Analyse Numérique Mardi 11 avril 2025
Prof. Simone Deparis EPFL

Série 8 (Corrigé)

Parcourez les chapitres des notebooks Jupyter 4.1 et resolvez les exercices qui y sont
proposés (ce sont les mémes qu’ici).

Exercice 1

On considere le systeme linéaire Ax = b ou :

36 7 4
A=|1141], b=]|5
2 4 8 6

a) Calculez la factorisation LU de la matrice A avec Python a I’aide du code ci-dessous.

b) Résolvez le systeme linéaire Ax = b en utilisant la factorisation trouvée au point
précédent (Ne plus utiliser Python.)

c) Calculez le déterminant de la matrice A en utilisant sa factorisation LU.

importing libraries used in this book
import numpy as np

import scipy.linalg as linalg

import pprint

A = np.array([[3, 6, 7],
[11 11 4]!
[2, 4, 81 1

LU factorisation with pivoting
P, L, U = linalg.luCAd)

print("A =P L U")
pprint.pprint(P.dot(L.dot(U)))

print('P:")
pprint.pprint (P)

print ('L:")
pprint.pprint (L)

print ('U:")
pprint.pprint (U)

Sol. :
Si P est l'identité, A = LU.

1. résoudre poury tel que Ly = b par substitution progressive

2. résoudre pour x tel que Ux =y par substitution retrograde

Si P n’est pas l'identité, A = PLU.
Attention, une matrice de permutation est une matrice orthogonale car les colonnes sont
orthonormée. Donc P~ = PT. Du coup : PTA = LU et

Ax=b < PTAx = P'b & LUx = P'b.

Alors 1l faut modifier les calculs précedants comme suit :

1. résoudre pour'y tel que Ly = PTb par substitution progressive

2. résoudre pour x tel que Ux =y par substitution retrograde

def subst_progressive(L, b):
"
substitution progressive: resout y, L*y =D
Input:
- L: matrice carree nzn, triangulaire inferieure
- b: wector de dimension n
Output:
- y: vector de dimension n

ninn

Initialisation de la solution

y = np.zeros(L.shape[1])

La premiere ligne de Ly = b est L_{11} y 1 = b_1

Ensuite pour la ligne k on comnait y_1, ..., y_{k-1} et elle s’ecrit
L_{kk} y k =b_ k - (L_{ki} y 1 + ... L_{kk-1} y_{k-1})
for k in range(L.shape[0]):

sum k est (L_{k1} y 1 + ... L_{kk-1} y {k-1})

sum_k = 0

for j in range(k):
sum_k += L[k,jl*y[j]
y[k] = 1/L[k,k]*(b[k]—sum_k)
return y

def subst_retrograde(U, y):
i
substitution retrograde: resout pour z, Uz = y
Input:
- U: matrice carree nzn, triangulaire superieure
- y: vector de dimension n
Output:

- x: vector de dimension n

nnn

Initialisation de la solution
x = np.zeros(U.shape[1])

La derniere ligne de Yz =y est U {nn} z_n = y_n

Ensutte pour la ligne k on connait z.n, ..., z_{k+1} et elle s’ecrit
U {kk} .k = y k - (U {kk+1} z_{k+1} + ... U {kn} y_{n})
for k in reversed(range(U.shape[0])):

sum_k est (U {kk+1} z_{k+1} + ... U_{kn} y_{n}t)

sum_k = 0
for j in range(k+1, U.shape[0]):
sum_k += U[k,jl#*x[j]
x[k] = 1/U[k,k]*(y[k]—sum_k)
return x

b = np.array([4, 5, 6])
Ptb = P.T.dot(b)

y = subst_progressive(L, Ptb)

n

print('y =", y)

x = subst_retrograde (U, y)
print('z =", x)

check the restdual of the equation
print("residual =",b — A.dot(x))

det(A) = det(P) - det(L) - det(U) = 1-1-(3-(—1) - 3.3333) = —10

Exercice 2

Les mineurs principaux d’une matrice A € R™*" sont les déterminants des matrices

Ay = (aij)i<ij<p P =1, ...,
Critére de Sylvester : une matrice symétrique A € R™" est définie positive si et
seulement si les mineurs principaux de A sont tous positifs.

On considere le systeme linéaire Ax = b ou

A:

N — ™

1
3
1

W = N

1. Déterminez pour quelles valeurs du parametre réel € € R, la matrice A est symétrique
définie positive.

2. Soit maintenant ¢ = 0. On veut résoudre le systeme Ax = b par une méthode directe ;
quelle factorisation de la matrice A envisageriez-vous ? Justifiez votre réponse.

3. En considérant ¢ = 2, vérifier que dans ce cas la matrice A est définie positive et
calculer sa factorisation de Cholesky A = LLT.

4. En supposant que b = (1,1,1)%, résolvez le systéme linéaire Ax = b en utilisant la
factorisation de Cholesky calculée au point c).

Rétérence Python pour la factorisation de Cholesky scipy.linalg.cholesky : https://
docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html
Sol. :

1. En appliquant le critére de Sylvester, il suffit d’imposer

e >0,
e 1 11
det(l 3>—35—1>0, = 5>§.

det A =8z —11 >0,

2. Sie =0 la matrice A est symétrique, mais elle n’est pas définie positive; donc on ne
peut pas calculer la factorisation de Cholesky. On utilisera la méthode d’élimination
de Gauss avec changement de pivot, puisque a;; = 0 ; par exemple, on peut considérer
la matrice de permutation P par lignes :

01
P=110
0 0

—_ o O

On peut facilement voir que A = PLU avec

1 0 0 1 3 1
L=(0 1 0 et U=([01 2
2 =5 1 0 0 11

3. Sie =2, la matrice A est symétrique définie positive. Ici on va utiliser A = LL. Les
éléments de la matrice L de la factorisation de Cholesky de A sont :

lh = \/(1112\/§
1 1

loy = E “ Q9] = ﬁ

by = yazm — B = \/g

ls1 = i s a3 = \/5

lso = — - (ag2 —l31l51) =0

ls3 = \/a33 — (3 +13) =1

4

https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html

c’est-a-dire :

V2 0 0
1 5
L= —= (/= 0
2 V2
V2 0 1

scipy.linalg.eigh : etgenvalues for symmetric matric
from scipy.linalg import eigh

scipy.linalg.eig : eigenvalues of a matric

from scipy.linalg import eig

epsilon = 2

A = np.array([[epsilon, 1, 2],
[, 3, 11,
2, 1, 31 D

Is A symmetric ?

print (f ‘'maz(abs (AAT)) = {np.max(np.abs(A-A.T))} 7

What are the etgenvlues of 4 ? (usually, use eig, but here A is
symmetric, we can use eigh)

1k, v = eigh(A)

print (f 'The eigenvalues of A are {lk}"

Cholesky factorisation: lower : return lower-triangular matriz, A =L
LT

L = cholesky(A, lower=True)

print(f"\n A = LT L = {L.dot(L.T)}\n"

print (£'L = {L}"

. On résout le systéeme linéaire de la facon suivante :
Ly=Db et L'x=y.

On applique algorithme de substitution progressive pour résoudre le systéme Ly = b
T
et on obtient y = (1/\/5, \/i/(2\/3),0) . Puis on calcule la solution du systéme

LTx =y par la méthode de substitution rétrograde et on trowve x = (2/5,1/5,0)".

b = np.array([1,1, 11)

y = np.linalg.solve(L,b)
x = np.linalg.solve(L.T,y)
print (x)

check the restdual of the equation

print(b — A.dot(x))

Exercice 3

Problémes de précision

Les erreurs d’arrondis peuvent causer des différences importantes entre la solution cal-
culée par la méthode d’élimination de Gauss (MEG) et la solution exacte. Cela arrive si le
conditionnement de la matrice du systéme est tres grand.

La matrice de Hilbert de taille n x n est une matrice symétrique définie par

1
aijj = ——, i,7=1,...,n
T+ —1 J
On peut construire une matrice de Hilbert de taille n quelconque en utilisant la com-
mande ‘A = scipy.linalg.hilbert(n)‘ Par exemple, pour n = 4, on a :

N

Il
e e L Ul Ll
O s [00 [=0 | =
O[O = [=00 | =
O | U = | =

On considére les systemes linéaires A,x,, = b,, ou A,, est la matrice de Hilbert de taille
n avec n = 4,6,8,10,12,14, ..., 20 tandis que b,, est choisi de sorte que la solution exacte
soit x,, = (1,1,--- ,1)T.

1. Pour chaque n, calculez le conditionnement de la matrice

2. Résolvez le systéme linéaire par la factorisation LU et notez xLV la solution calculée.

3. Dessinez le graphique avec le conditionnement obtenu ainsi que l'erreur rélative ||x,, —
xEU|/11%a]l (ot || - || est la norme euclidienne d'un vecteur, ||x|| = vxT - x). Utilisez
une échelle logarithmique pour I'axe y.

4. Sur le méme graphique, reportez le conditionnement de la matrice A, ‘np.linalg.cond(A)*

Répétez la méme chose avec la factorisation de Cholesky ‘L = cholesky(A, lower=True)*
pour n = 4,6,8,10,12. Que se passe-t-il sin =147 Sol. :

from scipy.linalg import hilbert

Nrange = range(2,20,2)
err = []
cond = []

for n in Nrange
A = hilbert(n)

P, L, U = 1lu(A)

X = np.ones([n,1])

o
Il

A.dot (x)

y = np.linalg.solve(L,P.T.dot(b))

xLU = np.linalg.solve(U,y)

err.append(np.linalg.norm(x—=xLU) / np.linalg.norm(x))

cond.append(np.linalg.cond(A))

plt.plot(Nrange, err, ’b:.

plt.xlabel('n"); plt.ylabel(‘err);

plt.zscale(’log’)
plt.yscale(’log D)
plt.grid(True)
plt.show()

",Nrange,

cond,

‘gD

10'8 4
1013 4
108 |
L1031
@
10—2 |

10—7 |

10—12 |

.t
.
.
.

PR

10

12 14 16 18

Nrange = range(2,13,2)
err = []
cond = []

for n in Nrange

A = hilbert(n)

L = cholesky(A, lower=True)
X = np.ones([n,1])

b = A.dot(x)

y = np.linalg.solve(L,b)
xCho = np.linalg.solve(L.T,y)

err.append(np.linalg.norm(x—xCho) / np.linalg.norm(x))
cond.append(np.linalg.cond(A))

plt.plot(Nrange, err, ’b:. ,Nrange, cond, '¢g:. ")

plt.xlabel('n"); plt.ylabel(’err’);
plt.zscale(’log’)
plt.yscale('log ")

plt.grid(True)

plt.show()

54 T

1011 .

107 .

10 4 e

err

10—1 .

-

o

10—5 .

.

1079 gttt

ot

10713 - o

2 4 6 8 10 12

Copyright 2012-2020 © Prof. Alfio Quarteroni, Simone Deparis.

