Analyse Numérique Vendredi 28 mars 2025
Prof. Simone Deparis EPFL

Série 6 (Corrigé)

Pour mardi : apprentissage vidéos chapitres 3.4 (environ 40 minutes de travail)

Mardi prochain : résolvez les exercices Python qui se trouvent dans cette série

Partiellement en classe vendredi

Exercice 1

On considére une fonction f(x), = € [a, b].

1. Ecrivez le polynéme quadratique interpolant f (z) dans les noeuds zg = a, x; = 42

2
et xo = b en utilisant la base de Lagrange.

2. Combien valent les intégrales [° ¢, pour k = 0,1,2? Utilisez une formule de quadra-
ture appropriée pour calculer!

3. On veut approcher U'intégrale de f(x) par I'intégration de I'interpolation quadratique.
Ecrivez l'intégrale exacte de l'interpolant. Quelle formule d’intégration numérique
pouvez-vous reconnaitre ?

Sol. :
1. Commengons par consideérer les polynomes de la base de Lagrange pour l’interpola-
tion : (o-2) (o)
B -2)(z—b) (z—2F7)(z—b)
polr) = e = 2 @
_ (@—a)(@=b) _ _ j(z—a)(z=b)
901(1‘) - (%M—a)(%ﬂ’—b) =—4 (a—b)?
B (z—a)(w—%ﬁ) B (x—a)(;t—%“’)
pa(r) = GoEn) =2 e
Ou on a utilisé le fait que “T*b est le point milieu de [a,b] et que b — ‘LTH’ = b’T“ et
a— “TH’ = “T’b Par conséquent, l'interpolation quadratique peut étre écrite comme :

3 f(x) = f(a)go(x) + F(4)or(x) + f(b)pa(x)
= ot (2f(a) (x = %) (z = b) = 4f(“5D) (@ — a)(w — b) + 2f (B)(z — a) (2 — =$2))

2. On opére le changement de variable x = “TH’ +1 (b%‘l) et on obtient :

b b—a 1 a+b b—a
/agok(x)dx— 5 19%(5 —f—t(5 >>dt

Or(t) = pr ("TH’ +1 (b_T“)) est un polynome de degré deux, il est intégré eractement
sur [—1,1] par la formule de quadrature de Simpson :

/11 @k(t)dt = 2 (@k(—l) —+ 4@k(0) + @ + (1)) _

donc

G CORR e S)

Mais a, b, “TH’ sont les noeuds d’interpolation, donc py dans ces points vuazr 1 ou 0.
Plus précisement :

Jo wolz)de = 255% (wola) + 40 (452) + po(b)) = %5
[Poa)ds = 225 (pi(a) +4¢1 (52) + @a(0) = 2(b—a)
Lpa(a)dr = 2850 (pa(a) + dpn (%52) + pa(b)) = 55

3. St on combine les résultats des deux points précédents on obtient :

[=

=/
~ f(a)

<a J2r b) p1(@) + f(D)pa(x))da
(“ ; b) /ab p1(z)dz + f(b) /ab oo(x)dx
-5 v ar (57) <o)

Nous reconnaissons (que c’est) la formule de Simpson pour lintégration numérique
sur un intervalle quelconque.

(f(a)%(

z)+ f
/b wo(x)dr + f

Exercice 2

Soit g une fonction continue définie sur l'intervalle [—1, 1]. On choisit trois nceuds d’in-
terpolation nommés x1, x9 et x3 tels que z1 = —1, 29 = [et x3 = 1, ou [est un nombre
réel donné tel que || < 1. Pour approcher lintégrale !, g(x)dz, on considére la formule
de quadrature suivante :

Ir(g) = Z_Z aj g(x;) = apg(—1) + a1 g(B) + a2 g(1)

a) Trouvez les poids ag, oy et s en fonction de § tels que la formule de quadrature soit
exacte de degré 2.
b) Trouvez ensuite 3 tel que Ip(p) = 1, p(x)dz pour tout polynéme p de degré 3.

c) Reécrivez cette formule sur Uintervalle [a,b] (a < b) pour intégrer une fonction conti-
nue f définie sur cet intervalle. Quelle formule d’intégration reconnaissez-vous ?

a) Notons d’abord qu’ici on a M = 3 noeuds de quadrature et que le degré d’exactitude
souhaité est M — 1 égale a 2. Cela suggere d’utiliser le théoreme suivant :

2

b)

Theorem 1 (Poids de quadrature) Soit J une formule de quadrature avec M
noeuds.

J est exacte de degré M — 1 <= w; = f}l w;(t)dt, j=1,..., M,
ou{p;,j=1,...,M} est la base de Lagrange associée aux noeuds de quadrature.

Ici les poids de quadrature sont ag, oy, g, faut donc les choisir tels que a; = fil ;(t)dt, j =
0,...,2 (notez le décalage des indices).

f-x l-o_(f-a)l-z) B (f+Data’

PTBET IRl 28+ 208+
1 L 1 Ly 1 2. B+3
/_180022(6”[536—2(5+1)x2+3x3]1:W[25+3]:6+i:a0
I 1—1‘_(1—3:2)
A A)
1 1 1 1 1 92 43
/_1%0121_52[x—3x3]_1:(1_62>[2—3]:1_/62:a1
B-x —l-xz_ (B-2)(1+2) B+(B—Da—a?
PTB-1 -1 28-0) 0 26—
! 1 1 1 .t 1 2 B-1
Looo= gy e 38 =02 =571 = g 3l = oy =

11 suffit que la formule intégre exactement le polynéme p(x) = 23, c’est-a-dire
b 1 -
12(1'3) = —qp + 55041 + g = / .Q?Sdl' =0.
~1
On obtient [’équation

—(1+38) 1= 8) +48° + (1 =38)(1+) =0 = 45(8* - 1) = 0.

La seule solution dans Uintervalle | — 1,1[est f = 0 et les poids deviennent dans ce
cas

1 4

040204225, 04125-
h—
Il suffit d’introduire la transformation * = a + a(:C +1). On a di = *5*dx et
donc :) ; . ;
N —a —a
| f@az =52 [gayde = = h(g()

ot g(z) = f(a+5%(x +1)). La formule devient donc :

L) =50 oot @+ et (15 +ar)]
soit :
12<f>=b_6“[f<a>+4f (b;")w(b)] .

On reconnait la formule de Simpson.

Exercice 3

Définition. Le degré d’exactitude d’'une méthode d’intégration est donné par la valeur
maximale de r pour laquelle la méthode integre exactement tout polynéme de degré inférieur
ou égal a r.

a) D’apres la définition ci-dessus, déterminez le degré d’exactitude de la formule du rec-

tangle (point milieu) simple, c-a-d sur un seul intervalle en prenant comme fonctions

tests pour l'intégrale I = [° f(x) les polyndmes : 1,z, 22, 2%,

b) On considére maintenant le calcul de I'intégrale
1
I= / "1 - 2)" da,
0

ot m et n sont deux valeurs entiéres m, n > 1. Ecrivez la méthode du rectangle simple

pour approcher I. Pour quelles valeurs de n et m cette formule donne la valeur exacte
de 17

Sol. :

a) On prend d’abord f(x) =1 et on calcule 'intégrale exacte :

b
I:/ 1=b-—a.

Par la méthode du rectangle on trouve :
Lm=(b—-a)-1=b—a.
Donc I = 1, pour r = 0. Considérons maintenant f(x) = x. L’intégrale exacte est :

b 2 .2
I:/x:b a’
a 2

et lintégrale approchée par la méthode du rectangle est :

a+b
L= (b—a)- 5

Donc I = I, pour v = 1. Finalement, si on prend f(x) = %, on trouve

]:/x2: a :(b—a)-ﬂ,
a 3 3
tandis que par la méthode du rectangle
b 2
Ipmz(b—a)~(az).

Vu que I = I, pourr = 0,1, mais I # I, sir =2, on peut conclure que la méthode
du rectangle simple a degré d’exactitude 1, c-a-d qu’elle peut intégrer exactement les
fonctions constantes et linéaires.

b) La méthode du rectangle simple s’écrit :
1m71 11171
Lom = = .
2 2
Puisque la méthode a degré d’exactitude 1, on doit imposer
(m—-1)+n-1)<1 & m+n—-2<1 & m+n<3.

Donc, I = Iy, sim=1etn=2, oum=2¢etn=1.

4

Python

Exercice 4

On considere le calcul de I'intégrale

= [jwa

ou f(z) est une fonction continue sur [0, 1].

1. Ecrivez une fonction midpoint qui implémente la formule composite du rectangle (point
milieu) pour 'approximation de l'intégrale ci-dessus. Pour permettre le choix dun
intervalle d’intégration de la forme [a, b], le nombre de sous-intervalles N et la fonction
f(z), définie par la commande £ = lambda x : ... utilisez la structure suivante :

def midpoint(a, b, M, f)
[a,b] : inteval
M : number of subintervals

f : fonction to integrate using the midpoint rule

2. Testez le code en considérant la fonction f(r) = x? et M = 10. Tracer ensuite le
graphe de l'erreur |I(f) — I5,(f)| en fonction de M (utilisez a cette fin la com-
mande plt.xscale(log); plt.yscaleClog)), en choisissant a = 0, b = 1, et M =
10,102,103, ..10°. Quel est I'ordre de convergence de la formule composite du rec-
tangle par rapport & H = (b—a)/M ? Donnez une interprétation des résultats d’apres
la théorie.

3. Modifiez le code du point a) pour permettre le calcul de l'intégrale avec la formule
composite du trapeéze. Tracer le graphe de lerreur |[I(f) — If(f)| pour les mémes
valeurs de M. Comparez les résultats avec ceux obtenus au point b).

def trapeziodal(a, b, N, £)
[a,b] : inteval
N : number of subintervals

£ : fonction to integrate using the trapezoidal rule

Sol. : Cf Jupyther notebooks

Exercice 5

On considere la fonction f : [a,b] — R dans C°([a,b]); on est intéressé a approcher
Vintégrale I(f) = [° f(z) dx.

1. Ecrivez une fonction Simpson qui implémente la formule composite de Simpson pour
I’approximation de l'intégrale ci-dessus. Utilisez la structure suivante :

def Simpson(a, b, N, £)
[a,b] : inteval
N : number of subintervals

£ : fonction to integrate using the Simpson rule

2. Testez ensuite pour quels mondmes f(x) = z? cette formule intégre exactement la
fonction, pour d = 0,1, ... sur l'intervalle [1,4], avec N = 1 et ensuite N = 10.

3. Vérifiez numériquement pour quelques polynomes que la fonction ainsi écrite est li-
néaire en f pour N = 10.

Suggestion : En utilisant une fonction ‘lambda‘ il est possible de décider le parametre d
d’un monoéme a un moment ultérieur :

monomial = lambda x : x**d

Sol. : Cf Jupyther notebooks

Exercice 6

On consideére la fonction f : [a,b] — R dans C%[a,b]); on est intéressé & approcher
Vintégrale I(f) = [° f(x) da.

Plus précisément on prend f(z) =sin(fz)+e*—1laveca=0et b=1 (f € C=([a,b]))
et on peut calculer I(f) = 2 (1 —cos(2)) +e — 2.

1. Calculez une approximation de l'intégrale en utilisant les formules du rectangle, du
trapeéze et de Simpson *simples*®, c-a-d avec un seul intervalle.

2. Calculez une approximation de I'intégrale en utilisant les fonctions midpoint, trapezoidal
et simpson (déja codées) avec N = 10 sous-intervalles de méme taille. On notera les
valeurs approchées de I'intégrale I, (f), If(f), and I{(f), respectivement.

3. Répétez le point 2. avec N = 2% pour k = 2,...,7 et calculez les erreurs B (f) =
1(f) = Te (D)l EE(f) = [1(f) — TP, et E2(f) = [I(f) — I%(f)]. Dessines les
erreurs en fonction de H = (b—a)/N sur une échelle logarithmique sur les deux axes.
Quel est I'ordre de convergence de ces méthodes? Est-ce en accord avec la théorie ?
Motivez votre réponse.

4. On prend maintenant f(z) = 2% a = 0 et b = 1, avec d € N. L’intégrale de f
vaut I(f) = 1/(d + 1). Vérifiez numériquement les degrés d’exactitude de chacune
des formules de quadrature du point 1. Pour cela, il faut choisir plusieurs valeurs de
d=0,1,2,.... Motivez votre réponse.

Sol. : Cf Jupyther notebooks

Exercice 7

On considére, sur 'intervalle [—1, 1], la fonction f suivante :

f(x):{ e? six <0

1 siz>0

On peut définir une telle fonction en utilisant la commande

f =

lambda x : np.exp(x)*(x<=0) + (1)*(x>0)

. Utilisez 1000 points équirépartis dans l'intervalle [—1,1] pour afficher la fonction f

(utilisez la commande axis pour recadrer I'image).

On s’intéresse & présent & l'intégrale I = [*, f(2) dz. On peut calculer la valeur de
I analytiquement et on trouve I = 2 — % = 1.6321. Calculez des valeurs approchées
de I en considérant les formules du point milieu, du trapeze et de Simpson avec
N = 1,9,99,999 ou N est le nombre de sous-intervalles de formules composites.
Utilisez les fonctions midpoint, trapezoidal et simpson (déja codées) .

. Reportez les erreurs calculées au point (b) dans un graphe montrant l'erreur en fonc-

tion de H avec des échelles logarithmiques (commande loglog).

Estimez, a partir des graphes obtenus au point précédent 1'ordre de chacune des
méthodes. Comparez-les avec les ordres donnés au cours. Y a-t-il des différences?
Pourquoi ? (Regardez les dérivées de f).

. Pourquoi obtient-on de bien meilleurs résultats pour la méthode de Simpson avec

un nombre pair d’intervalles qu’avec un nombre impair (essayez avec N = 99 et
N =100)?

. Refaites 'exercice avec N = 2,10, 100, 1000.
Sol. :

Cf Jupyther notebooks

Copyright 2012-2020 © Prof. Alfio Quarteroni, Simone Deparis.

Sol. :

[1]1:

Analyse Numérique
Série 06
Simone Deparis

March 28, 2025

Contents

1 Exercice Série 6, Ex 4

1.1 Formule du rectangle et du trapéze L0 1
2 Exercice Série 6, Ex 5 5
2.1 Formule de Simpson)
3 Exercice Série 6, Ex 6 9
3.1 Degré d’exactitude d’une formule de quadrature 9
4 Exercice Série 6, Ex 7 15
4.1 Convergence pour fonction non-lisse oL 15

1 Exercice Série 6, Ex 4

1.1 Formule du rectangle et du trapéze

import matplotlib.pyplot as plt
import numpy as np

On considére le calcul de I'intégrale
1
1= [fw)is,
0
ot f(z) est une fonction continue sur [0, 1].

1. Ecrivez une fonction midpoint qui implémente la formule composite du rectangle (point mi-
lieu) pour l'approximation de l'intégrale ci-dessus. Pour permettre le choix d’un intervalle
d’intégration de la forme [a, b], le nombre de sous-intervalles N et la fonction f(z), définie par
la commande f = lambda x : ... utilisez la structure suivante:

def midpoint(a, b, N, f)
[a,b] : inteval
N : number of subintervals
f : fonction to integrate using the midpoint rule

2. Testez le code en considérant la fonction f(x) = x? et M = 10. Tracez ensuite le
graphe de lerreur [I(f) — I, (f)| en fonction de N (utilisez a cette fin les comman-

des plt.xscale('log'); plt.yscale('log')), en choisissant a = 0, b = 1, et M =
10',102,10%,...10%. Quel est I'ordre de convergence de la formule composite du rectangle
par rapport & H = (b — a)/M? Donnez une interprétation des résultats d’aprés la théorie.

3. Modifiez le code du point 1. pour permettre le calcul de l'intégrale avec la formule composite
du trapéze. Tracez le graphe de Uerreur |I(f)—If(f)| pour les mémes valeurs de M. Comparez
les résultats avec ceux obtenus au point 2.

def trapeziodal(a, b, N, f)
[a,b] : inteval
N : number of subintervals
f : fonction to integrate using the trapezoidal rule

Partie 1
[2]: def midpoint(a, b, N, f)
[a,b] : inteval
M : number of subintervals
f : fonction to integrate using the midpoint rule

size of the subintervals
=(-2a /N

sl

quadrature nodes
= np.linspace(a+H/2, b-H/2, N)

"

approximate integral
return H * np.sum(£(x));

Partie 2
[3]: f = lambda x : x**2

intmp = midpoint(a, b, N, f)

print (intmp)
0.3325
En sachant que la valeur exacte de l'intégrale est I(f) = 1/3, on peut écrire les commandes suivantes:

[4]: N = 10**np.linspace(1,5,5) .astype(int)

errmp = []

for i in range(5)
intmp = midpoint(a, b, N[i], f)
errmp.append(np.abs(intmp - 1.0/3))

plt.plot(N, errmp, 'b:."')

plt

plt
plt
plt
plt

plt.

.xlabel('M'); plt.ylabel('err');

.xscale('log')

.yscale('log')

.grid(True)

.title('Le graphe loglog est une droite avec pente égale a -2:')

show ()

print('Figure: Erreur relative & la méthode du rectangle en échelle,
—logarithmique.\n\n')

slope = (np.log(errmp[4]) - np.log(errmp[0])) / (np.log(N[4]) - np.log(N[0]))

print(f'La pente est de {slope:.6f}')

Le graphe loglog est une droite avec pente égale a -2:

L
104 -
"
1075 1
|- 'y
o .
1078 1
S
1010
T
T T T T T T T T T L ML
101 102 103 104 109

Figure: Erreur relative a la méthode du rectangle en échelle logarithmique.

La pente est de -2.000001

Donc, 'erreur décroit comme la puissance -2 du paramétre N. Par conséquent, I’ordre de conver-
gence par rapport & H = 1/N est 2.

Partie 3 On peut modifier le code du point milieu pour implémenter la méthode du trapéze
comme suit.

[5]: def trapezoidal(a, b, N, f)
[a,b] : inteval
M : number of subintervals
f : fonction to integrate using the trapezoidal rTule

**

size of the subintervals
=(@-a /N

==

H*

quadrature nodes
= np.linspace(a, b, N+1)

el

approximate integral
return H/2 * (f(a) + f(b)) + H * sum(£(x[1:N]));

[6]: errtrap = []
for i in range(5)
inttrap = trapezoidal(a, b, N[i], f)
errtrap.append(np.abs(inttrap - 1.0/3))

plt.plot(N, errmp, 'b:.')
plt.plot(N, errtrap, 'c:*')

plt.legend(['rectangle', 'trapeze'l)
plt.xlabel('N'); plt.ylabel('err');

plt.xscale('log')

plt.yscale('log')

plt.grid(True)

plt.title('Les graphes loglog sont des droites avec pente égale a -2:')

plt.show()

print('Figure: Erreur relative aux méthodes du rectangle et du trapéze en,
—échelle logarithmique.\n\n')

slope = (np.log(errtrap[4]) - np.log(errtrapl[0])) / (np.log(N[4]) - np.
~log(N[0]))

print(f'La convergence numérique est d\'environ {slope:.2f}')

print(f'En moyenne, le rapport entre les deux erreurs est de {np.mean(np.abs(np.
—array (errtrap) /np.array(errmp))): .6£}')

Les graphes loglog sont des droites avec pente égale a -2:

‘: --+- rectangle
et - trapeze
1074 1 BN e
i
.,
105 - R
— ‘ .+*
@ .
1078 ~ "v:j;-_
R
.
10-10 4
et
‘»
T T T LRI | T T LI | T T LR | T T LRI |
101 10° 103 104 10°
N

Figure: Erreur relative aux méthodes du rectangle et du trapéze en échelle
logarithmique.

La convergence numérique est d'environ -2.00
En moyenne, le rapport entre les deux erreurs est de 1.999993

On observe que la précision est encore O(h?), mais que I'erreur est plus grande (le double, précisé-
ment) que dans le cas du point milieu.

[1:

2 Exercice Série 6, Ex 5

2.1 Formule de Simpson

[7]: | import matplotlib.pyplot as plt
import numpy as np

On considére la fonction f : [a,b] — R dans C°([a,b]); on est intéressé a approcher l'intégrale

I(f) = [f(x) da.

[8]:

1. Ecrivez une fonction Simpson qui implémente la formule composite de Simpson pour
I’approximation de I'intégrale ci-dessus. Utilisez la structure suivante:

def Simpson(a, b, N, f)
[a,b] : inteval
N : number of subintervals
f : fonction to integrate using the Simpson rule

2. Testez ensuite pour quels monémes f(x) = ¢ cette formule intégre exactement la fonction,
pour d = 0,1, ... sur I'intervalle [1,4], avec N = 1 et ensuite N = 10.

3. Vérifiez numériquement pour quelques polynémes que la fonction ainsi écrite est linéaire en f
pour N =10

Suggestion: En utilisant une fonction lambda il est possible de décider le paramétre d d’un monoéme
& un moment ultérieur:

monomial = lambda x : x**xd

Partie 1
This function just provides the Simpson quadrature rule.

def Simpson(a, b, N, f)
[a,b] : inteval
N : number of subintervals
f : fonction to integrate using the trapezoidal rule

M=3

nodes = np.array([-1, 0, 1])
weights = np.array([1./3., 4./3., 1./3.1)

size of the subintervals

H=(b-2a /XN

points defining intervals
x = np.linspace(a, b, N+1)

z = np.zeros(M);

for k in range(N)
left of the subinterval, also first quadrature point
z[0] = x[k]
right of the subinterval, also third quadrature point
z[2] = x[k+1]
mid point, , also second quadrature point
z[1] = (x[k] + x[k+1]1)/2
can also be computed as
z[1] = (x[k] + x[k+1])/2 + nodes[1]*(x[k+1] - x[k])/2

[9]:

[10]:

local quadrature:
Jgk = weights[0] * £(z[0]) + weights[1] * £(z[1]) + weights[2] * f(z[2])
or as a single sum

Jgk = sum(weights * £(z))

Lh = Lh + Jgk

approximate integral
return H/2 * Lh

Partie 2

4
(/,ldx::3
1

i 1
dr = ———
A‘x ! d+1x

Checking simpson fonction
a=1; b =4,

d+114 _

4d+1 -1
7 d+1

with lambda fonctions, it is possible to determine a parameter (here d)

at a later moment
lambda x : x**d

monomial =

recording for which degrees the tintegral s ezact (up to epsilon)

exactDegree = -1
epsilon = le-12
N=1

for d in range(7)
intsim = Simpson(a, b, N, monomial)
intExact =

print(f'Simpson on x~{d} :
<—>.66}'

)

(4**x(d+1) - 1)/(d+1)

if np.abs(intsim-intExact) < epsilon :

exactDegree = d

{intsim: .6f} - {intExact:.6f}

= {intsim-intExact:

print(f'Simpson with N = {N} is exact up to degree {exactDegreel}')

Simpson
Simpson
Simpson
Simpson
Simpson
Simpson
Simpson
Simpson

on
on
on
on
on
on
on

x"0 :

x"1

x"2 :
x"3 :
x"4 :
x"5 :
x"6 :
with N = 1 is exact up to degree 3

3.000000 - 3.000000

: 7.500000 - 7.500000 = O.
21.000000 - 21.000000 =
63.750000 - 63.750000 =

206.625000 - 204.600000
707.812500 - 682.500000
2536.781250 - 2340.428571

-4.440892e-16

000000e+00
000000e+00
000000e+00

0.
0.

2
2

.025000e+00
.531250e+01
1.963527e+02

[11]:

[12]:

[13]:

N =10
exactDegree = -1

for d in range(7)

intsim = Simpson(a, b, N, monomial)

intExact = (4xx(d+1) - 1)/(d+1)

print(f'Simpson on x~{d} : {intsim:.6f} - {intExact:.6f}

<—>.66}')

if np.abs(intsim-intExact) < epsilon :

exactDegree = d

= {intsim-intExact:

print (f'Simpson with N = {N} is exact up to degree {exactDegreel}')

Simpson on x"0 : 3.000000 - 3.000000
Simpson on x"1 : 7.500000 - 7.500000
Simpson on x"2 : 21.000000 - 21.000000
Simpson on x"3 : 63.750000 - 63.750000
Simpson on x"4 : 204.600202 - 204.600000
Simpson on x"5 : 682.502531 - 682.500000

Simpson on x"6 : 2340.449818 - 2340.428571

-4.440892e-16
000000e+00
0.000000e+00
-1.421085e-14

0.

Simpson with N = 10 is exact up to degree 3

4
(/11dx::3
1

Partie 3

maxD = 5;
N = 10

p = lambda x : np.polyval(coefs,x)

d+1|

2
2

.025000e-04
.531250e-03
2.124623e-02

477
! d+1

4d+1 -1

pre-computing integrls of monomials up to degree mazD

intMono = np.zeros(maxD+1)
for d in range(maxD+1)

intMono[d] = Simpson(a, b, N, monomial)

generating random coefficients
coefs = np.random.rand(maxD+1)

evaluating Simpson on the polynomial :

intPoly = Simpson(a,b,N, p)

computing integral by linearity. Remeber that in polywval,

—coefficients i1s oppostite !
intSum = 0

the order of the,

for d in range(maxD+1)
intSum = intSum + coefs[maxD-d]*intMono [d]

print (f'Simpson on a_{d} + a_{d-1} x + ... + a_0x"{d} by linearity : \n'
f'\t {intPoly:.6f} - {intSum:.6f} = {intPoly-intSum:.6el}')

Simpson on a_5 + a_4 x + ... + a_0x"5 by linearity :
416.109118 - 416.109118 = 0.000000e+00

[]:

3 Exercice Série 6, Ex 6

3.1 Degré d’exactitude d’une formule de quadrature

On considére la fonction f : [a,b] — R dans C%([a,b]); on est intéressé a approcher l'intégrale
b

I(f) :fa f(x)dx.

Plus précisément on prend f(z) = sin(fz) +e® —1laveca=0et b=1 (f € C®([a,b])) et on peut

calculer I(f) =2 (1 —cos(%)) +e—2.

1. Calculez une approximation de l'intégrale en utilisant les formules du rectangle, du trapéze et
de Simpson simples, c-4-d avec un seul intervalle.

2. Calculez une approximation de 'intégrale en utilisant les fonctions Midpoint, Trapezoidal
et Simpson (déja codées). avec N = 10 sous-intervalles de méme taille. On notera les valeurs
approchées de l'intégrale I7, (f), If(f), and IZ(f), respectivement.

3. Répétez le point 2. avec N = 2% pour k = 2,...,7 et calculez les erreurs Eno(f) = [I1(f) -
L, (O BEC(f) = [I(f) = LE(f)], et ES(f) := [I(f)—I5(f)]- Dessinez les erreurs en fonction de
H = (b—a)/N sur une échelle logarithmique sur les deux axes. Quel est 'ordre de convergence
de ces méthodes 7 Est-ce en accord avec la théorie 7 Motivez votre réponse.

4. On prend maintenant f(z) = 2% a = 0 et b = 1, avec d € N. L’intégrale de f vaut
I(f) =1/(d+1). Vérifiez numériquement les degrés d’exactitude de chacune des formules de
quadrature du point 1. Pour cela, il faut choisir plusieurs valeurs de d = 0,1, 2,.... Motivez
votre réponse.

[14]: import matplotlib.pyplot as plt
import numpy as np

In my case, the Integrationlib 2s in the parent directory,
therfore have have to add the aprent directory to path :
import sys

sys.path.append('..")

from IntegrationlLib import *

Partie 1

[15]: £ = lambda x : np.sin(7/2*x) + np.exp(x) - 1

a=0; b=1
Iexact = 2/7+(1l-np.cos(7/2)) + np.exp(1l) - 2

x = np.linspace(a,b,1000)
y=1f (x)

plt.plot(x, y, 'b")
plt.show()

1.75 A

1.50 +

1.25 1

1.00

0.75 4

0.50 +

0.25 4

0.00

0.0 0.2 0.4 0.6 0.8 1.0

(b-a) * £((a+b)/2)
(b-a) * (£(a)+f(b))/2
(b-a)/6 * (f(a) + 4xf((atb)/2) + £(b))

[16]: intMD
intTrap
intSimp

print(f'exact \t rect \t\t trap \t\t Simpson')
print (f'{Iexact:.4f} \t {intMD:.4f} \t {intTrap:.4f} \t {intSimp:.4f}"')

exact rect trap Simpson
1.2716 1.6327 0.6837 1.3164

10

[17]:

[18]:

Partie 2

N =

10

intMD = Midpoint(a,b,N,f)
intTrap = Trapezoidal(a,b,N,f)
intSimp = Simpson(a,b,N,f)

print(f'exact \t rect \t\t trap \t\t Simpson')
print(f'{Iexact:.4f} \t {intMD:.4f} \t {intTrap:.4f} \t {intSimp:.4f}"')

exact rect trap Simpson
1.2716 1.2737 1.2673 1.2716
Partie 3

errmp = []
errtrap = []
errSim = []

N = 2%x*np.linspace(2,7,6).astype(int)

for n in N :
errmp.append(np.abs(Midpoint(a, b, n, f) - Iexact))
errtrap.append(np.abs(Trapezoidal(a, b, n, f) - Iexact))
errSim.append(np.abs(Simpson(a, b, n, f) - Iexact))

H = (b-a)/N

plt.plot(H, errmp, 'b:.', H, errtrap, 'c:*', H, errSim, 'g:*')

plt.plot(H, H**2 * (errmp[0]/H[0]**2)*5, 'k:', H, H**4 * (errSim[0]/H[0]*x4)*5,

<'k:")

plt.legend(['rectangle', 'trapeze', 'Simpson', '$H"2$', '$H"4$'])

plt.xlabel('H'); plt.ylabel('err');

plt.xscale('log')

plt.yscale('log')

plt.grid(True)

11

1071 H
ant® wret « i
P R
enntt” * I_*-' . e ®®
L .-"'.1
panntt Len W et 1
1073 et e -
aenttt . -k) - *
e L T b .
L 7..‘.+' i - ®
_ o ot ot
107> 1 e
G
Rl ' r'*‘.
1077 1
e e+ rectangle
. e -4 ftrapeze
*‘,.-" - Simpson
- ‘+_+'
10 - P H?
- s H
T T T
102 101

[Pardon d’écrire en anglais..|

We recall that the errors Ef (f) = lef,,(f)|, Ef(f) = lef(f)|, and ES(f) = |e5(f)| read, for a
sufficiently regular function f(z):

D) = IH) ~ L(5) = UL H2f(6), forsome € [ab], if f € C%((ab]),

) = 1) ~ I (1) = "

el e/ b—a

es(f) - I(f) _Is(f) - _16'180
Since in this case f(x) € C*([a,b]), we expect the orders of accuracy (convergence orders of the
errors) to be equal to 2, 2, and 4 for the composite midpoint, trapezoidal, and Simpson quadrature
formulas, respectively. This is confirmed by the figure above, where we can observe that the plots
of the errors Ey,,(f) and Ey(f) vs. H are, in log-log scale, parallel to the line representing the curve
(H, H?), thus indicating the order of accuracy (convergence order) 2 for the composite midpoint and
trapezoidal quadrature formulas. Similarly, the plot of the error E4(f) is, in log-log scale, parallel to
the line representing the curve (H, H*), from which we deduce the order of accuracy (convergence
order) 4 for the composite Simpson quadrature formula.

H? "(n), for some 7 € [a, b], if fe C’Q([a, b)),

H* 49 (0), for some ¢ € [a, b], if e C*(a,b)).

We notice that the orders of accuracy could be deduced by computing the errors for two dif-
ferent values of H, say H; and Hj; for example for a generic composite quadrature formula

12

[19]:

[20]:

we obtain the corresponding errors Ef (f) and Ef (f). If we assume that the error Ef(f)
can be expressed as Ef,(f) = C H*, with a > 0 and C a positive constant independent of H
and «, we can estimate the order of accuracy (convergence order) of the quadrature formula as
a = logg (Efiz(f)/Efql(f)) /logg (H2/Hy), for any 8 > 1 and Hy and Ha “sufficiently small’’. For
the composite midpoint, trapezoidal, and Simpson quadrature formulas, we use the following com-
mands, for which the results (o = 2.01, 2.01, and 4.01, respectively) confirm the expected orders of
accuracy (convergence orders).

slopeMP = (np.log(errmp[-1]) - np.log(errmp[0])) / (np.log(N[-1]) - np.
—log(H[0]))

slopeTrap = (np.log(errtrap[-1]) - np.log(errtrapl[0])) / (np.log(N[-1]1) - np.
—log(H[0]))

slopeSim = (np.log(errSim[-1]) - np.log(errSim[0])) / (np.log(N[-1]) - np.
—log(H[0]))

print(f'La convergence numérique est environ de ')
print (f 'Rectangle : {slopeMP:.2f}')

print (f'Trapeze : {slopeTrap:.2f}')
print(f'Simpson : {slopeSim:.2f}')

La convergence numérique est environ de
Rectangle : -1.12

Trapeze : -1.11

Simpson : -2.23

Partie 4 The function f(z) = 2 is a polynomial of degree d for d € N. The simple midpoint,
trapezoidal, and Simpson quadrature formulas possesses degree of exactness equal to 1, 1, and 3,
respectively.

N=1

with lambda fonctions, it is possible to determine a parameter (here d)
at a later moment

monomial = lambda x : x**d

recording for which degrees the integral s exact (up to epsilon)
exactDegree = -1
epsilon = le-12

for d in range(7)
intsim = Midpoint(a, b, N, monomial)
intExact = 1/(d+1)
print(f'Midpoint on x~{d} : {intsim:.6f} - {intExact:.6f} =,
—{intsim-intExact:.6e}"')
if np.abs(intsim-intExact) < epsilon :
exactDegree = d

print (f'Midpoint is exact up to degree {exactDegreel}')

13

.000000 - 1.000000 0.000000e+00
.500000 - 0.500000 0.000000e+00
.250000 - 0.333333 = -8.333333e-02
.125000 - 0.250000 -1.250000e-01
Midpoint on x"4 : 0.062500 - 0.200000 -1.375000e-01
Midpoint on x5 : 0.031250 - 0.166667 -1.354167e-01
Midpoint on x"6 : 0.015625 - 0.142857 -1.272321e-01
Midpoint is exact up to degree 1

Midpoint on x70 :
Midpoint on x"1
Midpoint on x72 :
Midpoint on x"3 :

O O O O O =
[|

[21]: for d in range(7)
intsim = Trapezoidal(a, b, N, monomial)
intExact = 1/(d+1)
print (f'Trapezoidal on x~{d} : {intsim:.6f} - {intExact:.6f} =
—{intsim-intExact:.6e}"')
if np.abs(intsim-intExact) < epsilon :
exactDegree = d

print (f'Trapezoidal is exact up to degree {exactDegreel}')

Trapezoidal on x”0 : 1.000000 - 1.000000 = 0.000000e+00
Trapezoidal on x”1 : 0.500000 - 0.500000 = 0.000000e+00
Trapezoidal on x"2 : 0.500000 - 0.333333 = 1.666667e-01
Trapezoidal on x”3 : 0.500000 - 0.250000 = 2.500000e-01
Trapezoidal on x"4 : 0.500000 - 0.200000 = 3.000000e-01
Trapezoidal on x"5 : 0.500000 - 0.166667 = 3.333333e-01
Trapezoidal on x"6 : 0.500000 - 0.142857 = 3.571429e-01
Trapezoidal is exact up to degree 1
[22] : for d in range(7)

intsim = Simpson(a, b, N, monomial)

intExact = 1/(d+1)

print(f'Simpson on x~{d} : {intsim:.6f} - {intExact:.6f} = {intsim-intExact:

H.6e}')
if np.abs(intsim-intExact) < epsilon :
exactDegree = d

print(f'Simpson is exact up to degree {exactDegreel}')

Simpson on x"0 : 1.000000 - 1.000000 = 0.000000e+00
Simpson on x"1 : 0.500000 - 0.500000 = 0.000000e+00
Simpson on x"2 : 0.333333 - 0.333333 0.000000e+00
Simpson on x"3 : 0.250000 - 0.250000 = 0.000000e+00
Simpson on x"4 : 0.208333 - 0.200000 = 8.333333e-03
Simpson on x5 : 0.187500 - 0.166667 = 2.083333e-02
Simpson on x"6 : 0.177083 - 0.142857 = 3.422619e-02

Simpson is exact up to degree 3
De ces simulations nous vérifions que les monomes f(z) = z? sont intégrées exactement pour les

degrées d = 0 et d = 1 dans le cas des formules du rectangle et du trapéze, et pour d = 0,1,2,3

14

[1:

[23]:

dans le cas de la formule de Simpson.

4 Exercice Série 6, Ex 7

4.1

Convergence pour fonction non-lisse

import matplotlib.pyplot as plt

import numpy as np

In my case, the Integrationlib is in the parent directory,
therfore have have to add the aprent directory to path :
import sys

sys.path.append('..")

from IntegrationlLib import Midpoint
from IntegrationlLib import Trapezoidal
from IntegrationlLib import Simpson

On considére, sur l'intervalle [—1, 1], la fonction f suivante:

R B

siz>0

On peut définir une telle fonction en utilisant la commande

f = lambda x : mnp.exp(x)*(x<=0) + (1)*(x>0)

1.

Utilisez 1000 points équirépartis dans I'intervalle [—1, 1] pour afficher la fonction f (utilisez la
commande axis pour recadrer I'image).

2. On s’intéresse a présent a lintégrale I = f_ll f(z) dx. On peut calculer la valeur de I
analytiquement et on trouve I = 2 — % & 1.6321. Calculez des valeurs approchées de [
en considérant les formules du point milieu, du trapéze et de Simpson avec N = 1,9,99,999
ol N est le nombre de sous-intervalles de formules composites. Utilisez les fonctions midpoint,
trapezoidal et simpson (déja codées).

3. Reportez les erreurs calculées au point (b) dans un graphe montrant Ierreur en fonction de
H avec des échelles logarithmiques.

4. Estimez, a partir des graphes obtenus au point précédent, 'ordre de chacune des méthodes.
Comparez-les avec les ordres donnés au cours. Y a-t-il des différences? Pourquoi? (Regardez
les dérivées de f).

5. Pourquoi obtient-on de bien meilleurs résultats pour la méthode de Simpson avec un nombre
pair d’intervalles qu’avec un nombre impair (essayez avec N = 99 et ensuite N = 100)?

6. Refaites I'exercice avec N = 2,10, 100, 1000.

Partie 1

15

[24]: f

lambda x : np.exp(x)*(x<=0) + (1)*(x>0)

a=-1; b=1
x = np.linspace(a,b,1000)
y=1f (x)

plt.plot(x, y, 'b')
plt.show()

1.0 1

0.9 +

0.8 1

0.7 1

0.6 1

0.5 1

0.4 1

T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Partie 2 On calcule tout d’abord la valeur exacte de l'intégrale, puis on calcule les erreurs, que
I'on stocke dans des vecteurs:

[25]: Iexact = 2 - np.exp(-1)
errmp = []
errtrap = []

errSim = []

N = [1,9,99,999]
#N = [2,10,100,1000]

for i in range(4)

16

errmp.append(np.abs(Midpoint(a, b, N[i], f) - TIexact))
errtrap.append(np.abs(Trapezoidal(a, b, N[i]l, f) - Iexact))
errSim.append(np.abs(Simpson(a, b, N[i], f) - Iexact))

Partie 3
[26]: H = 2./np.array(N)
plt.plot(H, errmp, 'b:.',

H, errtrap, 'c:*', H, errSim, 'g:*')

plt.plot(H, H**2 * (errmp[0]/H[0]**2)*5, 'k:', H, Hx*4 * (errSim[0]/H[0]*x4)*5, ,
<'k:")

plt.legend(['rectangle', 'trapeze', 'Simpson', '$H"2$', '$H"4$'])

plt.xlabel('H'); plt.ylabel('err');
plt.xscale('log"')
plt.yscale('log")
plt.grid(True)
plt.show()
--=- rectangle
o _.-"+‘- _n.';!-
Lo-14 tr_apeze .-ﬂ.i’f-'l"i
--%- Simpson B e
----- H? g
10—3 ... Hq — ._.-':. ?T"E:T‘;:“ + et
* ‘. "i : i
107 . — ot . -
= -
. g
10-7 %
1077 1
10-11 7 ’
T T T L | T T T L
102 10~ 10°

Les graphes pour toutes les méthodes sont des droites. On remarque que lorsque H est divisé par

17

[27]:

[28]:

10, les erreurs sont environ divisées par 100. On peut donc supposer que les ordres sont 2 par
rapport & H. Pour le confirmer, on peut ajouter sur le graphe la pente représentant 'ordre 2 et
vérifier qu’elle est paralléle aux droites d’erreur.

Partie 4

slopeMP = (np.log(errmp[-1]) - np.log(errmp[0])) / (np.log(H[-1]) - np.
—log(H[0]))

slopeTrap = (np.log(errtrap[-1]) - np.log(errtrap[0])) / (np.log(H[-1]) - np.
—log(H[0]))

slopeSim = (np.log(errSim[-1]) - np.log(errSim[0])) / (np.log(H[-1]) - np.
—log(H[0]))

print(f'La convergence numérique est environ de ')
print (f 'Rectangle : {slopeMP:.2f}')
print (f'Trapeze : {slopeTrap:.2f}')
print (f'Simpson : {slopeSim:.2f}')

La convergence numérique est environ de
Rectangle : 1.99

Trapeze : 1.99

Simpson : 1.99

Les graphiques sont paralléles & la droite H? et donc I'ordre est 2 pour toutes les méthodes. Pour
la méthode du point milieu et du trapéze, c’est I'ordre auquel on s’attend d’aprés la théorie. Par
contre, pour Simpson, on pouvait s’attendre & un ordre 4. Le probléme vient du fait que la fonction
n’est pas trés réguliére, puisque f € C°([—1,1]) mais f ¢ C*([~1,1]) puisque sa dérivée n’est pas
continue en x = 0. Dans la théorie, on demande f € C*([—1,1]) pour assurer l’ordre 4. On obtient
tout de méme 'ordre 2 car, mis & part en x = 0, la fonction f est trés réguliére.

Partie 5 Si on regarde 'erreur pour la méthode de Simpson avec N = 99 et N = 100 sous-
intervalles

print (np.abs(Simpson(a, b, 99, f) - Iexact))
print (np.abs(Simpson(a, b, 100, f) - Iexact))

1.7004959483424287e-05
3.5117464491918327e-11

On obtient des valeurs d’environ 1.70 1072 et 3.51 10711, Les erreurs sont trés différentes ! Voila
pourquoi:

e si N est pair, le point z = 0 est un point z; (pour i = N/2) exactement entre deux sous-
intervalles. La fonction f est réguliére & droite et & gauche, en particulier, on retrouve 'ordre
4 par rapport & H de chaque coté.

e si N est impair, le point £ = 0 est au milieu d’un sous-intervalle. La fonction f n’est pas
réguliére dans cet intervalle, ce qui donnt un ordre de convergence plus petit.

Partie 6 Il faut relancer les parties 2 et 3 avec N= [2,10,100,1000] & la place de N =
[1,9,99,999]

18

[]:

19

