Analyse Numérique Vendredi 3 mars 2022
Prof. Simone Deparis EPFL

Série 2 (Corrigé)

Semaine prochaine, mardi : Test en groupe
Vendredi on va travailler sur des exercices du chapitre.

Partiellement en classe

Exercice 1

On considére le probleme de calculer v/2.
Vérifier que a = /2 est un point fixe de la fonction

1 1
o(x) = —ZxQ +a+ 3

Ensuite, prouver que pour (¥ € [1,2], il existe une constante K > 0 telle que
2™ — o] < K¥|2©@ —a|, VEk>0.

Quel est le comportement de la suite {z(*)} lorsque k — oo ? Combien d’itérations de la
méthode de point fixe sont nécessaires pour trouver une valeur approchée de /2 qui soit
exacte jusqu'au dixieme chiffre apres la virgule ? (Suggestion : il faut avoir une estimation
de la constante K). Sol. :

Il faut utiliser la proprieté suivante, qui a €té prouvée au cours :

Proposition 1 On suppose que les hypothéses suivantes (H1 et H2) soient satisfaites :

H1. Soit ¢ : [a,b] — R une fonction de classe C'(a,b) telle que l'image de [a,b] selon
@ est un sous-ensemble de [a,b] (c.-a-d. ¢ : [a,b] = [a,b]);

Alors il existe au moins un point fixze o € [a,b] de ¢ (c.-a-d. p(a) = ).
H2. 3K <1 tel que |¢'(x)| < K Vx € [a,b]

Alors
a) il existe un unique point fize o de ¢ dans |a,b|;
b) V2 € [a,b] (2 assigné), la suite {x P} définie par

2D = (™) vk > 0.

converge vers a lorsque k — 0o ;
c) on a le résultat de convergence suivant :

| ) — o |< K |2®W —a |, VkeN.



On va voir que K dans H2 est la constante demandée. Dans la suite on rappelle la

preuve de la proposition 1.
Comme ¢ : [a,b] — [a,b] (hypothése H1), la suite {x*)}, qui est définie par

20 € [a, b];
c*+D) = p(z(*), k€N,

reste dans ’intervalle [a, .

A partir de

20D — o = p(a®) - p(a)

on tire, grace au théoréme de Lagrange appliqué & la fonction o, qu’il existe n compris entre %) et o tel

que

20D o = /()@ ® - a).

Or, z®) et o appartiennent d [a,b], donc on a n € [a,b] aussi; ceci entraine le résultat voulu, grice d
Uhypothése H2 :

e —af = | () (&™) — a)| = |’ )|l2® — o] < Ko™ —al.

1 1
Les points fizes de ¢(x) = _sz +x+ 5 sont les racines de

1 2 ]. 2
T T +$—|—2 T s

donc o = /2 est bien un point fize de .

1 1 3
Or, le graphe de la fonction —ixZ + x4+ 5~ —Z(x —2)%+ 3 c’est une parabole, qui

atteint son mazimum en x = 2 (voir fig. [1)). Cette parabole est donc croissante sur [1,2],

FIGURE 1 — Fonction de point fixe ¢(x)

ce qui peut étre vérifié aussi en calculant la dérivée ¢'(z) :

_2—93
2

¢'(x) >0 si zell,2].
Donc on aura . 5
p() =T < p@) S p2) =5 Voell,

ce qui montre que l'hypothése H1 est satisfaite (I'image de [1,2] selon ¢ est [5/4,3/2] qui
est un sous-ensemble de [1,2], voir fig.[1).
De plus, on a que :

rell2] = [¢@)<

Y

N | —

donc H2 est satisfaite avec K = 1/2.
Il est clair que l'on peut appliquer 'inégalité |x*) — o < K|z* =Y — a| en récurrence.
On obtient

lz®) —a| < K|z® ) —a| < KYaz®2 —a| < ... < KF|2© —ql.

2



Comme 0 < K <1, on a K* — 0 lorsque k — oo, donc

lim [z® —a| =0
k—o00
c’est-a-dire

lim z® = q.
k—oco

En d’autres mots, la suite {x®} converge vers le point five o = /2. On remarque que I’opé-
ration d’extraction de racine carré n’est pas nécessaire pour calculer les valeurs approchées
z®) ; on a donc trouvé une méthode pour implementer Uopération /- & partir des opéra-
tions fondamentales (I’ordinateur aussi fait la méme chose, mais en utilisant un algorithme
optimisé beaucoup plus performant).
Comme |79 —a| <1, on a
2™ — o] < K¥ =27F

Alors on aura que |2*) —a| < tolérance pourvu que 27% < tolérance, voir k > — log,(tolérance).
La tolérance a demander si l’on veut que ’approximation soit exacte jusq’au 10éme chiffre
aprés la virgule est clairement 1070, Ceci nous permet de trouver le nombre d’itérations

nécessaires : c’est le plus petit naturel k tel que k > —loga(1071Y) = 10log,(10), donc
k= 34.

Exercice 2

On considere la fonction p(x) = azx(1l — x?), a étant un parametre réel.

3v3

1. Montrer que ¢ : [0,1] = [0,1] si0 < a < 5

2. Trouver les valeurs positives de a telles que l'itération de point fixe
2 = o), k>0 (1)

puisse approcher le point fixe a; = 0.

3. Trouver la condition sous laquelle un deuxiéme point fixe as > 0 existe (dans U'inter-
valle [0, 1]) et déterminer les valeurs de a telles que l'itération puisse approcher
9.

4. Pour quelle valeur de a l'itération peut-on approcher sy avec un ordre de conver-
gence quadratique ?

Sol. :

1. Poura =0, p =0 € [0,1]. St a > 0, ¢ est une fonction strictement positive sur
Uintervalle (0, 1) et qui vaut zéro en x = 0 et x = 1. Pour trouver le point de mazimum
de ¢ en (0,1), on calcule

O(r)=a(1-32")=0 — ax=4/-.

3
/1 3V3
Si on impose < 3) <1, on trouve a < \2/_



2. D’abord il faut controler que o = 0 est un point fize pour p. En effet
©(0)=0 Va.
Puis, on calcule la dérivée premiere de ¢
' ()] = a(1 — 327)
On peut approcher le point fixre a; = 0 si
'(0)) <1 — a<l.

3. On cherche maintenant si il existe un point 0 < ay < 1 tel que

as = p(ay).

9 1
ay =ang(l —a;) — = 1_5>0'

Si on impose la condition ay < 1, on a

1 3v3
\/i <1 —= a>1 (avec toujours a < \2/_>
a

Il faut aussi montrer que la dérivée de py en ag est inférieure a 1 en valeur absolue

([A écrire!])

4. On a que literation

On trouve

LB+ ®))

= ¢(z
peut approcher o avec ordre 2 si |¢'(az)| = 0. On a donc que
0=|¢(az)l =al(1=3a3), a>0

St o = 1
2_ .

3

5. Ce point fixe est atteint en correspondance de

L—a(l—(a)?) —a= 2

Exercice 3

Soit « une racine double de la fonction f, c’est-a-dire f(a) = f'(a) = 0.

1. En tenant compte du fait qu’on peut écrire la fonction f comme

fl@)=(z—a)’h(z) ob h(a)#0,

vérifier que la méthode de Newton pour I'approximation de la racine « est seulement
d’ordre 1. [Conseil : écrire la méthode sous la forme de point fixe et calculer '(«)]
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2. On consideére la méthode de Newton modifiée suivante :

2D (k) f(l"(k))
fr(a®)

Vérifier que cette méthode est au moins d’ordre 2 si 'on veut approcher «.

Sol. :

. On regarde la méthode de Newton comme une méthode de point fize :

(k)
(41)  (50) = 5 _ J{,(é (k))>

Si0 < |¢ ()] <1 la méthode est d’ordre 1, tandis que si ¢'(a) = 0 elle est au moins
d’ordre 2. On a

T

f'(@)? = f@)f"(x) _ fla)f"(z)

S S 0
f(@) = (z - a)*h(=)
f'(x) = (x — @) [2h(z) + (x — a)h'(x)]
f"(z) = 2h(z) + 4(z — o)W/ (z) + (v — a)*h" ().
Donc
() = f@)f"(@) _ (z—a)*h(z) [2h(z) + 4(z — )l (z) + (x — 0)?h"(z)]
f'(z) (& — )2 2h(z) + (z — a)l!(x)]’ ’
_ h(@) [2h(z) + 4(z — o)W (z) + (z — a)?h’(z)]
[2h() + (2 — @)/ (2)]” ’
: he) 2h(a)] 1

et la méthode est d’ordre 1.

Pour la méthode de Newton modifiée, on a

@
pla)=o =250
, P~ f@) ) fa)f )
Play=1- Flap TR

On vient de calculer le terme f(x)f"(z)/f (z)* et on a vu qu’il converge vers 1/2 si

xr — «; on a finalement

1
go'(oz):—1+2-§:0.

La méthode est donc au moins d’ordre 2.



Exercice 4

On consideére I’équation non-linéaire f(z) =0, ou f(z) = e ® — 22

a)

b)

c)

b)

Montrer que la méthode de bissection peut étre utilisée afin de calculer le seul zéro o
de f dans [0, 1].

Trouver le nombre d’itérations de la méthode de bissection nécessaire pour approximer
a avec une tolérance de 10719,

Ecrire la méthode de point fixe définie par la fonction d’itération suivante :

go(:v):x+i(e_x—x2), 0<z<l1,

et montrer sa convergence vers la solution .

Trouver le nombre d’itérations de la méthode de point fixe nécessaire pour calculer
une solution approchée avec une tolérance de 10719,

Comme f'(x) = —e™*—2x < 0 pourz € |
sur [0,1] ; puis, vu que f(0) =1>0, f(1

zéro o dans [0, 1].

0, 1], la fonction f est monotone décroissante
)=—1+1/e <0, on a que f admet un seul

Soit (™ la n-iéme itération de la méthode de bissection sur lintervalle [0,1] : on a
alors
2™ — o <277,

d’ou le nombre des itérations nécessaires :

S —1log(1071%) 10
log 2 ~ log?2’

Soit ™ la n-iéme itération de la méthode de point fize, définie par
2D = (™), 2O e 0, 1].
On remarque que, Vo € [0,1] :

3 e’ 4 2x e !

1—- r)=1—- ——""<1——.
0< 1< (x) 1 < 1 (%)
Pour monter que la méthode converge sur [0, 1] il faut prouver le deux points suivants.
— Six €10,1], alors p(x) € [0,1]. En fait, de (x) on a que ¢'(x) > 0, sur [0, 1], donc

e+ 3
4

vz €0,1] 0<i:¢(0)<¢(x)<¢(1): <1

— On a|¢'(z)| <1 : cela est une conséquence de (). De plus, pour x € [0,1] on a
¢"(x) = (e7" —2)/4 <0, et donc max,cp 1) |¢'(x)] = ¢'(0) = 3/4.



d) Grice a l'estimation suivante :

n n 3 n
D~ a] < max [¢/(2) |2 — ] = {2 — al,

3\" 3\"
o) —al < (3) 1 —al < () -

Done, pour approcher la solution o avec une tolérance de 10719, il faut que

ot

on a

nlog(3/4) <log(107'%) = —10,

c’est-a-dire
< 10
n< —.
~ log(4/3)

Comme log(4/3) < log(2), la méthode de bissection dans ce cas est plus performante
que celle de point fize.



Python, Exercise similaire au test 1

Exercice 5

On considere les méthodes de point fixe 2"+ = g;(x™) (i = 1,2, 3) avec :

n 1 z() n 1 z() n n
g1 (™) = 2¢ 2, g2(2™) = ¢ 2, gs(x™) = 2In(22™"),

dont les fonctions d’itération g;(x) sont visualisées sur la Figure [2]

—— y=0.5"exp(0.5"x)
--y=Xx

FIGURE 2 — (a) Graph de la fonction g;. (b) Graph de la fonction go. (¢) Graph de la
fonction g3.

1. Pour chaque point fixe T de la fonction d’itération g; (i = 1,2, 3), on suppose choisir
une valeur initiale 2(®) proche de z. Etudier si la méthode converge vers z.

2. Pour chaque fonction d’itération g;, déterminer graphiquement pour quelles valeurs
initiales 2(°) la méthode de point fixe correspondante converge et vers quel point fixe.

3. Montrer que si z est un point fixe de la fonction g; (i = 1,2, 3), alors il est aussi un
zéro de la fonction f(x) = e” — 42* (dont le comportement est tracé sur la Figure [3)).

4. Comment peut-on calculer les zéros de f?

-1 0 1 2 3 4 5

FIGURE 3 — Graph de la fonction f(x) = e” — 422

Sol. :



1.

Solution pour la méthode g,

Cette fonction a deux points fizes T, € [0, 1] et Ty € [4,5]. On doit donc estimer

2

la dérivée de g1 aux deux points fizes. Puisque g)(z) = Zem/ est une fonction

croissante, pour T, on a
1 _ 1
1 <010 < i) <gi(1) = e~ 04122, (2)

et donc |gy(z1)| < 1. En utilisant le théoréme de convergence locale d’une méthode
de point fize, on peut dire que I > 0 tel que Vo : |1 — xo| < € la méthode
converge au point 1. Pour Ty on a

1
91(%2) > ¢1(4) = 7¢” ~ 1.8473 (3)

et donc on ne peut pas utiliser le théoréeme de convergence locale parce que
|g1(Z2)] > 1.

Solution pour la méthode gy

1
Cette fonction a un seul point fize T, € [—1,0]. La dérivée gy(x) = —Zem/Q est
decroissante et donc
1 1
—0.1516 & —2e™? = gh(—1) > gy(21) = g3(0) = —

et donc |gh(z1)| < 1. En utilisant le théoréme de convergence locale d’une méthode
de point fize, on peut dire que e > 0 tel que Vg : |T1 — x| < € la méthode
converge au point xy.

Solution pour la méthode g3

Cette fonction a deux points fives Ty € [1/2,1] et Zo € [4,5]. On doit donc
estimer la dérivée de g1 aux deux points fizes. Puisque g5(x) = — est une fonction
x

décroissante, pour T on a
95(1) = g5(1) = 2, (4)

et donc on ne peut pas utiliser le théoréme de convergence locale parce que
lg5(z1)| > 1. Pour zy on a

2 1

5 = 93(5) = g5(72) < g5(4) = 5 (5)

et donc |g5(z2)| < 1. En utilisant le théoréme de convergence locale d’une méthode
de point fixe, on peut dire que J¢ > 0 tel que Vg : |To — x| < € la méthode
converge au point Tso.

Solution pour la méthode ¢y

En regardant la Figure[]], on voit que pour xy < Ty la méthode converge vers
tandis que pour xo > To la méthode diverge.

Solution pour la méthode gy

En regardant la Figure[5, on voit que la méthode converge pour n’importe quelle
valeur xg.



FIGURE 4 — Itérations de point fixe pour les fonctions g;.

FIGURE 5 — Itérations de point fixe pour les fonctions gs.

Solution pour la méthode g
En regardant la Figure[6, on voit que pour xog > 1 la méthode converge vers Ty
tandis que pour vy < Ty la méthode s’arréte car pour un k assez grand, z*) est
négatifs et w3 n'est pas définie.

FIGURE 6 — Itérations de point fixe pour les fonctions gs.

3. On dénote o, B et v, avec a < 3 < 7y, les trois zéros de f.
Pour la méthode g, on a

1 _
T = 5696/2 — 2% = /2
et, en élevant au carré, 4% = €.
De méme, pour la méthode go on a
- L 2 - 7/2
T=—ze — 2T = —e/
2
et, en élevant au carré, on trouve de nouveau 4z* = e*.
Enfin, pour la méthode g3 :
T = 21n(27) = T = In(47%)

et donc e = () — 472,
4. Solution pour la méthode g,
Graphiquement, on peut voir que les deux points fizes T, el Ty coincident res-
pectivement avec [ et . Puisque cette méthode converge vers T1, elle peut donc
étre utilisée pour approcher 3.

Solution pour la méthode gy
Graphiquement, on peut voir que le point fixe T, coincide avec « et, puisque cette
méthode est convergente, elle peut étre utilisée pour approcher a.

Solution pour la méthode g3
Graphiquement, on peut voir que les deux points fizes T, et Ty coincident res-
pectivement avec [ et y. Cette méthode étant convergente vers o, elle peut étre
utilisée pour approcher .
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