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Série 10 (Corrigé)

Partiellement en classe vendredi
Exercice 1

On considère le système linéaire Ax = b, où

A =

 6 −3 0
−3 6 4
0 4 6

 , b =

 1
2

−3

 .

1. Supposons qu’il existe une constante 0 < C < 1 telle que, pour tout k ∈ N,

∥x(k+1) − x∥A ≤ C∥x(k) − x∥A .

Démontrez la majoration de l’erreur suivante (remarquez que l’estimation est indé-
pendante de la solution x) :

∥x(k) − x∥A ≤ Ck

1 − C
∥x(1) − x(0)∥A.

Suggestion : estimez ∥x(0) − x∥A par rapport à ∥x(0) − x(1)∥A en utilisant l’inégalité
triangulaire pour (x(0) − x(1)) + (x(1) − x).

2. On considère la méthode de Richardson stationnaire préconditionné, avec la matrice
de préconditionnement P = D, D étant la partie diagonale de A. La méthode est-elle
convergente ? Calculez le paramètre αopt optimal.

3. Sans calculer la solution exacte et en choisissant comme vecteur initial x(0) = (0, 0, 0)T ,
estimez le nombre minimal d’itérations nécessaires pour avoir une erreur (en norme
∥ · ∥A) plus petite que 10−8.

Sol. :
1. On a

∥x(k) − x∥A ≤ C∥x(k−1) − x∥A ≤ C2∥x(k−2) − x∥A ≤ . . . ≤ Ck∥x(0) − x∥A.

Notons que puisque 0 < C < 1, on a 1 − C > 0. D’ailleurs, d’après l’inégalité
triangluaire on a aussi

∥x(0) − x∥A ≤ ∥x(0) − x(1)∥A + ∥x(1) − x∥A ≤ ∥x(0) − x(1)∥A + C∥x(0) − x∥A

=⇒ ∥x(0) − x∥A ≤ 1
1 − C

∥x(1) − x(0)∥A
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2. On a vu au cours que la méthode de Richardson stationnaire préconditionné avec
paramètre αopt est convergente pourvu que les matrices P et A soient symétriques
définies positives, si α > 0 est choisi tel que α < 2

λmax
, où λmax est la plus grande

valeur propre de P (−1)A.
Or, P étant une matrice diagonale avec éléments diagonaux > 0, elle est symétrique
définie positive. La matrice A est clairement symétrique ; pour vérifier si elle est
définie positive aussi, on peut préceder de deux façon :
— Critère de Sylvester : pour A symétrique, A est spd si et seulement si les mineurs

principaux sont tous positifs. Ici : on obtient dans l’ordre les trois déterminant
suivants :

6 , 36 − 9 = 27 et 216 − 54 − 9 − 144 = 9
— Autrement, on peut calculer les valeurs propes de A : elles sont les racines du

polynôme caractéristique suivant

pA(λ) = det(λI − A) = det

λ − 6 3 0
3 λ − 6 −4
0 −4 λ − 6


= (λ − 6)((λ − 6)2 − 16) − 3 · 3(λ − 6) = (λ − 6)((λ − 6)2 − 25)
= (λ − 6)(λ − 6 + 5)(λ − 6 − 5).

Donc on trouve :
λ1(A) = 6, λ2(A) = 1, λ3(A) = 11.

Comme λi(A) > 0, A est définie positive.
Dans ce cas, comme P = 6I (I étant la matrice identité), on a P −1 = 1

6I, donc
P −1A = 1

6A. Par conséquent, les valeurs propres de P −1A sont données par

λi(
1
6A) = 1

6λi(A).

Le spectre (= l’ensemble des valeurs propres) de P −1A est donc

σ(P −1A) =
{

1,
1
6 ,

11
6

}
.

La méthode de Richardson stationnaire préconditionnée est converge si et seule-
ment si α > 0 et α < 12

11 .
Pour calculer le paramètre αopt, il faut utiliser la formule

αopt = 2
λmin(P −1A) + λmax(P −1A) ;

en particulier, il faut calculer les valeurs propres de P −1A. En utilisant la formule,
on calcule αopt = 1.

3. A priori, on ne connait pas la solution x, donc on ne va pas utiliser l’estimation

∥x(k) − x∥A ≤ Ck∥x(0) − x∥A,
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mais plutôt

∥x(k) − x∥A ≤ Ck

1 − C
∥x(1) − x(0)∥A;

on imposera donc que k soit suffisament grand pour que Ck

1−C
∥x(1) − x(0)∥A < 10−8.

Pour ce faire, il faut calculer x(1). On a x(0) = (0, 0, 0)T et r(0) = b. Donc, x(0) étant
nul, on a que

z(0) = P −1r(0) = 1
6b

x(1) = αoptz(0) = 1
6b et

∥x(1) − x(0)∥A = ∥x(1)∥A = 1
6∥b∥A = 1

6
√

bT Ab = 1
6

√
24 = 2√

6
.

On calcule la constante C. Comme P −1A est symétrique et définie positive, par la
théorie on sait que

C = cond(P −1A) − 1
cond(P −1A) + 1 ,

où cond(P −1A) = λmax(P −1A)/λmin(P −1A) est le nombre de conditionnement de la
matrice P −1A. Alors C = 5/6.
Il suffit maintenant d’imposer

Ck

1 − C
∥x(1) − x(0)∥A =

(5
6

)k

2
√

6 ≤ 10−8

et grâce à la dernière inégalité on estime le k minimal :

k ≥ 8 + log10(2
√

6)
log10 6/5 ≈ 105.39.

Exercice 2

On considère le système linéaire Ax = b, où

A =

5 3 0
3 5 0
0 0 5

 , b =

8
8
5

 .

1. On considère la méthode de Richardson stationnaire préconditionné, avec matrice de
préconditionnement P = D, D étant la partie diagonale de A. Pour quel choix de
αk = const la méthode est-elle convergente ? Calculez le paramètre αopt optimal.

2. On considère maintenant la méthode du gradient préconditionné, toujours avec le
préconditionneur P = D. La méthode est-elle convergente ? Calculez le facteur CG de
réduction de l’erreur tel que

∥x(k+1) − x∥A ≤ CG∥x(k) − x∥A.

3. Ici la solution est xex = (1, 1, 1)T . Calculez la A-norme de xex, ∥xex∥A.
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4. Estimez le nombre minimal d’itérations nécessaires pour calculer la solution x du
système linéaire donnée par la méthode du gradient préconditionné avec une tolérance
tol = 10−2 sur l’erreur ||x(k) −x||A et une solution de départ x(0) = (0, 0, 0)T . Ensuite,
calculez l’erreur en utilisant le même nombre d’itérations avec la méthode du gradient
conjugué préconditionné. L’erreur est-elle plus petite que 10−2 ? Pourquoi ?

Sol. :
1. On a vu au cours que la méthode de Richardson stationnaire préconditionnée avec

paramètre α est convergente pourvu que la matrices P soit inversible et que les va-
leurs propres de P −1A soient toutes réelles et positives. Dans ce cas la méthode de
Richardson est convergente si et seulement si 0 < α < 2

λmax
, où λmax est la plus grande

valeur propre..
On peut calculer les valeurs propres de P −1A : ce sont les racines du polynôme carac-
téristique suivant

pP −1A(λ) = det(λI − P −1A) = det

λ − 1 −3/5 0
−3/5 λ − 1 0

0 0 λ − 1

 .

Les valeurs propres de P −1A sont donc

1,
2
5 ,

8
5 .

Dans notre cas, P est inversible et les valeurs propres de P −1A sont positives. Ainsi
pour que la méthode de Richardson converge, il faut que 0 < α < 5

4 .
Pour calculer le paramètre αopt, il faut utiliser la formule

αopt = 2
λmin(P −1A) + λmax(P −1A) ;

En utilisant la formule, on obtient αopt = 1.
2. Comme P −1A est symétrique et définie positive, par la théorie on sait que

CG = cond(P −1A) − 1
cond(P −1A) + 1 ,

où cond(P −1A) = λmax(P −1A)/λmin(P −1A) = 4 est le conditionnement de la matrice
P −1A. On trouve donc CG = 3/5.

3. si on sait que la solution exacte est xex = (1, 1, 1)T on peut calculer ||xex||A :

||xex||A =
√

(xex)T A(xex) =

√√√√√√(
1 1 1

)  5 3 0
3 5 0
0 0 5


 1

1
1

 =
√

21

4. Pour la méthode du gradient préconditionnée, nous avons :

||ek||A ≤ Ck
G||e0||A ≤ tol.
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Donc on a :
k log10 CG + log10 ||e0||A ≤ log10 10−2

c’est à dire :
k ≥ −2 − log10 ||e0||A

log10 CG
.

Avec ||e0||A = ||xex − x0||A =
√

21 enfin on trouve k ≥ 12.
Pour la méthode du gradient conjugué préconditionnée, nous avons :

CCG =

√
K(P −1A) − 1√
K(P −1A) + 1

=
√

4 − 1√
4 + 1

= 1/3.

Selon la theorie on sait que :

||ek||A ≤ 2Ck
CG

1 + C2k
CG

||e0||A,

donc pour k=12 on trouve
||ek||A ≤ 1.72 · 10−5.

La méthode du gradient conjugué préconditionnée converge donc plus rapidement car
les matrices A et P sont symétriques définies positives et le facteur de réduction de
l’erreur est plus petit que celui de la méthode du gradient.

Exercice 3

On considère le système Ax = b où :

A =

 α 1/2 0
α − 2 1 0

0 0 β

 , b =

 β + 1
0

γ/2

 .

1. Sans calculer les matrices d’itération, donner une condition suffisante sur le paramètres
α ∈ R, β ∈ R, et γ ∈ R pour que les méthodes de Gauss–Seidel et de Jacobi soient
convergentes.

2. Calculer les matrices d’itération BJ et BGS des méthodes de Jacobi et Gauss–Seidel
respectivement. Etablir pour quelles valeurs de α et β les méthodes sont convergentes
et indiquer quel est le rapport entre leurs vitesses de convergence.

3. Pour quelles valeurs des paramètres α ∈ R, β ∈ R, et γ ∈ R pourrait-on appliquer
au système linéaire Ax = b la méthode de Richardson stationnaire ? Dans le cas où
α = β, quel est le choix optimal du paramètre d’accéleration ? En utilisant les même
paramètres, déterminer le facteur de réduction de l’erreur correspondant, c’est à dire
la constante C > 0 t.q.

||x(k) − x||A ≤ Ck||x(0) − x||A, ∀ k ≥ 0.

4. On veut résoudre le système linéaire par une méthode directe : quelle factorisation de
la matrice A envisageriez-vous ? Justifier votre réponse.
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5. On pose α = 0, β = 1, et γ = 2. Calculer la factorisation de la matrice A et résoudre
le systéme linéaire Ax = b.

Sol. :
1. Les deux méthodes sont convergentes si la matrice est strictement diagonale dominante

par ligne : 
|α| > 1/2
|α − 2| < 1
|β| > 0

⇒ 1 < α < 3, β ̸= 0, γ ∈ R,

2.

BJ = I−D−1A = I−


1
α

0 0
0 1 0
0 0 1

β

 A = I−

 1 1
2α

0
α − 2 1 0

0 0 1

 =

 0 − 1
2α

0
2 − α 0 0

0 0 0

 ,

BGS = I−L−1A = I−



1
α

0 0
2 − α

α
1 0

0 0 1
β

 A = I−


1 1

2α
0

0 α + 2
2α

0
0 0 1

 =


0 − 1

2α
0

0 α − 2
2α

0
0 0 0

 ,

La condition est : ρ(B) = max |λ(B)| < 1, donc

det(BJ − λI) = −λ3 + λ
(1

2 − 1
α

)
⇒ λ(BJ) =

0, ±
√

α − 2
2α

 ,

det(BGS − λI) = −λ3 + λ2
(1

2 − 1
α

)
⇒ λ(BGS) =

{
0, 0,

α − 2
2α

}
,

Donc α < −2 ou α > 2/3 avec β ̸= 0, pour les deux methodes.
Notons que ρ(BGS) = ρ(BJ)2, donc Gauss-Seidel converge plus rapidement que Jacobi.
Très probablement avec la motié des itéreations : on a que ∥e

(k)
J ∥ ≤ ρk

J∥e
(o)
J ∥ et ∥e

(k)
GS∥ ≤

ρk
GS∥e

(o)
GS∥. Si on commence avec la même donnée initiale et on suppose égalité, nous

avons
∥e

(kJ )
J ∥ = ∥e

(kGS)
GS ∥ ⇔ ρkJ

J = ρkGS
GS ⇔ ρkJ

J = ρ2kGS
J ⇔ kJ = 2kGS.

3. Avec α = 5/2, β > 0, γ ∈ R la matrice est symmetrique et min(λ) > 0 où

det(A − λI) = (β − λ)
(

λ2 − 7
2λ + 9

4

)
⇒ λ =

β,
7
4 ±

√
13
16

 .

Richardson :

7
4 −

√
13
16 < β = 5

2 <
7
4 +

√
13
16 donc αopt = 2

λmax + λmin
= 4

7
et

C = K(A) − 1
K(A) + 1 =

λmax

λmin
− 1

λmax

λmin
+ 1

= λmax − λmin

λmax + λmin
=

√
13
7
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4. α = 5/2, β > 0, γ ∈ R : Cholesky
α ̸= 5/2, β ̸= 0, γ ∈ R : LU

5.

L =

 1 0 0
0 1 0
0 0 1

 , U =

 −2 1 0
0 1/2 0
0 0 1

 , P =

 0 1 0
1 0 0
0 0 1


et donc,

y = L−1(Pb) = {0, 2, 1} x = U−1y = {2, 4, 1} .
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