante :

un+1 = φ(un+1; n, h, un) = −he1+nh+hu2
n+1 + un (1)

On a donc φ(x) = −he1+nh+hx2. Alors on peut réécrire (1) comme suit

x = φ(x; n, h, un) = −(hetn+1)x2 + un.

Trouver x (c-à-d l’approximation un+1) est équivalent à calculer le zéro de la fonction

F (x) = x − φ(x) = x + (hetn+1)x2 − un,

où on a omis les paramètres n, h, un. On écrit la méthode de Newton pour la fonction
F (x) :

x(k+1) = x(k) − F (x(k))
F ′(x(k)) et F ′(x) = 1 − dφ

dx
= 1 + 2he1+nh+hx

Donc on trouve

x(k+1) = x(k) − x(k) + he1+nh+h(x(k))2 − un

1 + 2he1+nh+hx(k) =

= x(k) + 2he1+nh+h(x(k))2 − x(k) − he1+nh+h(x(k))2 − un

1 + 2he1+nh+hx(k) = he1+nh+h(x(k))2 − un

1 + 2he1+nh+hx(k)

Exercice 3

On considère la méthode de Crank–Nicolson
un+1 − un

h
= 1

2 [f(tn, un) + f(tn+1, un+1)], n = 0, 1, . . .

u0 = y0,
(2)

3

h étant le pas de temps, pour approcher la solution du problème de Cauchyy′(t) = f(t, y(t)), t ∈ (0, T),
y(0) = y0.

Soit λ < 0 un nombre réel négatif donné. On considère le problème modèle{
y′(t) = λy(t), t > 0,
y(0) = 1,

(3)

dont la solution exacte est y(t) = eλt.
1. Écrivez le schéma de Crank–Nicolson pour l’approximation numérique du problème

de Cauchy (3).
2. Résolvez cette équation et donnez une expression explicite de un en fonction de h, λ

et n.
3. Trouvez en fonction de λ les valeurs de h pour lesquelles la méthode de Crank–

Nicolson appliqué à ce problème est telle que un → 0. On dira que la méthode de
Crank–Nicolson est absolument stable pour ces valeurs de h et λ.

Sol. :
1. Le schéma de Crank–Nicolson pour le problème modèle considéré s’écrit :un+1 = un + h

2 (λun + λun+1),
u0 = 1.

(4)

En particulier, on peut mettre (4) sous la forme suivante :
un+1 =

1 + h

2λ

1 − h

2λ
un,

u0 = 1.

(5)

Chaque schéma donne une équation de récurrence qui définit la suite un, n ∈ N, de
la façon suivante : u0 est égal à la valeur initiale y(t0) = 1 et les valeurs un pour tout
n > 0 se calculent grâce à l’expression (5) appliquée de manière répétée (on trouve u1
à partir de u0, u2 à partir de u1, etc. . .).

2. Pour le schéma de Crank–Nicolson, on a

un =

1 + h

2λ

1 − h

2λ


n

. (6)

3. Une suite définie par
un = γn

4

converge vers zéro pour n → ∞ si et seulement si

|γ| < 1.

D’après (6), le schéma de Crank–Nicolson correspond à γ =
(

1 + h

2λ

)/(
1 − h

2λ

)
.

Vu que hλ < 0, on a
∣∣∣∣∣1 + h

2λ

∣∣∣∣∣ <

∣∣∣∣∣1 − h

2λ

∣∣∣∣∣ et donc

∣∣∣∣∣∣∣∣
1 + h

2λ

1 − h

2λ

∣∣∣∣∣∣∣∣ < 1.

En particulier, |γ| < 1, donc un → 0 lorsque n → ∞ sans aucune condition sur le pas
de temps h. On dit que le schéma de Crank–Nicolson est inconditionnellement stable.

Python
Exercice 4

Ecrire une fonction forwardEuler qui approche la solution du problème

y′(t) = f(t, y(t)), t ∈ (T0, Tf), y(0) = y0, (7)

en utilisant la méthode d’Euler progressif. L’entête de la fonction doit être la suivante :
def forwardEuler(fun, interval, y0, N) :

FORWARDEULER Solve differential equations using the forward Euler
method.

[T, U] = FORWARDEULER(FUN, INTERVAL, Y0, N), with INTERVAL = [T0,
TF],

integrates the system of differential equations y’=f(t, y) from time
T0

to time TF, with initial condition Y0, using the forward Euler method
on

an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column vector T.

Une fois écrite la fonction forwardEuler, utiliser les commandes suivantes pour calculer
la solution :
f = lambda t,x : (2/15∗x∗(1−x/1000)) # C=2/15 et B = 1000
tsp = [0,100]

y0 = 100; Nh = 25;

t25,u25 = forwardEuler(f,tsp,y0,Nh)

plt.plot(t25,u25, ’o ’)

5

Approcher la solution de l’équation différentielle

y′(t) = 2 y

15 (1 − y/1000), t ∈ (0, 100), y(0) = 100,

avec Nh = 25.
Que se passe-t-il avec Nh = 7 ? Discuter les résultats obtenus.

Sol. :
def forwardEuler(fun, interval, y0, N) :

FORWARDEULER Solve differential equations using the forward Euler
method.

[T, U] = FORWARDEULER(FUN, INTERVAL, Y0, N), with INTERVAL = [T0, TF],
integrates the system of differential equations y’=f(t, y) from time T0
to time TF, with initial condition Y0, using the forward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column vector T.

time step
h = (interval[1] − interval[0]) / N

time snapshots
t = np.linspace(interval[0], interval[1], N+1)

initialize the solution vector
u = np.zeros(N+1)

u[0] = y0

time loop (n=0,...,n, but array indeces in Matlab start at 1)
for n in range(N) :

u[n+1] = u[n] + h ∗ fun(t[n], u[n])

return t, u

Pour résoudre le problème avec Nh = 7 et tracer le graphe de la solution, on utilise les
commandes suivantes :
Nh = 7

t7,u7 = forwardEuler(f,tsp,y0,Nh);

plt.plot(t25,u25, ’o−’)
plt.plot(t7,u7, ’o−’)

labels, title, legend
plt.xlabel(’t_n ’); plt.ylabel(’u_n ’); #plt.title(’data’)
plt.legend([’$N_h=25$ ’, ’$N_h=7$ ’])
plt.title(’$u_n\\approx u(t_n)$ ’)
plt.grid(True)

6

plt.show()

Solutions de l’équation différentielle y′(t) = 2 y
15 (1 − y/1000), t ∈ (0, 100), y(0) = 100

pour diverses valeurs de Nh.
On voit que la solution avec Nh = 7 est oscillante et ne tend pas vers 1000 lorsque t →

∞ : en effet, la condition de stabilité sur le pas de discretisation Nh n’est pas satisfaite.

Exercice 5

Écrivez une fonction Python backwardEuler qui approche la solution du problème

y′(t) = f(t, y(t)), t ∈ (T0, Tf), y(0) = y0, (8)

en utilisant la méthode d’Euler rétrograde. L’entête de la fonction doit être la suivante :
def backwardEuler(fun, interval, y0, N) :

BACKWARDEULER Solve differential equations using the backward Euler
method.

[T, U] = BACKWARDEULER(FUN, INTERVAL, Y0, N), with INTERVAL = [T0,
TF],

integrates the system of differential equations y’=f(t, y) from time
T0

to time TF, with initial condition Y0, using the backward Euler
method on

an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column vector T.
from scipy.optimize import fsolve

Remarque : Une fois écrite la fonction backwardEuler. Vous disposez de la fonction
‘scipy.optimize.fsolve‘ pour résoudre une équation non-linéaire (fsolve cache plusieurs mé-
thodes de resolution, comme Newton ou le point fixe).

on peut chercher le zéro de ‘F‘ près de ‘x0‘ en utilisant le code suivant :
from scipy.optimize import fsolve

a = 5; h = 0.1;

F = lambda x : a + np.sin(x) − h∗x;

x0 = a+h

zero = fsolve(F, x0)

print(f ’F({ zero [0] : 5 . 2 f }) = {F(zero) [0] : 4 . 1 e} ’)

Approcher la solution de l’équation différentielle

y′(t) = 2 y

15 (1 − y/1000), t ∈ (0, 100), y(0) = 100,

avec Nh = 25. Que se passe-t-il avec Nh = 7 ? Discuter les résultats obtenus.
Sol. :

7

def backwardEuler(fun, interval, y0, N) :

BACKWARDEULER Solve differential equations using the backward Euler
method.

[T, U] = BACKWARDEULER(FUN, INTERVAL, Y0, N), with INTERVAL = [T0,
TF],

integrates the system of differential equations y’=f(t, y) from time T0
to time TF, with initial condition Y0, using the backward Euler method

on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column vector T.
from scipy.optimize import fsolve

time step
h = (interval[1] − interval[0]) / N

time snapshots
t = np.linspace(interval[0], interval[1], N+1)

initialize the solution vector
u = np.zeros(N+1)

u[0] = y0

time loop (n=0,...,n, but array indeces in Matlab start at 1)
for n in range(N) :

non-linear function
F = lambda x : u[n] + h ∗ fun(t[n+1],x) − x

solve the non-linear equation using the built-in matlab function
"fsolve"

to compute u[n+1]
u[n+1] = fsolve(F, u[n]);

u[n+1] = fsolve(F, u[n]+ h * fun(t[n], u[n]));

NOTE:
in the call of fsolve, a more accurate initial guess is obtained
by replacing u[n] with the forward euler method:
u[n+1] = fsolve(F, u(n) + h * fun(t(n), u(n)), options);

return t, u

Nous pouvons alors résoudre l’exercice avec les commandes :
f = lambda t,x : (2/15∗x∗(1−x/1000)) # C=2/15 et B = 1000
tsp = [0,100]

y0 = 100; Nh = 25;

t25,u25 = backwardEuler(f,tsp,y0,Nh)

8

plt.plot(t25,u25, ’o ’)

labels, title, legend
plt.xlabel(’t_n ’); plt.ylabel(’u_n ’); #plt.title(’data’)
plt.legend([’u_n ’])
plt.title(’$u_n\\approx u(t_n)$ ’)
plt.grid(True)

plt.show()

Pour résoudre le problème avec Nh = 7 et tracer le graphe de la solution, on utilise les
commandes suivantes :
Nh = 7

t7,u7 = backwardEuler(f,tsp,y0,Nh);

plt.plot(t25,u25, ’o−’)
plt.plot(t7,u7, ’o−’)

labels, title, legend
plt.xlabel(’t_n ’); plt.ylabel(’u_n ’); #plt.title(’data’)
plt.legend([’$N_h=25$ ’, ’$N_h=7$ ’])
plt.title(’$u_n\\approx u(t_n)$ ’)
plt.grid(True)

plt.show()

Solutions de l’équation différentielle y′(t) = 2 y
15 (1 − y/1000), t ∈ (0, 100), y(0) = 100

pour diverses valeurs de Nh.
On voit que fsolve n’arrive pas à resoudre l’équation non-linéaire pour Nh = 7. Il faut

chercher un meilleur ‘x0‘.
Dans backwardEuler, replacez le u[n] dans u[n+1] = fsolve(F, u[n]); par la solution

correspondante à la méthode d’Euler progressive, i.e. u[n+1] = fsolve(F, u[n]+ h ∗ fun(
t[n], u[n]));

Maintenant, pas seulement fsolve trouve une solution, mais en plus l’approximation de
l’EDO ne présente pas d’oscillations.

Exercice 6

On considère une population de y individus dans un environnement où au plus B = 1000
individus peuvent coexister. On suppose qu’initialement le nombre d’individus est y0 = 100
et que le facteur de croissance est égal à une constante C. Le modèle de l’évolution de la
population considérée sur 100 années est le suivant :

y′(t) = Cy(t)
(

1 − y(t)
B

)
, t ∈ (0, 100), y(0) = y0, (9)

où t est mesuré en années, et C = 2/15 an−1.

9

Soit un l’approximation de y(tn), où tn = nh, n = 0, 1, 2, . . . , Nh, h = 100/Nh étant
le pas de temps, Nh étant le nombre de pas temporels. Plus Nh est grand, plus le pas de
temps est petit et plus l’approximation sera précise.

1. Ecrire les schémas d’Euler progressif (explicite) et rétrograde (implicite) pour calculer
une approximation un de y(tn) (donner les équations de récurrence définissant la suite
un dans les deux cas).

2. On prend h = 1/12 an ; donner la valeur u1 qui approche le nombre d’individus y(t1)
au temps t1 (donc après 1 mois), obtenue i) par la méthode d’Euler progressive, puis
ii) par la méthode d’Euler rétrograde. Suggestion : resoudre à la main l’équation pour
trouver la nouvelle valeur ui+1.

3. En utilisant la méthode d’Euler progressif (copier et modifier la fonction forwardEu-
ler.m créé précédemment), calculer les valeurs approchées un, n = 0, 1, . . . , Nh en
Python, pour Nh = 20.

4. Tracer un graphe de la solution numérique trouvée en fonction du temps.
5. Faire à nouveau le calcul précédent, mais en prenant Nh = 1000 ; tracer la nouvelle

solution numérique.
6. D’après les résultats trouvés, combien d’années sont nécessaires pour que la population

atteigne le nombre de 900 individus ? Suggestion : utiliser la commande find.
Sol. :

1. En général, un schéma numérique pour le calcul des approximations un des valeurs
y(tn), s’écrit sous la forme d’une équation de récurrence définissant un+1 en fonction
de la valeur un trouvée au pas précedent. Dans notre cas, le schéma d’Euler progressif
est donné par un+1 = un + hCun

(
1 − un

B

)
,

u0 = 100,

tandis que celui d’Euler rétrograde s’écritun+1 = un + hCun+1

(
1 − un+1

B

)
,

u0 = 100.

2. Avec les valeurs données, aprés un mois la valeur approchée du nombre d’individus
que l’on calcule par la méthode d’Euler progressive est

u1 = 100 + 1
12

2
15100

(
1 − 100

1000

)
= 101.

Pour calculer l’approximation selon le schéma d’Euler rétrograde, il faut résoudre une
équation avec u1 comme inconnue :

hC
1
B

u2
1 + (1 − hC)u1 − u0 = 0.

Dans ce cas, la solution n’est pas unique. On a deux racines :

u1 = B

2hC

[
−(1 − hC) ±

√
(1 − hC)2 + 4hC

u0

B

]
.

10

Néanmoins, seule la solution positive est acceptable (on rappelle que l’on cherche à
calculer un nombre d’individus). Celle-ci est donc

u1 = 1000 · 45
−

(
1 − 1

90

)
+
√(

1 − 1
90

)2
+ 2

450

 = 101.008958.

3. On sait que le schéma d’Euler progressif pour le problème considéré estun+1 = un + hCun

(
1 − un

B

)
,

u0 = 100.

En Python, ceci s’écrit
C = 2/15; B=1000; # valeurs des paramtres C et B
y0 = 100

Nh = 20; # valeur de Nh
t0 = 0; T = 100.; tsp = [t0, T]

h = (T−t0)/Nh; # pas de temps

f = lambda t,x : (C ∗ x ∗ (1−x/B))
t, u = forwardEuler(f, tsp, y0, Nh);

où on a suivi la suggestion de l’énoncé.
4. Pour tracer le graphe de la solution numérique en fonction du temps, il faut se rap-

peller que un est la valeur approchée au temps tn = nh. Donc on peut taper
plt.plot(t,u, ’o−’)

labels, title, legend
plt.xlabel(’ t ’); plt.ylabel(’u_n ’)
plt.legend(’EP’)
plt.grid(True)

plt.show()

pour obtenir le graphe cherché.
5. On utilise les mêmes commandes qu’au point a), mais on change la valeur de Nh :
C = 2/15; B=1000; # valeurs des paramtres C et B
y0 = 100

Nh = 1000; # valeur de Nh
t0 = 0; T = 100.; tsp = [t0, T]

h = (T−t0)/Nh; # pas de temps

f = lambda t,x : (C ∗ x ∗ (1−x/B))
t1, u1 = forwardEuler(f, tsp, y0, Nh);

Ensuite on trace le nouveau graphe avec

11

plt.plot(t,u, ’o−’)
plt.plot(t1,u1, ’−’)

labels, title, legend
plt.xlabel(’ t ’); plt.ylabel(’u_n ’)
plt.legend([’Nh=20’, ’Nh=1000 ’])
plt.grid(True)

plt.title(" Solutions de l ’ equation d i f f e r e n t i e l l e pour diverses valeurs
de N_h. ")

plt.plot([t0,T], [900,900], ’g−’,linewidth=0.2)

plt.savefig("EX020_fig . pdf ", dpi=150)
plt.show()

Le résultat est affiché en fig. 1. On s’attend à ce que la solution correspondant à

0 20 40 60 80 100
t

200

400

600

800

1000

u n

Solutions de l'équation différentielle pour diverses valeurs de Nh.

Nh=20
Nh=1000

Figure 1 – Solutions de l’équation différentielle pour diverses valeurs de Nh.

Nh = 1000 (en rouge) soit la plus précise, donc la plus proche de l’évolution exacte de
la population.

6. On peut répondre soit en analysant le graphe de la solution numérique la plus pré-
cise (Nh = 1000), en tracent la droite correspondent à ‘u=900‘ (avec la commande
plt.plot([t0,T], [900,900], ’g−’,linewidth=0.2)), soit en utilisant la commande np.where
de numpy. On donne ici un exemple de comment utiliser cette fonction (*Remarque* :
si u est un vecteur, alors (u>=900) est aussi un vecteur, dont la composante *i*-ème
est égale à 1 si u(i) ≥ 900, zéro autrement. La commande ‘where‘ retourne alors le
vecteur des indices non-nuls de (u>=900) ; finalement, le premier élément du vecteur
résultant nous donne le plus petit de ces indices) :
index = np.where(u1 >= 900)

i = index[0][0]; # le plus petit des indices i

12

tels que u(i)> =900
T = h∗i
print(T)

Donc la population atteint le nombre de 900 individus après T = 33 ans.

Copyright 2012-2020 © Prof. Alfio Quarteroni, Simone Deparis.

13

