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Série 8

Parcourez les chapitres des notebooks Jupyter 4.1 et resolvez les exercices qui y sont
proposés (ce sont les mêmes qu’ici).

Exercice 1

On considère le système linéaire Ax = b où :

A =


3 6 7
1 1 4
2 4 8

 , b =


4
5
6

 .

a) Calculez la factorisation LU de la matrice A avec Python à l’aide du code ci-dessous.
b) Résolvez le système linéaire Ax = b en utilisant la factorisation trouvée au point

précédent (Ne plus utiliser Python.)
c) Calculez le déterminant de la matrice A en utilisant sa factorisation LU .

# importing libraries used in this book
import numpy as np

import scipy.linalg as linalg

import pprint

A = np.array([[3, 6, 7],

[1, 1, 4],

[2, 4, 8] ])

# LU factorisation with pivoting
P, L, U = linalg.lu(A)

print( "A = P L U")
pprint.pprint(P.dot(L.dot(U)) )

print( "P: ")
pprint.pprint(P)

print ( "L: ")
pprint.pprint(L)

print ( "U: ")
pprint.pprint(U)
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Exercice 2

Les mineurs principaux d’une matrice A ∈ Rn×n sont les déterminants des matrices
Ap = (ai,j)1≤i,j≤p, p = 1, ..., n.

Critère de Sylvester : une matrice symétrique A ∈ Rn×n est définie positive si et
seulement si les mineurs principaux de A sont tous positifs.

On considère le système linéaire Ax = b où

A =

 ε 1 2
1 3 1
2 1 3

 .

1. Déterminez pour quelles valeurs du paramètre réel ε ∈ R, la matrice A est symétrique
définie positive.

2. Soit maintenant ε = 0. On veut résoudre le système Ax = b par une méthode directe ;
quelle factorisation de la matrice A envisageriez-vous ? Justifiez votre réponse.

3. En considérant ε = 2, vérifier que dans ce cas la matrice A est définie positive et
calculer sa factorisation de Cholesky A = LLT .

4. En supposant que b = (1, 1, 1)T , résolvez le système linéaire Ax = b en utilisant la
factorisation de Cholesky calculée au point c).

Référence Python pour la factorisation de Cholesky scipy.linalg.cholesky : https://
docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html

Exercice 3

Problèmes de précision
Les erreurs d’arrondis peuvent causer des différences importantes entre la solution cal-

culée par la méthode d’élimination de Gauss (MEG) et la solution exacte. Cela arrive si le
conditionnement de la matrice du système est très grand.

La matrice de Hilbert de taille n × n est une matrice symétrique définie par

aij = 1
i + j − 1 , i, j = 1, . . . , n

On peut construire une matrice de Hilbert de taille n quelconque en utilisant la com-
mande ‘A = scipy.linalg.hilbert(n)‘. Par exemple, pour n = 4, on a :

A =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


On considère les systèmes linéaires Anxn = bn ou An est la matrice de Hilbert de taille

n avec n = 4, 6, 8, 10, 12, 14, . . . , 20 tandis que bn est choisi de sorte que la solution exacte
soit xn = (1, 1, · · · , 1)T .

1. Pour chaque n, calculez le conditionnement de la matrice
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2. Résolvez le système linéaire par la factorisation LU et notez xLU
n la solution calculée.

3. Dessinez le graphique avec le conditionnement obtenu ainsi que l’erreur rélative ∥xn −
xLU

n ∥/∥xn∥ (où ∥ · ∥ est la norme euclidienne d’un vecteur, ∥x∥ =
√

xT · x). Utilisez
une échelle logarithmique pour l’axe y.

4. Sur le même graphique, reportez le conditionnement de la matrice A, ‘np.linalg.cond(A)‘
Répétez la même chose avec la factorisation de Cholesky ‘L = cholesky(A, lower=True)‘

pour n = 4, 6, 8, 10, 12. Que se passe-t-il si n = 14 ?

Copyright 2012-2020 © Prof. Alfio Quarteroni, Simone Deparis.

3


