
Analyse Numérique Vendredi 21 mars 2025
Prof. Simone Deparis EPFL

Série 5 (Corrigé)

Partiellement en classe vendredi
Exercice 1

Nous avons des mesures y0, y1, . . . , yn correspondant à des points x0, x1, . . . xn. Montrer
que la droite de régression y = a0 + a1x, qui approche au sens des moindres carrés ces
données, passe par le baricentre (x̄, ȳ) du nuage de points (xi, yi) :

ȳ = a0 + a1x̄, où x̄ = 1
n + 1

n∑
i=0

xi et ȳ = 1
n + 1

n∑
i=0

yi.

Sol. : Les coefficients de la droite de régression y = a0 + a1x sont donnés par la solution
du système linéaire BT Ba = BT y, i.e.,

n + 1
n∑

i=0
xi

n∑
i=0

xi

n∑
i=0

x2
i


(

a0
a1

)
=


n∑

i=0
yi

n∑
i=0

yixi

 . (1)

En particulier, si on considère la première équation de ce système on a

(n + 1)a0 +
(

n∑
i=0

xi

)
a1 =

n∑
i=0

yi.

Si on divise par n + 1 les deux membres on trouve

a0 + a1

(
1

n + 1

n∑
i=0

xi

)
=
(

1
n + 1

n∑
i=0

yi

)

c’est-à-dire
a0 + a1x̄ = ȳ,

donc la droite de régression passe par le barycentre des données.

Exercice 2

On considères la rèaction chimique suivante :

OH(g) + Cl C H2 C H2 Cl(g) → H2O(g) + Cl C H H C H2 Cl(g). (2)

Pour ètudier la vitesse de cette rèaction chimique considèrer la loi de Arrhenius :

k = A e− Ea
RT , (3)

1

k [dm3 mol−1 s−1] 1.24 1.32 1.81 2.08 2.29 2.75
T [K] 292 296 321 333 343 363

Table 1 – Valeurs expèrimentales de T et k.

où R = 8.3144621 J K−1 mol−1 est la constante universelle des gaz parfaits. Soient les
donnèes suivantes (Tableau 1) qui correspondent aux valeurs expèrimentales de T et k :

Dèterminer les valeurs des constantes A (facteur prè-exponentiel) et Ea (l’ènergie d’ac-
tivation) de la loi d’Arrhenius à l’aide de la mèthode des moindres carrès.

Conseil : Il faut d’abord prendre le logarithme de (3) pour obtenir une relation linèaire
entre ln A et Ea. Les calculs se font à l’aide de Python. Sol. : Il faut d’abord prendre
le logarithme de l’équation d’Arrhenius pour obtenir une relation linéaire entre ln A et Ea :

ln k = ln A − Ea

R

1
T

(4)

Donc, l’équation d’Arrhenius peut être réécrite comme :

y = mx + q (5)

où y = ln k, x = 1
T

, q = ln A et m = −Ea

R
. Calculons les valeurs de q et m avec Matlab à

l’aide de la méthode des moindres carrés.
close all; clear all

T = np.array([292, 296, 321, 333, 343, 363])

k = np.array([1.24, 1.32, 1.81, 2.08, 2.29, 2.75])

Tinv = 1. / T;

lnk = np.log(k);

B = np.zeros((T.size,2))

least squares.
for i in range(T.size) :

B[i,:] = [1, Tinv[i]];

a = np.linalg.solve(B.T.dot(B), B.T.dot(lnk))

m = a[1]; q = a[0];

plotting the data and the fitting
x = np.linspace(np.min(Tinv),np.max(Tinv),500)

y = m∗x + q;
x = 1. / x;

y = np.exp(y);

plt.plot(T,k, ’∗ ’,x,y, ’ r ’)
plt.xlabel(’T ’); plt.ylabel(’ k ’);

2

plt.legend([’ data ’, ’$\hat p_n$ ’])
plt.show()

Donc, on trouve A = exp(q) et Ea = −m R :
print(f ’ Energie d\ ’ act ivat ion : {−m∗8.3144621:.3 f } ’)
print(f ’Facteur pre−exponentiel : {np . exp(q) : . 3 f } ’)

A = 73.7423 et Ea = 9903.6.

Python
Exercice 3

Depuis https://hsso.ch/fr/2012/b/14 téléchargez les données de la population suisse
dans le fichier Data/PopulationSuisse.csv :

Année 1860 1870 1880 1888 1900 1910 1920
Population 2506784 2654394 2924702 2917754 3315443 3753293 3880320

Année 1930 1941 1950 1960 1970 1980 1990
Population 4066400 4265703 4714992 5429061 6269783 6365960 6873687

Approximez l’évolution de la population avec un polynôme de degré n = 1, 2, 3, 7.
Ensuite faites l’hypothèse de croissance exponentielle de la population, c’est-à-dire

p(x) = Cea1x où C et a1 sont des paramètres. Comment utiliser l’approximation poly-
nômiale dans ce contexte ? Calculez les valeurs de C et a1. Indications : Ici la population
est positive, donc C > 0. On peut donc remplacer C avec ea0 dans p(x). Un polynome
a0 + a1x apparait. Comment le retrouver dans les données ?

Voici quelques commandes utile en Python
import pandas as pd

Read data from file ’PopulationSuisse.csv’
data = pd.read_csv("Data/PopulationSuisse . csv ")
Preview the first 5 lines of the loaded data
data.head()

load the data into numpy arrays :
x = data[’Annee ’].to_numpy()
y = data[’ Population ’].to_numpy()

Attention, remplacer data[’Annee’] par data[’Année’]. LATEX ne permet pas de le faire
dans ce code ...
Sol. : Pour construire la matrice de Vandermonde, vous pouvez utiliser la fonction
def VandermondeMatrix(x, m=0):

Input
x : +1 array with interpolation nodes

3

https://hsso.ch/fr/2012/b/14

m : degree of the polynomial. If empty, chooses m=size(x)-1
Output
Matrix of Vandermonde of size m x n

que vous pouvez importer avec la commande
from InterpolationLib import VandermondeMatrix

importing libraries used in this book
import numpy as np

import matplotlib.pyplot as plt

In my case, the InterpolationLib is in the parent directory,
therfore have have to add the aprent directory to path :
import sys

sys.path.append(’ . . ’)

from InterpolationLib import VandermondeMatrix

Exercice Depuis https ://hsso.ch/fr/2012/b/14 on a téléchargé les données de la popu-
lation suisse dans le fichier Data/PopulationSuisse.csv.

Approximez l’évolution de la population avec un polynôme de degré n = 1, 2, 3, 7.
Ensuite faites l’hypothèse de croissance exponentielle de la population, c’est-à-dire p(x) =

ea1x+a0 où a0 et a1 sont des paramètres. Comment utiliser l’approximation polynômiale dans
ce contexte ?
Data of the population has been dowloaded from https://hsso.ch/fr/2012/b/14
into the file Data/PopulationSuisse.csv
import pandas as pd

Read data from file ’PopulationSuisse.csv’
data = pd.read_csv(" . . / Data/PopulationSuisse . csv ")

To preview the first 5 lines of the loaded data execute
data.head()

x = data[’Annee ’].to_numpy()
y = data[’ Population ’].to_numpy()

m = 2

B = VandermondeMatrix(x,m)

compute coefficients
a = np.linalg.solve(B.T.dot(B), B.T.dot(y))

print the coefficients on screen
print(’The coe f f i c i en t s a_0, . . . , a_n are ’)

4

Figure 1 – png

print(a)

The coefficients a_0, ..., a_n are

[6.26809805e+08 −6.80846809e+05 1.85609737e+02]

def polynomial(a,x):

m = a.size−1
\hat p = a_0 + a_1 x + ... + a_n x^m
is equal to the scalar product between the vectors a and (1, x, ...,

x^m) :
return np.power(np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).dot(a)

points used to plot the graph, slightly larger than data
z = np.linspace(x[0], 2020, 100)

plt.plot(x, y, ’ ro ’, z, polynomial(a,z), ’ b ’)
plt.xlabel(’annee ’); plt.ylabel(’ Population ’);
plt.legend([’ data ’, ’$\hat p_n$ ’])
plt.show()

On assume une croissance exponentielle : population(x) = C ∗ ea1x = eao+a1x

En d’autres termes : log(population)(x) = ao + a1x

#

5

x = data[’Annee ’].to_numpy()
y = np.log(data[’ Population ’].to_numpy())

m = 1

B = VandermondeMatrix(x,m)

compute coefficients
a = np.linalg.solve(B.T.dot(B), B.T.dot(y))

print the coefficients on screen
print(’The coe f f i c i en t s a_0, . . . , a_n are ’)
print(a)

The coefficients a_0, ..., a_n are

[−0.01356599 0.00791249]

def expPolynomial(a,x):

m = a.size−1
\hat p = a_0 + a_1 x + ... + a_n x^m
is equal to the scalar product between the vectors a and (1, x, ...,

x^m) :
return np.exp(np.power(np.tile(x, (m+1, 1)).T ,

np.linspace(0,m,m+1)).dot(a))

points used to plot the graph, slightly larger than data
z = np.linspace(x[0], 2020, 100)

plt.plot(x, np.exp(y), ’ ro ’, z, expPolynomial(a,z), ’ b ’)
plt.xlabel(’annee ’); plt.ylabel(’ Population ’);
plt.legend([’ data ’, ’$\hat p_n$ ’])
plt.show()

Exercices supplémentaires
Exercice 4

On considère la fonction
f(x) = 1 + 1

2x + sin(x).

Remarquez que cette fonction est la somme d’une fonction linéaire f0(x) = 1 + 1
2x et d’une

perturbation périodique fp(x) = sin(x). Calculer la droite de régression qui approche f
lorsque on prend les échantillons xi = 2iπ/3, yi = f(xi), pour i = 0, 1, 2, 3. Tracer un
graphe qualitatif de la fonction f , de la droite f0 et de la droite de régression (en utilisant
éventuellement le résultat du point a). Est-ce que cette droite coïncide avec f0 ? Discutez
brièvement les différences.

6

Figure 2 – png

Sol. : On calcule :

y0 = 1, y1 = 1 + 2π

6 +
√

3
2 , y2 = 1 + 4π

6 −
√

3
2 , y3 = 1 + π.

En plus :
n∑

i=0
xi = 4π,

n∑
i=0

x2
i = 56

9 π2,

et
n∑

i=0
yi = 4 + 2π,

n∑
i=0

xiyi = 4π + 28π2

9 − π√
3

.

L’équation normale devient(
4 4π

4π 56
9 π2

)(
a0
a1

)
=
(

4 + 2π

4π + 28π2

9 − π√
3

)

C’est un système de taille deux et donc on peut le résoudre à la main + calculatrice. Si on
multiplie la première équation fois π et ensuite on la soustrait à la deuxième pour éliminer
a0, on calcule

a1 ≃ 0.4173.

Puis, on utilise la première équation pour calculer a0 :

a0 ≃ 1.2598.

On voit donc que la droite de régression y = 1.2598+0.4173x ne coïncide pas avec la partie
linéaire f0(x) = 1 + 0.5x. Par exemple, la pente de la droite de régression est un peu plus

7

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

f(x)
p

Figure 3 – Fonction et droite de regression

grande que 0.4 alors que celle de f0 est 0.5. Les graphes sont montrés en figure (exercice :
essayez de les obtenir en Octave).

On remarque que la droite de régression (ligne continue, en bleu) passe par le barycentre
(x̄, ȳ) = (π, 1 + π/2) des quatre points donnés dans le plan (marqués avec des “+”), qui est
aussi un point du graphe de f et de la partie linéaire f0 (ligne pointillée, en rouge).

Le fait que la droite de régression ne coïncide pas avec la partie linéaire f0, qui est censée
être la “droite qui approche mieux la fonction f(x)”, est dû à la forme du fonctionnel dont
le minimum correspond au coefficients de la droite de régression : ce fonctionnel est en fait

Φ(a0, a1) =
n∑

i=0
(a0 + a1xi − f(xi))2,

et dépend que des n+1 points (xi, f(xi)) donnés. On a vu au cours que les coefficients (a0, a1)
de la droite de régression sont les valeurs où Φ atteint son minimum. Notre droite de régres-
sion est la droite qui approche au mieux l’ensemble fini des (quatre) points {(xi, f(xi))}i=0,...,n,
non pas l’ensemble infini {(x, f(x))}x∈[0,π]. Si par contre on minimise par rapport à (a0, a1)
le fonctionnel

Φ̃(a0, a1) =
∫ 2π

0
(a0 + a1x − f(x))2dx,

on trouve que le minimum est donné par les coefficients (a0, a1) = (1, 1/2), correspondant
à la droite f0. En effet, Φ̃ tient en compte de tous les points {(x, f(x))}x∈[0,π].

En d’autres mots, on obtient des approximations différentes avec des différents choix du
fonctionnel à minimiser, il est donc naturel que la droite de régression ne corresponde pas
à f0. Pourtant, on a vu que la différence n’est pas énorme : en plus, on peut vérifier (en

8

Octave) que si l’on augmente le nombre de points, l’écart tend vers zéro : cela est raisonnable
car 1

n
Φ(a0, a1) tend vers le fonctionnel intégral Φ̃(a0, a1).

Exercice 5

On considère la fonction f(x) = sin(x) définie sur l’intervalle [0, 3π].
1. En utilisant Python, calculer le polynôme d’interpolation Πnf de la fonction f(x) =

sin(x) pour une distribution de nœuds uniforme dans [0, 3π], dans les cas n = 1, . . . , 5
(n étant le degré du polynôme d’interpolation). Comparer graphiquement le résultat
avec la fonction donnée 1.

2. Evaluer l’erreur maxx∈[0,3π] | sin(x)−Πn sin(x)| et visualiser le graphe de En en fonction
de n.

3. En observant que | sin(n)(x)| ≤ 1, ∀x ∈ [0, 3π], ∀n, comparer l’erreur obtenue au point
b) avec l’estimation théorique donnée au cours :

max
x∈I

|Enf(x)| ≤ 1
4(n + 1)

(
b − a

n

)n+1

max
x∈[a,b]

|f (n+1)(x)| .

4. En utilisant la fonction PiecewiseLinearInterpolation calculer le polynôme linéaire
par intervalles ΠH

1 sin(x), sur N sous-intervalles de longueur H = 3π/N . Considérer
N = 2, 4, 6, 8, 10 et comparer graphiquement les résultats obtenus avec la fonction
donnée1.

5. Evaluer l’erreur maxx∈[0,3π] |Enf(x)| = maxx∈[0,3π] | sin(x) − ΠH
1 sin(x)| et visualiser le

graphe de maxx∈[0,3π] |Enf(x)| en fonction du nombre d’intervalles N .
Sol. : (La correction n’est pas à jour, elle est écrite en Matlab)

1. Il faut se rappeler que dans Matlab/Octave, n’importe quel polynôme p(x) = a0+a1x+
. . .+anxn de degré n est representé par le vecteur p = [an, ..., a1, a0] des n+1
coefficients de p (attention : le premier élément du vecteur correspond au terme de
plus haut degré). En outre,
— la commande polyfit sert à calculer le vecteur des coefficients ai d’un polynôme

p(x) interpolant des données (fitting) ;
— la commande polyval permet d’évaluer n’importe quel polynôme p(x) en un point

(ou un vecteur de points) x, à partir du vecteur des coefficients ai (par example,
le vecteur p = [1, 2, 3] définit le polynôme p(x) = x2 + 2x + 3, donc la valeur
retournée par polyval(p,1) est 6).

On définit la fonction sin(x) et les vecteurs suivants :
fun = lambda x: np.sin(x)

poly = []

for i in range(1,6): # 2 to 6 points
xp = np.linspace(0, 3∗np.pi, i+1)
an = np.polyfit(xp,fun(xp),i)

1. Utiliser au moins 100 points pour les représentations.

9

poly.append(an)

x = np.linspace(0, 3∗np.pi, 100)
plt.plot(x, fun(x) , label = ’ f ’ , linewidth = 3.0)

for an in poly:

plt.plot(x, np.polyval(an,x) , label = ’n=’ + str(len(an)))

plt.xlabel(’ x ’); plt.legend()

2. Pour évaluer l’erreur et en tracer le graphe, on utilise les commandes suivantes (pro-
chain point)

3. On peut calculer les estimations théoriques grâce aux commandes suivantes :
Error = [np.max(np.abs(np.polyval(p,x) − fun(x))) for p in poly]

Estimation = [(3∗np.pi/n)∗∗(n+1)/(4∗(n+1)) for n in range(1,6)]

print(Error)

plt.plot(np.arange(1,6), Error, ’o−’, label = ’ error ’)
plt.plot(np.arange(1,6), Estimation , ’−−’, label = ’ estimation ’)
plt.xlabel(’n ’)
plt.ylabel(’ error ’)

On voit bien que En est toujours plus petite que son estimation théorique.
4.

importing PiecewiseInterpolation
from InterpolationLib import PiecewiseLinearInterpolation as PiH1

interval and function
a = 0; b= 3∗np.pi

Values of N to use
Nrange = [2,4,6,8,10]

plotting points
z = np.linspace(a, b, 100)

for N in Nrange :

plt.plot(z, PiH1(a,b,N,fun,z), ’ : ’)

plt.plot(z, fun(z), ’ b ’)
plt.xlabel(’ t ’); plt.ylabel(’y ’); #plt.title(’data’)
plt.legend(Nrange)

plt.show()

5. On peut calculer l’erreur grâce aux commandes :
erreur calculee en 100 points
z = np.linspace(a, b, 100)

10

Error = [np.max(np.abs(PiH1(a,b,N,fun,z) − fun(x))) for N in Nrange]

print(Error)

plt.plot(Nrange, Error, ’o−’, label = ’ error ’)
plt.xlabel(’n ’)
plt.ylabel(’ error ’)
plt.legend()

#plt.xscale(’log’)
plt.yscale(’ log ’)

Exercice 6

Soit f(x) = e−x2/2. On divise l’intervalle [0, 5] en M sous-intervalles de longueur constante
H = 5/M . Soit ΠH

1 f(x) le polynôme par morceaux de degré 1 sur chaque sous-intervalle
interpolant f .

a) Majorer l’erreur EH = maxx |f(x) − ΠH
1 f(x)| en fonction de H.

b) Trouver le nombre M de sous-intervalles nécessaires pour que EH ≤ 0.5 · 10−6.
Sol. :

a) On a l’estimation suivante de l’erreur d’interpolation :

max
x∈[a,b]

|f(x) − ΠH
1 f(x)| ≤ 1

8H2 max
x∈[a,b]

|f ′′(x)|.

On calcule

f ′(x) = −xe−x2/2, f ′′(x) = (−1 + x2)e−x2/2, f ′′′(x) = x(3 − x2)e−x2/2,

Étudions g = f ′′ : g(x) = 0 si et seulement si x = 0, −
√

3,
√

3. On a que limx→∞ g(x) =
0 et que g(0) = −1 et g(1) = 0. On en déduit que g est croissante entre 0 et

√
3 et dé-

croissante ensuite, mais toujours positive. Les extrema de g sont en x = 0 et x =
√

3.

max
x∈[0,5]

|f ′′(x)| = max{|g(0)|, |g(
√

3)|} = max{1, 2e−3/2} = 1,

puisque e3/2 > e > 2.7.
L’estimation de l’erreur sur [0, 5] devient

max
x∈[0,5]

|f(x) − ΠH
1 f(x)| ≤ 1

8H2 = 52

8M2 ,

b) et donc pour avoir 52/(8M2) ≤ 10−6/2 il faut 4M2 ≥ 52 · 106 et donc

M ≥ 2500,

c’est-à-dire le nombre de sous-intervalles nécessaires est 2500.

Copyright 2012-2020 © Prof. Alfio Quarteroni, Simone Deparis.

11

