
Analyse Numérique Mardi 11 avril 2025
Prof. Simone Deparis EPFL

Série 8 (Corrigé)

Parcourez les chapitres des notebooks Jupyter 4.1 et resolvez les exercices qui y sont
proposés (ce sont les mêmes qu’ici).

Exercice 1

On considère le système linéaire Ax = b où :

A =


3 6 7
1 1 4
2 4 8

 , b =


4
5
6

 .

a) Calculez la factorisation LU de la matrice A avec Python à l’aide du code ci-dessous.
b) Résolvez le système linéaire Ax = b en utilisant la factorisation trouvée au point

précédent (Ne plus utiliser Python.)
c) Calculez le déterminant de la matrice A en utilisant sa factorisation LU .

importing libraries used in this book
import numpy as np

import scipy.linalg as linalg

import pprint

A = np.array([[3, 6, 7],

[1, 1, 4],

[2, 4, 8]])

LU factorisation with pivoting
P, L, U = linalg.lu(A)

print("A = P L U")
pprint.pprint(P.dot(L.dot(U)))

print("P: ")
pprint.pprint(P)

print ("L: ")
pprint.pprint(L)

print ("U: ")
pprint.pprint(U)

1

Sol. :
Si P est l’identité, A = LU .

1. résoudre pour y tel que Ly = b par substitution progressive
2. résoudre pour x tel que Ux = y par substitution retrograde
Si P n’est pas l’identité, A = PLU .
Attention, une matrice de permutation est une matrice orthogonale car les colonnes sont

orthonormée. Donc P −1 = P T . Du coup : P T A = LU et

Ax = b ⇔ P T Ax = P T b ⇔ LUx = P T b.

Alors il faut modifier les calculs précedants comme suit :
1. résoudre pour y tel que Ly = P T b par substitution progressive
2. résoudre pour x tel que Ux = y par substitution retrograde

def subst_progressive(L, b):

"""
substitution progressive: resout y, L*y = b
Input:
- L: matrice carree nxn, triangulaire inferieure
- b: vector de dimension n
Output:
- y: vector de dimension n
"""

Initialisation de la solution
y = np.zeros(L.shape[1])

La premiere ligne de Ly = b est L_{11} y_1 = b_1
Ensuite pour la ligne k on connait y_1, ..., y_{k-1} et elle s’ecrit
L_{kk} y_k = b_k - (L_{k1} y_1 + ... L_{kk-1} y_{k-1})
for k in range(L.shape[0]):

sum_k est (L_{k1} y_1 + ... L_{kk-1} y_{k-1})
sum_k = 0

for j in range(k):

sum_k += L[k,j]∗y[j]
y[k] = 1/L[k,k]∗(b[k]−sum_k)

return y

def subst_retrograde(U, y):

"""
substitution retrograde: resout pour x, U*x = y
Input:
- U: matrice carree nxn, triangulaire superieure
- y: vector de dimension n
Output:

2

- x: vector de dimension n
"""

Initialisation de la solution
x = np.zeros(U.shape[1])

La derniere ligne de Yx = y est U_{nn} x_n = y_n
Ensuite pour la ligne k on connait x_n, ..., x_{k+1} et elle s’ecrit
U_{kk} x_k = y_k - (U_{kk+1} x_{k+1} + ... U_{kn} y_{n})
for k in reversed(range(U.shape[0])):

sum_k est (U_{kk+1} x_{k+1} + ... U_{kn} y_{n})
sum_k = 0

for j in range(k+1, U.shape[0]):

sum_k += U[k,j]∗x[j]
x[k] = 1/U[k,k]∗(y[k]−sum_k)

return x

b = np.array([4, 5, 6])

Ptb = P.T.dot(b)

y = subst_progressive(L, Ptb)

print("y =", y)

x = subst_retrograde(U, y)

print("x =", x)

check the residual of the equation
print(" residual =",b − A.dot(x))

x =

 3
−2
1


det(A) = det(P) · det(L) · det(U) = 1 · 1 · (3 · (−1) · 3.3333) = −10

Exercice 2

Les mineurs principaux d’une matrice A ∈ Rn×n sont les déterminants des matrices
Ap = (ai,j)1≤i,j≤p, p = 1, ..., n.

Critère de Sylvester : une matrice symétrique A ∈ Rn×n est définie positive si et
seulement si les mineurs principaux de A sont tous positifs.

On considère le système linéaire Ax = b où

A =

 ε 1 2
1 3 1
2 1 3

 .

3

1. Déterminez pour quelles valeurs du paramètre réel ε ∈ R, la matrice A est symétrique
définie positive.

2. Soit maintenant ε = 0. On veut résoudre le système Ax = b par une méthode directe ;
quelle factorisation de la matrice A envisageriez-vous ? Justifiez votre réponse.

3. En considérant ε = 2, vérifier que dans ce cas la matrice A est définie positive et
calculer sa factorisation de Cholesky A = LLT .

4. En supposant que b = (1, 1, 1)T , résolvez le système linéaire Ax = b en utilisant la
factorisation de Cholesky calculée au point c).

Référence Python pour la factorisation de Cholesky scipy.linalg.cholesky : https://
docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html
Sol. :

1. En appliquant le critère de Sylvester, il suffit d’imposer
ε > 0,

det
(

ε 1
1 3

)
= 3ε − 1 > 0,

det A = 8ε − 11 > 0,

⇒ ε >
11
8 .

2. Si ε = 0 la matrice A est symétrique, mais elle n’est pas définie positive ; donc on ne
peut pas calculer la factorisation de Cholesky. On utilisera la méthode d’élimination
de Gauss avec changement de pivot, puisque a11 = 0 ; par exemple, on peut considérer
la matrice de permutation P par lignes :

P =

 0 1 0
1 0 0
0 0 1

 .

On peut facilement voir que A = PLU avec

L =

 1 0 0
0 1 0
2 −5 1

 et U =

 1 3 1
0 1 2
0 0 11

 .

3. Si ε = 2, la matrice A est symétrique définie positive. Ici on va utiliser A = LLT . Les
éléments de la matrice L de la factorisation de Cholesky de A sont :

l11 = √
a11 =

√
2

l21 = 1
l11

· a21 = 1√
2

l22 =
√

a22 − l2
21 =

√
5
2

l31 = 1
l11

· a31 =
√

2

l32 = 1
l22

· (a32 − l31l21) = 0

l33 =
√

a33 − (l2
31 + l2

32) = 1

4

https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html

c’est-à-dire :

L =


√

2 0 0
1√
2

√
5
2 0

√
2 0 1

 .

scipy.linalg.eigh : eigenvalues for symmetric matric
from scipy.linalg import eigh

scipy.linalg.eig : eigenvalues of a matrix
from scipy.linalg import eig

epsilon = 2

A = np.array([[epsilon, 1, 2],

[1, 3, 1],

[2, 1, 3]])

Is A symmetric ?
print(f ’max(abs (A−AT)) = {np .max(np . abs (A−A.T))} ’)

What are the eigenvlues of A ? (usually, use eig, but here A is
symmetric, we can use eigh)

lk, v = eigh(A)

print(f ’The eigenvalues of A are { l k } ’)

Cholesky factorisation: lower : return lower-triangular matrix, A = L
L^T

L = cholesky(A, lower=True)

print(f"\n A = L^T L = {L. dot (L.T)}\n")

print (f"L = {L}")

4. On résout le système linéaire de la façon suivante :

Ly = b et LT x = y.

On applique l’algorithme de substitution progressive pour résoudre le système Ly = b
et on obtient y =

(
1/

√
2,

√
2/(2

√
5), 0

)T
. Puis on calcule la solution du système

LT x = y par la méthode de substitution rétrograde et on trouve x = (2/5, 1/5, 0)T .
b = np.array([1,1, 1])

y = np.linalg.solve(L,b)

x = np.linalg.solve(L.T,y)

print(x)

check the residual of the equation

5

print(b − A.dot(x))

Exercice 3

Problèmes de précision
Les erreurs d’arrondis peuvent causer des différences importantes entre la solution cal-

culée par la méthode d’élimination de Gauss (MEG) et la solution exacte. Cela arrive si le
conditionnement de la matrice du système est très grand.

La matrice de Hilbert de taille n × n est une matrice symétrique définie par

aij = 1
i + j − 1 , i, j = 1, . . . , n

On peut construire une matrice de Hilbert de taille n quelconque en utilisant la com-
mande ‘A = scipy.linalg.hilbert(n)‘. Par exemple, pour n = 4, on a :

A =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


On considère les systèmes linéaires Anxn = bn ou An est la matrice de Hilbert de taille

n avec n = 4, 6, 8, 10, 12, 14, . . . , 20 tandis que bn est choisi de sorte que la solution exacte
soit xn = (1, 1, · · · , 1)T .

1. Pour chaque n, calculez le conditionnement de la matrice
2. Résolvez le système linéaire par la factorisation LU et notez xLU

n la solution calculée.
3. Dessinez le graphique avec le conditionnement obtenu ainsi que l’erreur rélative ∥xn −

xLU
n ∥/∥xn∥ (où ∥ · ∥ est la norme euclidienne d’un vecteur, ∥x∥ =

√
xT · x). Utilisez

une échelle logarithmique pour l’axe y.
4. Sur le même graphique, reportez le conditionnement de la matrice A, ‘np.linalg.cond(A)‘
Répétez la même chose avec la factorisation de Cholesky ‘L = cholesky(A, lower=True)‘

pour n = 4, 6, 8, 10, 12. Que se passe-t-il si n = 14 ? Sol. :
from scipy.linalg import hilbert

Nrange = range(2,20,2)

err = []

cond = []

for n in Nrange :

A = hilbert(n)

P, L, U = lu(A)

x = np.ones([n,1])

b = A.dot(x)

6

y = np.linalg.solve(L,P.T.dot(b))

xLU = np.linalg.solve(U,y)

err.append(np.linalg.norm(x−xLU) / np.linalg.norm(x))
cond.append(np.linalg.cond(A))

plt.plot(Nrange, err, ’ b : . ’,Nrange, cond, ’ g : . ’)

plt.xlabel(’n ’); plt.ylabel(’ err ’);
plt.xscale(’log’)
plt.yscale(’ log ’)
plt.grid(True)

plt.show()

2 4 6 8 10 12 14 16 18
n

10 12

10 7

10 2

103

108

1013

1018

er
r

Nrange = range(2,13,2)

err = []

cond = []

for n in Nrange :

A = hilbert(n)

L = cholesky(A, lower=True)

x = np.ones([n,1])

b = A.dot(x)

7

y = np.linalg.solve(L,b)

xCho = np.linalg.solve(L.T,y)

err.append(np.linalg.norm(x−xCho) / np.linalg.norm(x))
cond.append(np.linalg.cond(A))

plt.plot(Nrange, err, ’ b : . ’,Nrange, cond, ’ g : . ’)

plt.xlabel(’n ’); plt.ylabel(’ err ’);
plt.xscale(’log’)
plt.yscale(’ log ’)
plt.grid(True)

plt.show()

2 4 6 8 10 12
n

10 13

10 9

10 5

10 1

103

107

1011

1015

er
r

Copyright 2012-2020 © Prof. Alfio Quarteroni, Simone Deparis.

8

