
Analyse Numérique Vendredi 3 mars 2022
Prof. Simone Deparis EPFL

Série 2 (Corrigé)

Semaine prochaine, mardi : Test en groupe
Vendredi on va travailler sur des exercices du chapitre.

Partiellement en classe
Exercice 1

On considère le problème de calculer
√

2.
Vérifier que α =

√
2 est un point fixe de la fonction

ϕ(x) = −1
4x

2 + x+ 1
2 .

Ensuite, prouver que pour x(0) ∈ [1, 2], il existe une constante K > 0 telle que

|x(k) − α| ≤ Kk|x(0) − α|, ∀k ≥ 0.

Quel est le comportement de la suite {x(k)} lorsque k → ∞ ? Combien d’itérations de la
méthode de point fixe sont nécessaires pour trouver une valeur approchée de

√
2 qui soit

exacte jusqu’au dixième chiffre après la virgule ? (Suggestion : il faut avoir une estimation
de la constante K). Sol. :

Il faut utiliser la proprieté suivante, qui a été prouvée au cours :

Proposition 1 On suppose que les hypothèses suivantes (H1 et H2) soient satisfaites :
H1. Soit ϕ : [a, b] → R une fonction de classe C1(a, b) telle que l’image de [a, b] selon

ϕ est un sous-ensemble de [a, b] (c.-à-d. ϕ : [a, b]→ [a, b]) ;

Alors il existe au moins un point fixe α ∈ [a, b] de ϕ (c.-à-d. ϕ(α) = α).
H2. ∃K < 1 tel que |ϕ′(x)| ≤ K ∀x ∈ [a, b]

Alors
a) il existe un unique point fixe α de ϕ dans [a, b] ;
b) ∀x(0) ∈ [a, b] (x(0) assigné), la suite {x(k)} définie par

x(k+1) = ϕ(x(k)), ∀k ≥ 0.

converge vers α lorsque k →∞ ;
c) on a le résultat de convergence suivant :

| x(k+1) − α |≤ K | x(k) − α |, ∀k ∈ N.
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On va voir que K dans H2 est la constante demandée. Dans la suite on rappelle la
preuve de la proposition 1.

Comme ϕ : [a, b]→ [a, b] (hypothèse H1), la suite {x(k)}, qui est définie par{
x(0) ∈ [a, b];
x(k+1) = ϕ(x(k)), k ∈ N,

reste dans l’intervalle [a, b].
A partir de

x(k+1) − α = ϕ(x(k))− ϕ(α)

on tire, grâce au théorème de Lagrange appliqué à la fonction ϕ, qu’il existe η compris entre x(k) et α tel
que

x(k+1) − α = ϕ′(η)(x(k) − α).

Or, x(k) et α appartiennent à [a, b], donc on a η ∈ [a, b] aussi ; ceci entraîne le résultat voulu, grâce à
l’hypothèse H2 :

|x(k+1) − α| = |ϕ′(η)(x(k) − α)| = |ϕ′(η)||x(k) − α| ≤ K|x(k) − α|.

2

Les points fixes de ϕ(x) = −1
4x

2 + x+ 1
2 sont les racines de

x = −1
4x

2 + x+ 1
2 ⇒ x2 = 2,

donc α =
√

2 est bien un point fixe de ϕ.
Or, le graphe de la fonction −1

4x
2 + x + 1

2 = −1
4(x − 2)2 + 3

2 c’est une parabole, qui
atteint son maximum en x = 2 (voir fig. 1). Cette parabole est donc croissante sur [1, 2],

Figure 1 – Fonction de point fixe ϕ(x)

ce qui peut être vérifié aussi en calculant la dérivée ϕ′(x) :

ϕ′(x) = 2− x
2 ≥ 0 si x ∈ [1, 2].

Donc on aura
ϕ(1) = 5

4 ≤ ϕ(x) ≤ ϕ(2) = 3
2 ∀x ∈ [1, 2],

ce qui montre que l’hypothèse H1 est satisfaite (l’image de [1, 2] selon ϕ est [5/4, 3/2] qui
est un sous-ensemble de [1, 2], voir fig. 1).

De plus, on a que :
x ∈ [1, 2] ⇒ |ϕ′(x)| ≤ 1

2 ,

donc H2 est satisfaite avec K = 1/2.
Il est clair que l’on peut appliquer l’inégalité |x(k) − α| ≤ K|x(k−1) − α| en récurrence.

On obtient

|x(k) − α| ≤ K|x(k−1) − α| ≤ K2|x(k−2) − α| ≤ . . . ≤ Kk|x(0) − α|.
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Comme 0 < K < 1, on a Kk → 0 lorsque k →∞, donc

lim
k→∞
|x(k) − α| = 0

c’est-à-dire
lim

k→∞
x(k) = α.

En d’autres mots, la suite {x(k)} converge vers le point fixe α =
√

2. On remarque que l’opé-
ration d’extraction de racine carré n’est pas nécessaire pour calculer les valeurs approchées
x(k) ; on a donc trouvé une méthode pour implementer l’opération

√
· à partir des opéra-

tions fondamentales (l’ordinateur aussi fait la même chose, mais en utilisant un algorithme
optimisé beaucoup plus performant).

Comme |x(0) − α| < 1, on a

|x(k) − α| ≤ Kk = 2−k.

Alors on aura que |x(k)−α| < tolérance pourvu que 2−k < tolérance, voir k > − log2(tolérance).
La tolérance a demander si l’on veut que l’approximation soit exacte jusq’au 10ème chiffre
après la virgule est clairement 10−10. Ceci nous permet de trouver le nombre d’itérations
nécessaires : c’est le plus petit naturel k tel que k > −log2(10−10) = 10 log2(10), donc
k = 34.

Exercice 2

On considère la fonction ϕ(x) = ax(1− x2), a étant un paramètre réel.

1. Montrer que ϕ : [0, 1]→ [0, 1] si 0 ≤ a ≤ 3
√

3
2 .

2. Trouver les valeurs positives de a telles que l’itération de point fixe

x(k+1) = ϕ(x(k)), k ≥ 0 (1)

puisse approcher le point fixe α1 = 0.
3. Trouver la condition sous laquelle un deuxième point fixe α2 > 0 existe (dans l’inter-

valle [0, 1]) et déterminer les valeurs de a telles que l’itération (1) puisse approcher
α2.

4. Pour quelle valeur de a l’itération (1) peut-on approcher α2 avec un ordre de conver-
gence quadratique ?

Sol. :
1. Pour a = 0, ϕ ≡ 0 ∈ [0, 1]. Si a > 0, ϕ est une fonction strictement positive sur

l’intervalle (0, 1) et qui vaut zéro en x = 0 et x = 1. Pour trouver le point de maximum
de ϕ en (0, 1), on calcule

ϕ′(x) = a(1− 3x2) = 0 → x =
√

1
3 .

Si on impose ϕ
(√

1
3

)
≤ 1, on trouve a ≤ 3

√
3

2
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2. D’abord il faut contrôler que α = 0 est un point fixe pour ϕ. En effet

ϕ(0) = 0 ∀a.

Puis, on calcule la dérivée première de ϕ

|ϕ′(x)| = a(1− 3x2)

On peut approcher le point fixe α1 = 0 si

|ϕ′(0)| < 1 → a < 1.

3. On cherche maintenant si il existe un point 0 < α2 ≤ 1 tel que

α2 = ϕ(α2).

On trouve

α2 = aα2(1− α2
2) → α2 =

√
1− 1

a
> 0.

Si on impose la condition α2 ≤ 1, on a√
1− 1

a
< 1 → a > 1

(
avec toujours a ≤ 3

√
3

2

)

Il faut aussi montrer que la dérivée de ϕ2 en α2 est inférieure à 1 en valeur absolue
([A écrire !])

4. On a que l’iteration
x(k+1) = ϕ(x(k))

peut approcher α2 avec ordre 2 si |ϕ′(α2)| = 0. On a donc que

0 = |ϕ′(α2)| = a|(1− 3α2
2)|, a > 0

si α∗2 =
√

1
3 .

5. Ce point fixe est atteint en correspondance de

1 = a(1− (α∗2)2) → a = 3
2 .

Exercice 3

Soit α une racine double de la fonction f , c’est-à-dire f(α) = f ′(α) = 0.
1. En tenant compte du fait qu’on peut écrire la fonction f comme

f(x) = (x− α)2h(x) où h(α) 6= 0 ,

vérifier que la méthode de Newton pour l’approximation de la racine α est seulement
d’ordre 1. [Conseil : écrire la méthode sous la forme de point fixe et calculer Φ′(α)]
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2. On considère la méthode de Newton modifiée suivante :

x(k+1) = x(k) − 2 f(x(k))
f ′(x(k)) .

Vérifier que cette méthode est au moins d’ordre 2 si l’on veut approcher α.
Sol. :

1. On regarde la méthode de Newton comme une méthode de point fixe :

x(k+1) = ϕ(x(k)) = x(k) − f(x(k))
f ′(x(k))

Si 0 < |ϕ′(α)| < 1 la méthode est d’ordre 1, tandis que si ϕ′(α) = 0 elle est au moins
d’ordre 2. On a

ϕ′(x) = 1− f ′(x)2 − f(x)f ′′(x)
f ′(x)2 = f(x)f ′′(x)

f ′(x)2

où

f(x) = (x− α)2h(x)
f ′(x) = (x− α) [2h(x) + (x− α)h′(x)]
f ′′(x) = 2h(x) + 4(x− α)h′(x) + (x− α)2h′′(x).

Donc

ϕ′(x) = f(x)f ′′(x)
f ′(x)2 = (x− α)2h(x) [2h(x) + 4(x− α)h′(x) + (x− α)2h′′(x)]

(x− α)2 [2h(x) + (x− α)h′(x)]2
,

= h(x) [2h(x) + 4(x− α)h′(x) + (x− α)2h′′(x)]
[2h(x) + (x− α)h′(x)]2

,

ϕ′(α) = h(α) [2h(α)]
[2h(α)]2

= 1
2 ,

et la méthode est d’ordre 1.
2. Pour la méthode de Newton modifiée, on a

ϕ(x) = x− 2 f(x)
f ′(x)

ϕ′(x) = 1− 2f
′(x)2 − f(x)f ′′(x)

f ′(x)2 = −1 + 2f(x)f ′′(x)
f ′(x)2

On vient de calculer le terme f(x)f ′′(x)/f ′(x)2 et on a vu qu’il converge vers 1/2 si
x→ α ; on a finalement

ϕ′(α) = −1 + 2 · 1
2 = 0.

La méthode est donc au moins d’ordre 2.
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Exercice 4

On considère l’équation non-linéaire f(x) = 0, où f(x) = e−x − x2.
a) Montrer que la méthode de bissection peut être utilisée afin de calculer le seul zéro α

de f dans [0, 1].
b) Trouver le nombre d’itérations de la méthode de bissection nécessaire pour approximer

α avec une tolérance de 10−10.
c) Ecrire la méthode de point fixe définie par la fonction d’itération suivante :

ϕ(x) = x+ 1
4
(
e−x − x2

)
, 0 ≤ x ≤ 1,

et montrer sa convergence vers la solution α.
d) Trouver le nombre d’itérations de la méthode de point fixe nécessaire pour calculer

une solution approchée avec une tolérance de 10−10.
Sol. :

a) Comme f ′(x) = −e−x−2x < 0 pour x ∈ [0, 1], la fonction f est monotone décroissante
sur [0, 1] ; puis, vu que f(0) = 1 > 0, f(1) = −1 + 1/e < 0, on a que f admet un seul
zéro α dans [0, 1].

b) Soit x(n) la n-ième itération de la méthode de bissection sur l’intervalle [0, 1] : on a
alors

|x(n) − α| ≤ 2−n,

d’où le nombre des itérations nécessaires :

n ≥ − log(10−10)
log 2 = 10

log 2 .

c) Soit x(n) la n-ième itération de la méthode de point fixe, définie par

x(n+1) = ϕ(x(n)), x(0) ∈ [0, 1].

On remarque que, ∀x ∈ [0, 1] :

0 < 1− 3
4 < ϕ′(x) = 1− e−x + 2x

4 < 1− e−1

4 . (?)

Pour monter que la méthode converge sur [0, 1] il faut prouver le deux points suivants.
— Si x ∈ [0, 1], alors ϕ(x) ∈ [0, 1]. En fait, de (?) on a que ϕ′(x) > 0, sur [0, 1], donc

∀x ∈ [0, 1] : 0 < 1
4 = ϕ(0) < ϕ(x) < ϕ(1) = e−1 + 3

4 < 1.

— On a |ϕ′(x)| < 1 : cela est une conséquence de (?). De plus, pour x ∈ [0, 1] on a
ϕ′′(x) = (e−x − 2)/4 < 0, et donc maxx∈[0,1] |ϕ′(x)| = ϕ′(0) = 3/4.
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d) Grâce à l’estimation suivante :

|x(n+1) − α| ≤ max
x∈[0,1]

|ϕ′(x)||x(n) − α| = 3
4 |x

(n) − α|,

on a
|x(n) − α| ≤

(3
4

)n

|x(0) − α| ≤
(3

4

)n

.

Donc, pour approcher la solution α avec une tolérance de 10−10, il faut que

n log(3/4) ≤ log(10−10) = −10,

c’est-à-dire
n ≤ 10

log(4/3) .

Comme log(4/3) < log(2), la méthode de bissection dans ce cas est plus performante
que celle de point fixe.
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Python, Exercise similaire au test 1
Exercice 5

On considère les méthodes de point fixe x(n+1) = gi(x(n)) (i = 1, 2, 3) avec :

g1(x(n)) = 1
2e

x(n)/2, g2(x(n)) = −1
2e

x(n)/2, g3(x(n)) = 2 ln(2x(n)),

dont les fonctions d’itération gi(x) sont visualisées sur la Figure 2.
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y = 0.5*exp(0.5*x)
y = x

(a)
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(b)
0 1 2 3 4 5

2

1

0

1

2

3

4

5

y = 2*log(2*x)
y = x

(c)

Figure 2 – (a) Graph de la fonction g1. (b) Graph de la fonction g2. (c) Graph de la
fonction g3.

1. Pour chaque point fixe x̄ de la fonction d’itération gi (i = 1, 2, 3), on suppose choisir
une valeur initiale x(0) proche de x̄. Etudier si la méthode converge vers x̄.

2. Pour chaque fonction d’itération gi, déterminer graphiquement pour quelles valeurs
initiales x(0) la méthode de point fixe correspondante converge et vers quel point fixe.

3. Montrer que si x̄ est un point fixe de la fonction gi (i = 1, 2, 3), alors il est aussi un
zéro de la fonction f(x) = ex − 4x2 (dont le comportement est tracé sur la Figure 3).

4. Comment peut-on calculer les zéros de f ?

2 1 0 1 2 3 4 5
20
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0
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30

40

50

y = ex  4 x2

Figure 3 – Graph de la fonction f(x) = ex − 4x2.

Sol. :
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1. Solution pour la méthode g1
Cette fonction a deux points fixes x̄1 ∈ [0, 1] et x̄2 ∈ [4, 5]. On doit donc estimer
la dérivée de g1 aux deux points fixes. Puisque g′1(x) = 1

4e
x/2 est une fonction

croissante, pour x̄1 on a
1
4 ≤ g′1(0) ≤ g′1(x̄1) ≤ g′1(1) = 1

4e
1/2 ≈ 0.4122, (2)

et donc |g′1(x̄1)| < 1. En utilisant le théorème de convergence locale d’une méthode
de point fixe, on peut dire que ∃ ε > 0 tel que ∀x0 : |x̄1 − x0| ≤ ε la méthode
converge au point x̄1. Pour x̄2 on a

g′1(x̄2) ≥ g′1(4) = 1
4e

2 ≈ 1.8473 (3)

et donc on ne peut pas utiliser le théorème de convergence locale parce que
|g′1(x̄2)| > 1.

Solution pour la méthode g2

Cette fonction a un seul point fixe x̄1 ∈ [−1, 0]. La dérivée g′2(x) = −1
4e

x/2 est
decroissante et donc

−0.1516 ≈ −1
4e
−1/2 = g′2(−1) ≥ g′2(x̄1) ≥ g′2(0) = −1

4
et donc |g′2(x̄1)| < 1. En utilisant le théorème de convergence locale d’une méthode
de point fixe, on peut dire que ∃ ε > 0 tel que ∀x0 : |x̄1 − x0| ≤ ε la méthode
converge au point x̄1.

Solution pour la méthode g3
Cette fonction a deux points fixes x̄1 ∈ [1/2, 1] et x̄2 ∈ [4, 5]. On doit donc
estimer la dérivée de g1 aux deux points fixes. Puisque g′3(x) = 2

x
est une fonction

décroissante, pour x̄1 on a

g′3(x̄1) ≥ g′3(1) = 2, (4)

et donc on ne peut pas utiliser le théorème de convergence locale parce que
|g′3(x̄1)| > 1. Pour x̄2 on a

2
5 = g′3(5) ≤ g′3(x̄2) ≤ g′3(4) = 1

2 (5)

et donc |g′3(x̄2)| < 1. En utilisant le théorème de convergence locale d’une méthode
de point fixe, on peut dire que ∃ ε > 0 tel que ∀x0 : |x̄2 − x0| ≤ ε la méthode
converge au point x̄2.

2. Solution pour la méthode g1
En regardant la Figure 4, on voit que pour x0 < x̄2 la méthode converge vers x̄1
tandis que pour x0 > x̄2 la méthode diverge.

Solution pour la méthode g2
En regardant la Figure 5, on voit que la méthode converge pour n’importe quelle
valeur x0.
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Figure 4 – Itérations de point fixe pour les fonctions g1.

Figure 5 – Itérations de point fixe pour les fonctions g2.

Solution pour la méthode g3
En regardant la Figure 6, on voit que pour x0 > x̄1 la méthode converge vers x̄2
tandis que pour x0 < x̄1 la méthode s’arrête car pour un k assez grand, x(k) est
négatifs et ϕ3 n’est pas définie.

Figure 6 – Itérations de point fixe pour les fonctions g3.

3. On dénote α, β et γ, avec α < β < γ, les trois zéros de f .
Pour la méthode g1 on a

x̄ = 1
2e

x̄/2 =⇒ 2x̄ = ex̄/2

et, en élevant au carré, 4x̄2 = ex̄.
De même, pour la méthode g2 on a

x̄ = −1
2e

x̄/2 =⇒ 2x̄ = −ex̄/2

et, en élevant au carré, on trouve de nouveau 4x̄2 = ex̄.
Enfin, pour la méthode g3 :

x̄ = 2 ln(2x̄) =⇒ x̄ = ln(4x̄2)

et donc ex̄ = eln(4x̄2) = 4x̄2.
4. Solution pour la méthode g1

Graphiquement, on peut voir que les deux points fixes x̄1 et x̄2 coïncident res-
pectivement avec β et γ. Puisque cette méthode converge vers x̄1, elle peut donc
être utilisée pour approcher β.

Solution pour la méthode g2
Graphiquement, on peut voir que le point fixe x̄1 coïncide avec α et, puisque cette
méthode est convergente, elle peut être utilisée pour approcher α.

Solution pour la méthode g3
Graphiquement, on peut voir que les deux points fixes x̄1 et x̄2 coïncident res-
pectivement avec β et γ. Cette méthode étant convergente vers x̄2, elle peut être
utilisée pour approcher γ.
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