
Analyse Numérique Vendredi 28 mars 2025
Prof. Simone Deparis EPFL

Série 6 (Corrigé)

Pour mardi : apprentissage vidéos chapitres 3.4 (environ 40 minutes de travail)

Mardi prochain : résolvez les exercices Python qui se trouvent dans cette série

Partiellement en classe vendredi
Exercice 1

On considère une fonction f(x), x ∈ [a, b].
1. Écrivez le polynôme quadratique interpolant f(x) dans les nœuds x0 = a, x1 = a+b

2
et x2 = b en utilisant la base de Lagrange.

2. Combien valent les intégrales
∫ b

a φk pour k = 0, 1, 2 ? Utilisez une formule de quadra-
ture appropriée pour calculer !

3. On veut approcher l’intégrale de f(x) par l’intégration de l’interpolation quadratique.
Écrivez l’intégrale exacte de l’interpolant. Quelle formule d’intégration numérique
pouvez-vous reconnaître ?

Sol. :
1. Commençons par consideérer les polynômes de la base de Lagrange pour l’interpola-

tion :
φ0(x) = (x− a+b

2 )(x−b)

(a− a+b
2 )(a−b)

= 2(x− a+b
2 )(x−b)

(a−b)2

φ1(x) = (x−a)(x−b)
(a+b

2 −a)(a+b
2 −b) = −4 (x−a)(x−b)

(a−b)2

φ2(x) = (x−a)(x− a+b
2 )

(b−a)(b− a+b
2 ) = 2 (x−a)(x− a+b

2 )
(b−a)2

Où on a utilisé le fait que a+b
2 est le point milieu de [a, b] et que b − a+b

2 = b−a
2 et

a − a+b
2 = a−b

2 . Par conséquent, l’interpolation quadratique peut être écrite comme :

Π2
hf(x) = f(a)φ0(x) + f(a+b

2 )φ1(x) + f(b)φ2(x)

= 1
(b−a)2

(
2f(a)

(
x − a+b

2

)
(x − b) − 4f(a+b

2 )(x − a)(x − b) + 2f(b)(x − a)
(
x − a+b

2

))
2. On opère le changement de variable x = a+b

2 + t
(

b−a
2

)
et on obtient :

∫ b

a
φk(x)dx = b − a

2

∫ 1

−1
φk

(
a + b

2 + t

(
b − a

2

))
dt
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φ̂k(t) = φk

(
a+b

2 + t
(

b−a
2

))
est un polynôme de degré deux, il est intégré exactement

sur [−1, 1] par la formule de quadrature de Simpson :∫ 1

−1
φ̂k(t)dt = 2

6 (φ̂k(−1) + 4φ̂k(0) + φ̂ + (1)) =

donc ∫ b

a
φk(x)dx = 2

6
b − a

2

(
φk(a) + 4φk

(
a + b

2

)
+ φk(b)

)

Mais a, b, a+b
2 sont les noeuds d’interpolation, donc φk dans ces points vuax 1 ou 0.

Plus précisement :∫ b
a φ0(x)dx = 2

6
b−a

2

(
φ0(a) + 4φ0

(
a+b

2

)
+ φ0(b)

)
= b−a

6∫ b
a φ1(x)dx = 2

6
b−a

2

(
φ1(a) + 4φ1

(
a+b

2

)
+ φ1(b)

)
= 2

3(b − a)∫ b
a φ2(x)dx = 2

6
b−a

2

(
φ2(a) + 4φ2

(
a+b

2

)
+ φ2(b)

)
= b−a

6

3. Si on combine les résultats des deux points précédents on obtient :
∫ b

a
Π2

hf(x) =
∫ b

a

(
f(a)φ0(x) + f

(
a + b

2

)
φ1(x) + f(b)φ2(x)

)
dx

= f(a)
∫ b

a
φ0(x)dx + f

(
a + b

2

)∫ b

a
φ1(x)dx + f(b)

∫ b

a
φ2(x)dx

= b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)

Nous reconnaissons (que c’est) la formule de Simpson pour l’intégration numérique
sur un intervalle quelconque.

Exercice 2

Soit g une fonction continue définie sur l’intervalle [−1, 1]. On choisit trois nœuds d’in-
terpolation nommés x1, x2 et x3 tels que x1 = −1, x2 = β et x3 = 1, où β est un nombre
réel donné tel que |β| < 1. Pour approcher l’intégrale

∫ 1
−1 g(x)dx, on considère la formule

de quadrature suivante :

I2(g) =
2∑

j=0
αj g(xj) = α0 g(−1) + α1 g(β) + α2 g(1)

a) Trouvez les poids α0, α1 et α2 en fonction de β tels que la formule de quadrature soit
exacte de degré 2.

b) Trouvez ensuite β tel que I2(p) =
∫ 1

−1 p(x)dx pour tout polynôme p de degré 3.
c) Reécrivez cette formule sur l’intervalle [a, b] (a < b) pour intégrer une fonction conti-

nue f définie sur cet intervalle. Quelle formule d’intégration reconnaissez-vous ?
Sol. :

a) Notons d’abord qu’ici on a M = 3 noeuds de quadrature et que le degré d’exactitude
souhaité est M − 1 égale à 2. Cela suggère d’utiliser le théorème suivant :
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Theorem 1 (Poids de quadrature) Soit J une formule de quadrature avec M
noeuds.

J est exacte de degré M − 1 ⇐⇒ ωj =
∫ 1

−1 φj(t)dt, j = 1, . . . , M ,
où {φj, j = 1, . . . , M} est la base de Lagrange associée aux noeuds de quadrature.

Ici les poids de quadrature sont α0, α1, α2,faut donc les choisir tels que αj =
∫ 1

−1 φj(t)dt, j =
0, . . . , 2 (notez le décalage des indices).

φ0 = β − x

β + 1 · 1 − x

1 + 1 = (β − x)(1 − x)
2(β + 1) = β − (β + 1)x + x2

2(β + 1)∫ 1

−1
φ0 = 1

2(β + 1) [βx − 1
2(β + 1)x2 + 1

3x3]
∣∣∣∣1
−1

= 1
2(β + 1)[2β + 2

3] =
β + 1

3
β + 1 = α0

φ1 = −1 − x

−1 − β
· 1 − x

1 − β
= (1 − x2)

(1 − β2)∫ 1

−1
φ1 = 1

1 − β2 [x − 1
3x3]

∣∣∣∣1
−1

= 1
(1 − β2) [2 − 2

3] = 4/3
1 − β2 = α1

φ2 = β − x

β − 1 · −1 − x

−1 − 1 = (β − x)(1 + x)
2(β − 1) = β + (β − 1)x − x2

2(β − 1)∫ 1

−1
φ0 = 1

2(β − 1) [βx + 1
2(β − 1)x2 − 1

3x3]
∣∣∣∣1
−1

= 1
2(β − 1)[2β − 2

3] =
β − 1

3
β − 1 = α2

b) Il suffit que la formule intègre exactement le polynôme p(x) = x3, c’est-à-dire

I2(x3) = −α0 + β3α1 + α2 =
∫ 1

−1
x3dx = 0 .

On obtient l’équation

− (1 + 3β)(1 − β) + 4β3 + (1 − 3β)(1 + β) = 0 =⇒ 4β(β2 − 1) = 0.

La seule solution dans l’intervalle ] − 1, 1[ est β = 0 et les poids deviennent dans ce
cas

α0 = α2 = 1
3 , α1 = 4

3 .

c) Il suffit d’introduire la transformation x̃ = a + b − a

2 (x + 1). On a dx̃ = b−a
2 dx et

donc : ∫ b

a
f(x̃)dx̃ = b − a

2

∫ 1

−1
g(x)dx = b − a

2 I2(g(x))

où g(x) = f(a + b−a
2 (x + 1)). La formule devient donc :

I2(f) = b − a

2

[
α0f (a) + α1f

(
b + a

2

)
+ α2f (b)

]
,

soit :
I2(f) = b − a

6

[
f (a) + 4f

(
b + a

2

)
+ f (b)

]
.

On reconnaît la formule de Simpson.
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Exercice 3

Définition. Le degré d’exactitude d’une méthode d’intégration est donné par la valeur
maximale de r pour laquelle la méthode intègre exactement tout polynôme de degré inférieur
ou égal à r.

a) D’après la définition ci-dessus, déterminez le degré d’exactitude de la formule du rec-
tangle (point milieu) simple, c-à-d sur un seul intervalle en prenant comme fonctions
tests pour l’intégrale I =

∫ b
a f(x) les polynômes : 1, x, x2, x3, . . ..

b) On considère maintenant le calcul de l’intégrale

I =
∫ 1

0
xm−1(1 − x)n−1 dx,

où m et n sont deux valeurs entières m, n ≥ 1. Écrivez la méthode du rectangle simple
pour approcher I. Pour quelles valeurs de n et m cette formule donne la valeur exacte
de I ?

Sol. :
a) On prend d’abord f(x) = 1 et on calcule l’intégrale exacte :

I =
∫ b

a
1 = b − a.

Par la méthode du rectangle on trouve :
Ipm = (b − a) · 1 = b − a.

Donc I = Ipm pour r = 0. Considérons maintenant f(x) = x. L’intégrale exacte est :

I =
∫ b

a
x = b2 − a2

2 ,

et l’intégrale approchée par la méthode du rectangle est :

Ipm = (b − a) · a + b

2 .

Donc I = Ipm pour r = 1. Finalement, si on prend f(x) = x2, on trouve

I =
∫ b

a
x2 = b3 − a3

3 = (b − a) · b2 + a2 + ab

3 ,

tandis que par la méthode du rectangle

Ipm = (b − a) · (a + b)2

4 .

Vu que I = Ipm pour r = 0, 1, mais I ̸= Ipm si r = 2, on peut conclure que la méthode
du rectangle simple a degré d’exactitude 1, c-à-d qu’elle peut intégrer exactement les
fonctions constantes et linéaires.

b) La méthode du rectangle simple s’écrit :

Ipm = 1
2

m−1
· 1

2
n−1

.

Puisque la méthode a degré d’exactitude 1, on doit imposer
(m − 1) + (n − 1) ≤ 1 ⇔ m + n − 2 ≤ 1 ⇔ m + n ≤ 3.

Donc, I = Ipm si m = 1 et n = 2, ou m = 2 et n = 1.
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Python
Exercice 4

On considère le calcul de l’intégrale

I =
∫ 1

0
f(x) dx,

où f(x) est une fonction continue sur [0, 1].
1. Ecrivez une fonction midpoint qui implémente la formule composite du rectangle (point

milieu) pour l’approximation de l’intégrale ci-dessus. Pour permettre le choix d’un
intervalle d’intégration de la forme [a, b], le nombre de sous-intervalles N et la fonction
f(x), définie par la commande f = lambda x : ... utilisez la structure suivante :
def midpoint( a, b, M, f ) :

# [a,b] : inteval
# M : number of subintervals
# f : fonction to integrate using the midpoint rule

2. Testez le code en considérant la fonction f(x) = x2 et M = 10. Tracer ensuite le
graphe de l’erreur |I(f) − Ic

pm(f)| en fonction de M (utilisez à cette fin la com-
mande plt.xscale(’log’); plt.yscale(’log’)), en choisissant a = 0, b = 1, et M =
101, 102, 103, . . . 105. Quel est l’ordre de convergence de la formule composite du rec-
tangle par rapport à H = (b−a)/M ? Donnez une interprétation des résultats d’après
la théorie.

3. Modifiez le code du point a) pour permettre le calcul de l’intégrale avec la formule
composite du trapèze. Tracer le graphe de l’erreur |I(f) − Ic

t (f)| pour les mêmes
valeurs de M . Comparez les résultats avec ceux obtenus au point b).
def trapeziodal( a, b, N, f ) :

# [a,b] : inteval
# N : number of subintervals
# f : fonction to integrate using the trapezoidal rule

Sol. : Cf Jupyther notebooks

Exercice 5

On considère la fonction f : [a, b] → R dans C0([a, b]) ; on est intéressé à approcher
l’intégrale I(f) =

∫ b
a f(x) dx.

1. Ecrivez une fonction Simpson qui implémente la formule composite de Simpson pour
l’approximation de l’intégrale ci-dessus. Utilisez la structure suivante :
def Simpson( a, b, N, f ) :

# [a,b] : inteval
# N : number of subintervals
# f : fonction to integrate using the Simpson rule
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2. Testez ensuite pour quels monômes f(x) = xd cette formule intègre exactement la
fonction, pour d = 0, 1, ... sur l’intervalle [1, 4], avec N = 1 et ensuite N = 10.

3. Vérifiez numériquement pour quelques polynômes que la fonction ainsi écrite est li-
néaire en f pour N = 10.

Suggestion : En utilisant une fonction ‘lambda‘ il est possible de décider le paramètre d
d’un monôme à un moment ultérieur :
monomial = lambda x : x∗∗d

Sol. : Cf Jupyther notebooks

Exercice 6

On considère la fonction f : [a, b] → R dans C0([a, b]) ; on est intéressé à approcher
l’intégrale I(f) =

∫ b
a f(x) dx.

Plus précisément on prend f(x) = sin(7
2 x) + ex − 1 avec a = 0 et b = 1 (f ∈ C∞([a, b]))

et on peut calculer I(f) = 2
7 (1 − cos(7

2)) + e − 2.
1. Calculez une approximation de l’intégrale en utilisant les formules du rectangle, du

trapèze et de Simpson *simples*, c-à-d avec un seul intervalle.
2. Calculez une approximation de l’intégrale en utilisant les fonctions midpoint, trapezoidal

et simpson (déjà codées) avec N = 10 sous-intervalles de même taille. On notera les
valeurs approchées de l’intégrale Ic

mp(f), Ic
t (f), and Ic

s(f), respectivement.
3. Répétez le point 2. avec N = 2k pour k = 2, . . . , 7 et calculez les erreurs Ec

mp(f) :=
|I(f) − Ic

mp(f)|, Ec
t (f) := |I(f) − Ic

t (f)|, et Ec
s(f) := |I(f) − Ic

s(f)|. Dessinez les
erreurs en fonction de H = (b − a)/N sur une échelle logarithmique sur les deux axes.
Quel est l’ordre de convergence de ces méthodes ? Est-ce en accord avec la théorie ?
Motivez votre réponse.

4. On prend maintenant f(x) = xd, a = 0 et b = 1, avec d ∈ N. L’intégrale de f
vaut I(f) = 1/(d + 1). Vérifiez numériquement les degrés d’exactitude de chacune
des formules de quadrature du point 1. Pour cela, il faut choisir plusieurs valeurs de
d = 0, 1, 2, . . .. Motivez votre réponse.

Sol. : Cf Jupyther notebooks
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Exercice 7

On considère, sur l’intervalle [−1, 1], la fonction f suivante :

f(x) =
{

ex si x ≤ 0
1 si x > 0

On peut définir une telle fonction en utilisant la commande
f = lambda x : np.exp(x)∗(x<=0) + (1)∗(x>0)

1. Utilisez 1000 points équirépartis dans l’intervalle [−1, 1] pour afficher la fonction f
(utilisez la commande axis pour recadrer l’image).

2. On s’intéresse à présent à l’intégrale I =
∫ 1

−1 f(x) dx. On peut calculer la valeur de
I analytiquement et on trouve I = 2 − 1

e
∼= 1.6321. Calculez des valeurs approchées

de I en considérant les formules du point milieu, du trapèze et de Simpson avec
N = 1, 9, 99, 999 où N est le nombre de sous-intervalles de formules composites.
Utilisez les fonctions midpoint, trapezoidal et simpson (déjà codées) .

3. Reportez les erreurs calculées au point (b) dans un graphe montrant l’erreur en fonc-
tion de H avec des échelles logarithmiques (commande loglog).

4. Estimez, à partir des graphes obtenus au point précédent l’ordre de chacune des
méthodes. Comparez-les avec les ordres donnés au cours. Y a-t-il des différences ?
Pourquoi ? (Regardez les dérivées de f).

5. Pourquoi obtient-on de bien meilleurs résultats pour la méthode de Simpson avec
un nombre pair d’intervalles qu’avec un nombre impair (essayez avec N = 99 et
N = 100) ?

6. Refaites l’exercice avec N = 2, 10, 100, 1000.
Sol. : Cf Jupyther notebooks

Copyright 2012-2020 © Prof. Alfio Quarteroni, Simone Deparis.

Sol. :

7



Analyse Numérique
Série 06

Simone Deparis

March 28, 2025

Contents

1 Exercice Série 6, Ex 4 1
1.1 Formule du rectangle et du trapèze . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Exercice Série 6, Ex 5 5
2.1 Formule de Simpson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Exercice Série 6, Ex 6 9
3.1 Degré d’exactitude d’une formule de quadrature . . . . . . . . . . . . . . . . . . . . . 9

4 Exercice Série 6, Ex 7 15
4.1 Convergence pour fonction non-lisse . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 Exercice Série 6, Ex 4

1.1 Formule du rectangle et du trapèze

[1]: import matplotlib.pyplot as plt
import numpy as np

On considère le calcul de l’intégrale

I =

∫ 1

0
f(x) dx,

où f(x) est une fonction continue sur [0, 1].

1. Ecrivez une fonction midpoint qui implémente la formule composite du rectangle (point mi-
lieu) pour l’approximation de l’intégrale ci-dessus. Pour permettre le choix d’un intervalle
d’intégration de la forme [a, b], le nombre de sous-intervalles N et la fonction f(x), définie par
la commande f = lambda x : ... utilisez la structure suivante:

def midpoint( a, b, N, f ) :
# [a,b] : inteval
# N : number of subintervals
# f : fonction to integrate using the midpoint rule

2. Testez le code en considérant la fonction f(x) = x2 et M = 10. Tracez ensuite le
graphe de l’erreur |I(f) − Icpm(f)| en fonction de N (utilisez à cette fin les comman-
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des plt.xscale('log'); plt.yscale('log')), en choisissant a = 0, b = 1, et M =
101, 102, 103, . . . 105. Quel est l’ordre de convergence de la formule composite du rectangle
par rapport à H = (b− a)/M? Donnez une interprétation des résultats d’après la théorie.

3. Modifiez le code du point 1. pour permettre le calcul de l’intégrale avec la formule composite
du trapèze. Tracez le graphe de l’erreur |I(f)−Ict (f)| pour les mêmes valeurs de M . Comparez
les résultats avec ceux obtenus au point 2.

def trapeziodal( a, b, N, f ) :
# [a,b] : inteval
# N : number of subintervals
# f : fonction to integrate using the trapezoidal rule

Partie 1
[2]: def midpoint( a, b, N, f ) :

# [a,b] : inteval
# M : number of subintervals
# f : fonction to integrate using the midpoint rule

# size of the subintervals
H = (b - a) / N

# quadrature nodes
x = np.linspace(a+H/2, b-H/2, N)

# approximate integral
return H * np.sum( f(x) );

Partie 2
[3]: f = lambda x : x**2

a = 0; b = 1; N = 10;

intmp = midpoint( a, b, N, f )

print(intmp)

0.3325

En sachant que la valeur exacte de l’intégrale est I(f) = 1/3, on peut écrire les commandes suivantes:

[4]: N = 10**np.linspace(1,5,5).astype(int)

errmp = []
for i in range(5) :

intmp = midpoint( a, b, N[i], f)
errmp.append( np.abs( intmp - 1.0/3 ) )

plt.plot(N, errmp, 'b:.')
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plt.xlabel('M'); plt.ylabel('err');

plt.xscale('log')
plt.yscale('log')
plt.grid(True)
plt.title('Le graphe loglog est une droite avec pente égale à -2:')
plt.show()
print('Figure: Erreur relative à la méthode du rectangle en échelle␣
↪→logarithmique.\n\n')

slope = ( np.log(errmp[4]) - np.log(errmp[0]) ) / ( np.log(N[4]) - np.log(N[0]) )

print(f'La pente est de {slope:.6f}')

Figure: Erreur relative à la méthode du rectangle en échelle logarithmique.

La pente est de -2.000001
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Donc, l’erreur décroît comme la puissance -2 du paramètre N . Par conséquent, l’ordre de conver-
gence par rapport à H = 1/N est 2.

Partie 3 On peut modifier le code du point milieu pour implémenter la méthode du trapèze
comme suit.

[5]: def trapezoidal( a, b, N, f ) :
# [a,b] : inteval
# M : number of subintervals
# f : fonction to integrate using the trapezoidal rule

# size of the subintervals
H = (b - a) / N

# quadrature nodes
x = np.linspace(a, b, N+1)

# approximate integral
return H/2 * ( f(a) + f(b) ) + H * sum( f(x[1:N]) );

[6]: errtrap = []
for i in range(5) :

inttrap = trapezoidal( a, b, N[i], f)
errtrap.append( np.abs( inttrap - 1.0/3 ) )

plt.plot(N, errmp, 'b:.')
plt.plot(N, errtrap, 'c:*')

plt.legend(['rectangle', 'trapeze'])
plt.xlabel('N'); plt.ylabel('err');

plt.xscale('log')
plt.yscale('log')
plt.grid(True)
plt.title('Les graphes loglog sont des droites avec pente égale à -2:')
plt.show()
print('Figure: Erreur relative aux méthodes du rectangle et du trapèze en␣
↪→échelle logarithmique.\n\n')

slope = ( np.log(errtrap[4]) - np.log(errtrap[0]) ) / ( np.log(N[4]) - np.
↪→log(N[0]) )

print(f'La convergence numérique est d\'environ {slope:.2f}')

print(f'En moyenne, le rapport entre les deux erreurs est de {np.mean(np.abs(np.
↪→array(errtrap)/np.array(errmp))):.6f}')
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Figure: Erreur relative aux méthodes du rectangle et du trapèze en échelle
logarithmique.

La convergence numérique est d'environ -2.00
En moyenne, le rapport entre les deux erreurs est de 1.999993

On observe que la précision est encore O(h2), mais que l’erreur est plus grande (le double, précisé-
ment) que dans le cas du point milieu.

[ ]:

2 Exercice Série 6, Ex 5

2.1 Formule de Simpson

[7]: import matplotlib.pyplot as plt
import numpy as np

On considère la fonction f : [a, b] → R dans C0([a, b]); on est intéressé à approcher l’intégrale
I(f) =

∫ b
a f(x) dx.
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1. Ecrivez une fonction Simpson qui implémente la formule composite de Simpson pour
l’approximation de l’intégrale ci-dessus. Utilisez la structure suivante:

def Simpson( a, b, N, f ) :
# [a,b] : inteval
# N : number of subintervals
# f : fonction to integrate using the Simpson rule

2. Testez ensuite pour quels monômes f(x) = xd cette formule intègre exactement la fonction,
pour d = 0, 1, ... sur l’intervalle [1, 4], avec N = 1 et ensuite N = 10.

3. Vérifiez numériquement pour quelques polynômes que la fonction ainsi écrite est linéaire en f
pour N = 10

Suggestion: En utilisant une fonction lambda il est possible de décider le paramètre d d’un monôme
à un moment ultérieur:

monomial = lambda x : x**d

Partie 1
[8]: # This function just provides the Simpson quadrature rule.

def Simpson( a, b, N, f ) :
# [a,b] : inteval
# N : number of subintervals
# f : fonction to integrate using the trapezoidal rule

M=3

nodes = np.array([-1, 0, 1])
weights = np.array([1./3., 4./3., 1./3.])

# size of the subintervals
H = (b - a) / N
# points defining intervals
x = np.linspace(a, b, N+1)

Lh = 0;

z = np.zeros(M);

for k in range(N) :
# left of the subinterval, also first quadrature point
z[0] = x[k]
# right of the subinterval, also third quadrature point
z[2] = x[k+1]
# mid point, , also second quadrature point
z[1] = (x[k] + x[k+1])/2
# can also be computed as
z[1] = (x[k] + x[k+1])/2 + nodes[1]*(x[k+1] - x[k])/2
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# local quadrature:
Jgk = weights[0] * f(z[0]) + weights[1] * f(z[1]) + weights[2] * f(z[2])
# or as a single sum
Jgk = sum(weights * f(z))

Lh = Lh + Jgk

# approximate integral
return H/2 * Lh

Partie 2 ∫ 4

1
1dx = 3

∫ 4

1
xddx =

1

d+ 1
xd+1|41 =

4d+1 − 1

d+ 1

[9]: # Checking simpson fonction
a = 1; b = 4;

# with lambda fonctions, it is possible to determine a parameter (here d)
# at a later moment
monomial = lambda x : x**d

# recording for which degrees the integral s exact (up to epsilon)
exactDegree = -1
epsilon = 1e-12

[10]: N = 1
for d in range(7) :

intsim = Simpson( a, b, N, monomial )
intExact = (4**(d+1) - 1)/(d+1)
print(f'Simpson on x^{d} : {intsim:.6f} - {intExact:.6f} = {intsim-intExact:

↪→.6e}')
if np.abs(intsim-intExact) < epsilon :

exactDegree = d

print(f'Simpson with N = {N} is exact up to degree {exactDegree}')

Simpson on xˆ0 : 3.000000 - 3.000000 = -4.440892e-16
Simpson on xˆ1 : 7.500000 - 7.500000 = 0.000000e+00
Simpson on xˆ2 : 21.000000 - 21.000000 = 0.000000e+00
Simpson on xˆ3 : 63.750000 - 63.750000 = 0.000000e+00
Simpson on xˆ4 : 206.625000 - 204.600000 = 2.025000e+00
Simpson on xˆ5 : 707.812500 - 682.500000 = 2.531250e+01
Simpson on xˆ6 : 2536.781250 - 2340.428571 = 1.963527e+02
Simpson with N = 1 is exact up to degree 3
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[11]: N = 10
exactDegree = -1

for d in range(7) :
intsim = Simpson( a, b, N, monomial )
intExact = (4**(d+1) - 1)/(d+1)
print(f'Simpson on x^{d} : {intsim:.6f} - {intExact:.6f} = {intsim-intExact:

↪→.6e}')
if np.abs(intsim-intExact) < epsilon :

exactDegree = d

print(f'Simpson with N = {N} is exact up to degree {exactDegree}')

Simpson on xˆ0 : 3.000000 - 3.000000 = -4.440892e-16
Simpson on xˆ1 : 7.500000 - 7.500000 = 0.000000e+00
Simpson on xˆ2 : 21.000000 - 21.000000 = 0.000000e+00
Simpson on xˆ3 : 63.750000 - 63.750000 = -1.421085e-14
Simpson on xˆ4 : 204.600202 - 204.600000 = 2.025000e-04
Simpson on xˆ5 : 682.502531 - 682.500000 = 2.531250e-03
Simpson on xˆ6 : 2340.449818 - 2340.428571 = 2.124623e-02
Simpson with N = 10 is exact up to degree 3

Partie 3 ∫ 4

1
1dx = 3

∫ 4

1
xddx =

1

d+ 1
xd+1|41 =

4d+1 − 1

d+ 1

[12]: maxD = 5;
N = 10

p = lambda x : np.polyval(coefs,x)

# pre-computing integrls of monomials up to degree maxD
intMono = np.zeros(maxD+1)
for d in range(maxD+1) :

intMono[d] = Simpson( a, b, N, monomial )

[13]: # generating random coefficients
coefs = np.random.rand(maxD+1)

# evaluating Simpson on the polynomial :
intPoly = Simpson(a,b,N, p)

# computing integral by linearity. Remeber that in polyval, the order of the␣
↪→coefficients is opposite !

intSum = 0
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for d in range(maxD+1) :
intSum = intSum + coefs[maxD-d]*intMono[d]

print(f'Simpson on a_{d} + a_{d-1} x + ... + a_0x^{d} by linearity : \n'
f'\t {intPoly:.6f} - {intSum:.6f} = {intPoly-intSum:.6e}')

Simpson on a_5 + a_4 x + ... + a_0xˆ5 by linearity :
416.109118 - 416.109118 = 0.000000e+00

[ ]:

3 Exercice Série 6, Ex 6

3.1 Degré d’exactitude d’une formule de quadrature

On considère la fonction f : [a, b] → R dans C0([a, b]); on est intéressé à approcher l’intégrale
I(f) =

∫ b
a f(x) dx.

Plus précisément on prend f(x) = sin(72 x) + ex − 1 avec a = 0 et b = 1 (f ∈ C∞([a, b])) et on peut
calculer I(f) = 2

7 (1− cos(72)) + e− 2.

1. Calculez une approximation de l’intégrale en utilisant les formules du rectangle, du trapèze et
de Simpson simples, c-à-d avec un seul intervalle.

2. Calculez une approximation de l’intégrale en utilisant les fonctions Midpoint, Trapezoidal
et Simpson (déjà codées). avec N = 10 sous-intervalles de même taille. On notera les valeurs
approchées de l’intégrale Icmp(f), Ict (f), and Ics(f), respectivement.

3. Répétez le point 2. avec N = 2k pour k = 2, . . . , 7 et calculez les erreurs Ec
mp(f) := |I(f) −

Icmp(f)|, Ec
t (f) := |I(f)−Ict (f)|, et Ec

s(f) := |I(f)−Ics(f)|. Dessinez les erreurs en fonction de
H = (b−a)/N sur une échelle logarithmique sur les deux axes. Quel est l’ordre de convergence
de ces méthodes ? Est-ce en accord avec la théorie ? Motivez votre réponse.

4. On prend maintenant f(x) = xd, a = 0 et b = 1, avec d ∈ N. L’intégrale de f vaut
I(f) = 1/(d+ 1). Vérifiez numériquement les degrés d’exactitude de chacune des formules de
quadrature du point 1. Pour cela, il faut choisir plusieurs valeurs de d = 0, 1, 2, . . .. Motivez
votre réponse.

[14]: import matplotlib.pyplot as plt
import numpy as np

# In my case, the IntegrationLib is in the parent directory,
# therfore have have to add the aprent directory to path :
import sys
sys.path.append('..')

from IntegrationLib import *

Partie 1
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[15]: f = lambda x : np.sin(7/2*x) + np.exp(x) - 1

a = 0; b = 1
Iexact = 2/7*(1-np.cos(7/2) ) + np.exp(1) - 2

x = np.linspace(a,b,1000)
y=f(x)

plt.plot(x, y, 'b')
plt.show()

[16]: intMD = (b-a) * f( (a+b)/2 )
intTrap = (b-a) * ( f(a)+f(b) )/2
intSimp = (b-a)/6 * ( f(a) + 4*f((a+b)/2) + f(b) )

print(f'exact \t rect \t\t trap \t\t Simpson')
print(f'{Iexact:.4f} \t {intMD:.4f} \t {intTrap:.4f} \t {intSimp:.4f}')

exact rect trap Simpson
1.2716 1.6327 0.6837 1.3164
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Partie 2
[17]: N = 10

intMD = Midpoint(a,b,N,f)
intTrap = Trapezoidal(a,b,N,f)
intSimp = Simpson(a,b,N,f)

print(f'exact \t rect \t\t trap \t\t Simpson')
print(f'{Iexact:.4f} \t {intMD:.4f} \t {intTrap:.4f} \t {intSimp:.4f}')

exact rect trap Simpson
1.2716 1.2737 1.2673 1.2716

Partie 3
[18]: errmp = []

errtrap = []
errSim = []

N = 2**np.linspace(2,7,6).astype(int)

for n in N :
errmp.append( np.abs( Midpoint( a, b, n, f) - Iexact ) )
errtrap.append( np.abs( Trapezoidal( a, b, n, f) - Iexact ) )
errSim.append( np.abs( Simpson( a, b, n, f) - Iexact ) )

H = (b-a)/N
plt.plot(H, errmp, 'b:.', H, errtrap, 'c:*', H, errSim, 'g:*')

plt.plot(H, H**2 * (errmp[0]/H[0]**2)*5, 'k:', H, H**4 * (errSim[0]/H[0]**4)*5,␣
↪→'k:')

plt.legend(['rectangle', 'trapeze', 'Simpson', '$H^2$', '$H^4$'])
plt.xlabel('H'); plt.ylabel('err');

plt.xscale('log')
plt.yscale('log')
plt.grid(True)

11



[Pardon d’écrire en anglais..]

We recall that the errors Ec
mp(f) = |ecmp(f)|, Ec

t (f) = |ect(f)|, and Ec
s(f) = |ecs(f)| read, for a

sufficiently regular function f(x):

ecmp(f) = I(f)− Icmp(f) =
b− a

24
H2 f ′′(ξ), for some ξ ∈ [a, b], if f ∈ C2([a, b]),

ect(f) = I(f)− Ict (f) = −b− a

12
H2 f ′′(η), for some η ∈ [a, b], if f ∈ C2([a, b]),

ecs(f) = I(f)− Ics(f) = − b− a

16 · 180 H4 f (4)(ζ), for some ζ ∈ [a, b], if f ∈ C4([a, b]).

Since in this case f(x) ∈ C∞([a, b]), we expect the orders of accuracy (convergence orders of the
errors) to be equal to 2, 2, and 4 for the composite midpoint, trapezoidal, and Simpson quadrature
formulas, respectively. This is confirmed by the figure above, where we can observe that the plots
of the errors Emp(f) and Et(f) vs. H are, in log-log scale, parallel to the line representing the curve
(H,H2), thus indicating the order of accuracy (convergence order) 2 for the composite midpoint and
trapezoidal quadrature formulas. Similarly, the plot of the error Es(f) is, in log-log scale, parallel to
the line representing the curve (H,H4), from which we deduce the order of accuracy (convergence
order) 4 for the composite Simpson quadrature formula.

We notice that the orders of accuracy could be deduced by computing the errors for two dif-
ferent values of H, say H1 and H2; for example for a generic composite quadrature formula
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we obtain the corresponding errors Ec
H1

(f) and Ec
H2

(f). If we assume that the error Ec
H(f)

can be expressed as Ec
H(f) = C Hα, with α > 0 and C a positive constant independent of H

and α, we can estimate the order of accuracy (convergence order) of the quadrature formula as
α = logβ

(
Ec

H2
(f)/Ec

H1
(f)

)
/ logβ (H2/H1), for any β > 1 and H1 and H2 “sufficiently small’ ’. For

the composite midpoint, trapezoidal, and Simpson quadrature formulas, we use the following com-
mands, for which the results (α = 2.01, 2.01, and 4.01, respectively) confirm the expected orders of
accuracy (convergence orders).

[19]: slopeMP = ( np.log(errmp[-1]) - np.log(errmp[0]) ) / ( np.log(N[-1]) - np.
↪→log(H[0]) )

slopeTrap = ( np.log(errtrap[-1]) - np.log(errtrap[0]) ) / ( np.log(N[-1]) - np.
↪→log(H[0]) )

slopeSim = ( np.log(errSim[-1]) - np.log(errSim[0]) ) / ( np.log(N[-1]) - np.
↪→log(H[0]) )

print(f'La convergence numérique est environ de ')
print(f'Rectangle : {slopeMP:.2f}')
print(f'Trapeze : {slopeTrap:.2f}')
print(f'Simpson : {slopeSim:.2f}')

La convergence numérique est environ de
Rectangle : -1.12
Trapeze : -1.11
Simpson : -2.23

Partie 4 The function f(x) = xd is a polynomial of degree d for d ∈ N. The simple midpoint,
trapezoidal, and Simpson quadrature formulas possesses degree of exactness equal to 1, 1, and 3,
respectively.

[20]: N = 1
# with lambda fonctions, it is possible to determine a parameter (here d)
# at a later moment
monomial = lambda x : x**d

# recording for which degrees the integral s exact (up to epsilon)
exactDegree = -1
epsilon = 1e-12

for d in range(7) :
intsim = Midpoint( a, b, N, monomial )
intExact = 1/(d+1)
print(f'Midpoint on x^{d} : {intsim:.6f} - {intExact:.6f} =␣

↪→{intsim-intExact:.6e}')
if np.abs(intsim-intExact) < epsilon :

exactDegree = d

print(f'Midpoint is exact up to degree {exactDegree}')
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Midpoint on xˆ0 : 1.000000 - 1.000000 = 0.000000e+00
Midpoint on xˆ1 : 0.500000 - 0.500000 = 0.000000e+00
Midpoint on xˆ2 : 0.250000 - 0.333333 = -8.333333e-02
Midpoint on xˆ3 : 0.125000 - 0.250000 = -1.250000e-01
Midpoint on xˆ4 : 0.062500 - 0.200000 = -1.375000e-01
Midpoint on xˆ5 : 0.031250 - 0.166667 = -1.354167e-01
Midpoint on xˆ6 : 0.015625 - 0.142857 = -1.272321e-01
Midpoint is exact up to degree 1

[21]: for d in range(7) :
intsim = Trapezoidal( a, b, N, monomial )
intExact = 1/(d+1)
print(f'Trapezoidal on x^{d} : {intsim:.6f} - {intExact:.6f} =␣

↪→{intsim-intExact:.6e}')
if np.abs(intsim-intExact) < epsilon :

exactDegree = d

print(f'Trapezoidal is exact up to degree {exactDegree}')

Trapezoidal on xˆ0 : 1.000000 - 1.000000 = 0.000000e+00
Trapezoidal on xˆ1 : 0.500000 - 0.500000 = 0.000000e+00
Trapezoidal on xˆ2 : 0.500000 - 0.333333 = 1.666667e-01
Trapezoidal on xˆ3 : 0.500000 - 0.250000 = 2.500000e-01
Trapezoidal on xˆ4 : 0.500000 - 0.200000 = 3.000000e-01
Trapezoidal on xˆ5 : 0.500000 - 0.166667 = 3.333333e-01
Trapezoidal on xˆ6 : 0.500000 - 0.142857 = 3.571429e-01
Trapezoidal is exact up to degree 1

[22]: for d in range(7) :
intsim = Simpson( a, b, N, monomial )
intExact = 1/(d+1)
print(f'Simpson on x^{d} : {intsim:.6f} - {intExact:.6f} = {intsim-intExact:

↪→.6e}')
if np.abs(intsim-intExact) < epsilon :

exactDegree = d

print(f'Simpson is exact up to degree {exactDegree}')

Simpson on xˆ0 : 1.000000 - 1.000000 = 0.000000e+00
Simpson on xˆ1 : 0.500000 - 0.500000 = 0.000000e+00
Simpson on xˆ2 : 0.333333 - 0.333333 = 0.000000e+00
Simpson on xˆ3 : 0.250000 - 0.250000 = 0.000000e+00
Simpson on xˆ4 : 0.208333 - 0.200000 = 8.333333e-03
Simpson on xˆ5 : 0.187500 - 0.166667 = 2.083333e-02
Simpson on xˆ6 : 0.177083 - 0.142857 = 3.422619e-02
Simpson is exact up to degree 3

De ces simulations nous vérifions que les monômes f(x) = xd sont intégrées exactement pour les
degrées d = 0 et d = 1 dans le cas des formules du rectangle et du trapèze, et pour d = 0, 1, 2, 3
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dans le cas de la formule de Simpson.

[ ]:

4 Exercice Série 6, Ex 7

4.1 Convergence pour fonction non-lisse

[23]: import matplotlib.pyplot as plt
import numpy as np

# In my case, the IntegrationLib is in the parent directory,
# therfore have have to add the aprent directory to path :
import sys
sys.path.append('..')

from IntegrationLib import Midpoint
from IntegrationLib import Trapezoidal
from IntegrationLib import Simpson

On considère, sur l’intervalle [−1, 1], la fonction f suivante:

f(x) =

{
ex si x ≤ 0
1 si x > 0

On peut définir une telle fonction en utilisant la commande

f = lambda x : np.exp(x)*(x<=0) + (1)*(x>0)

1. Utilisez 1000 points équirépartis dans l’intervalle [−1, 1] pour afficher la fonction f (utilisez la
commande axis pour recadrer l’image).

2. On s’intéresse à présent à l’intégrale I =
∫ 1
−1 f(x) dx. On peut calculer la valeur de I

analytiquement et on trouve I = 2 − 1
e
∼= 1.6321. Calculez des valeurs approchées de I

en considérant les formules du point milieu, du trapèze et de Simpson avec N = 1, 9, 99, 999
où N est le nombre de sous-intervalles de formules composites. Utilisez les fonctions midpoint,
trapezoidal et simpson (déjà codées).

3. Reportez les erreurs calculées au point (b) dans un graphe montrant l’erreur en fonction de
H avec des échelles logarithmiques.

4. Estimez, à partir des graphes obtenus au point précédent, l’ordre de chacune des méthodes.
Comparez-les avec les ordres donnés au cours. Y a-t-il des différences? Pourquoi? (Regardez
les dérivées de f ).

5. Pourquoi obtient-on de bien meilleurs résultats pour la méthode de Simpson avec un nombre
pair d’intervalles qu’avec un nombre impair (essayez avec N = 99 et ensuite N = 100 )?

6. Refaites l’exercice avec N = 2, 10, 100, 1000.

Partie 1
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[24]: f = lambda x : np.exp(x)*(x<=0) + (1)*(x>0)

a = -1; b = 1
x = np.linspace(a,b,1000)
y=f(x)

plt.plot(x, y, 'b')
plt.show()

Partie 2 On calcule tout d’abord la valeur exacte de l’intégrale, puis on calcule les erreurs, que
l’on stocke dans des vecteurs:

[25]: Iexact = 2 - np.exp(-1)

errmp = []
errtrap = []
errSim = []

N = [1,9,99,999]
#N = [2,10,100,1000]

for i in range(4) :
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errmp.append( np.abs( Midpoint( a, b, N[i], f) - Iexact ) )
errtrap.append( np.abs( Trapezoidal( a, b, N[i], f) - Iexact ) )
errSim.append( np.abs( Simpson( a, b, N[i], f) - Iexact ) )

Partie 3
[26]: H = 2./np.array(N)

plt.plot(H, errmp, 'b:.', H, errtrap, 'c:*', H, errSim, 'g:*')

plt.plot(H, H**2 * (errmp[0]/H[0]**2)*5, 'k:', H, H**4 * (errSim[0]/H[0]**4)*5,␣
↪→'k:')

plt.legend(['rectangle', 'trapeze', 'Simpson', '$H^2$', '$H^4$'])
plt.xlabel('H'); plt.ylabel('err');

plt.xscale('log')
plt.yscale('log')
plt.grid(True)
plt.show()

Les graphes pour toutes les méthodes sont des droites. On remarque que lorsque H est divisé par
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10, les erreurs sont environ divisées par 100. On peut donc supposer que les ordres sont 2 par
rapport à H. Pour le confirmer, on peut ajouter sur le graphe la pente représentant l’ordre 2 et
vérifier qu’elle est parallèle aux droites d’erreur.

Partie 4
[27]: slopeMP = ( np.log(errmp[-1]) - np.log(errmp[0]) ) / ( np.log(H[-1]) - np.

↪→log(H[0]) )
slopeTrap = ( np.log(errtrap[-1]) - np.log(errtrap[0]) ) / ( np.log(H[-1]) - np.
↪→log(H[0]) )

slopeSim = ( np.log(errSim[-1]) - np.log(errSim[0]) ) / ( np.log(H[-1]) - np.
↪→log(H[0]) )

print(f'La convergence numérique est environ de ')
print(f'Rectangle : {slopeMP:.2f}')
print(f'Trapeze : {slopeTrap:.2f}')
print(f'Simpson : {slopeSim:.2f}')

La convergence numérique est environ de
Rectangle : 1.99
Trapeze : 1.99
Simpson : 1.99

Les graphiques sont parallèles à la droite H2 et donc l’ordre est 2 pour toutes les méthodes. Pour
la méthode du point milieu et du trapèze, c’est l’ordre auquel on s’attend d’après la théorie. Par
contre, pour Simpson, on pouvait s’attendre à un ordre 4. Le problème vient du fait que la fonction
n’est pas très régulière, puisque f ∈ C0([−1, 1]) mais f ̸∈ C1([−1, 1]) puisque sa dérivée n’est pas
continue en x = 0. Dans la théorie, on demande f ∈ C4([−1, 1]) pour assurer l’ordre 4. On obtient
tout de même l’ordre 2 car, mis à part en x = 0, la fonction f est très régulière.

Partie 5 Si on regarde l’erreur pour la méthode de Simpson avec N = 99 et N = 100 sous-
intervalles

[28]: print (np.abs( Simpson( a, b, 99, f) - Iexact ) )
print (np.abs( Simpson( a, b, 100, f) - Iexact ) )

1.7004959483424287e-05
3.5117464491918327e-11

On obtient des valeurs d’environ 1.70 10−5 et 3.51 10−11. Les erreurs sont très différentes ! Voilà
pourquoi:

• si N est pair, le point x = 0 est un point xi (pour i = N/2) exactement entre deux sous-
intervalles. La fonction f est régulière à droite et à gauche, en particulier, on retrouve l’ordre
4 par rapport à H de chaque côté.

• si N est impair, le point x = 0 est au milieu d’un sous-intervalle. La fonction f n’est pas
régulière dans cet intervalle, ce qui donnt un ordre de convergence plus petit.

Partie 6 Il faut relancer les parties 2 et 3 avec N= [2,10,100,1000] à la place de N =
[1,9,99,999]
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[ ]:
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