Analyse Numérique Mardi 18 février 2025
Prof. Simone Deparis EPFL

Série 0 (Corrigé)

Prise en main de Jupyter et Python

Utilisez le lien https://go.epfl.ch/analyse-num-deparis pour vous connecter au
serveur de Jupyter notebooks “noto” ou suivez les instructions sur Moodle pour utiliser
Jupyter sur un ordinateur.

Ouvrez les notebooks “0.1 Jupyter tutorial”, “0.2 Python tutorial” et “0.3 Some Exer-
cises.ipynb”, “0.4 Representation des nombres.ipynb”

Lisez en entier le premier pour vous familiariser avec cet outils. Vous pouvez I'éditer a
votre discrétion. Ensuite passez au deuxieme pour vous familiariser avec Python si nécessaire
Ensuite lisez et resolvez le troisieme notebook.

Ces 4 notebooks sont sourtout pour vous familiariser avec Python et Jupyter, ne passez
pas plus que 45 minutes dans cette premiere partie. Si vous connaissez déja ces outils,
concentrez-vous sur le 4eme.

Sol. : La solution des Jupyther notebooks se trouve sur moodle sous “analyse-numerique-
chap0”.

Python

L’exercice suivant se trouve dans le notebooks 1.1 Dichotomie. Les vidéos sont a regarder
pour vendredi, ne le faites pas en salle d’exercices autrement vous dérangez les autres.

Exercice 1

Comprenez et completez la fonction suivante dans le notebook 1.1 Dichotomie qui ef-
fectue 'algorithme de dichotomie.

Ensuite testez-la pour trouver la racine de la fonction f(z) = zsin(2rz) + 3z — 1 dans
I'intervalle [—1.5,1].

def bisection(a,b,f,tolerance,maxIterations)
[a,b] interval of interest

f function

tolerance desired accuracy

maxIterations : maximum number of iteration

returns:

H OH B HF H R

zero, residual, number of iterations

Sol. :

https://go.epfl.ch/analyse-num-deparis

def bisection(a,b,fun,tol ,maxIterations)
[a,b] interval of interest
fun function
tolerance destired accuracy

returns:

#

#

maxzIterations : maxzimum number of iteration

#

zero, restidual, number of iterations, x_sequence
#

T_sequence : the sequence computed by the bisection
if (a >= b)
print(’ b must be greater than a (b > a)”)

return 0,0,0,[0]

what we consider as "zero”
eps = le—12

evaluate f at the endpoints

fa = fun(a)
fb = fun(b)
if abs(fa) < eps : # a i1s the solution
zero = a
esterr = fa
k=20
return zero, esterr, k, [zero]
if abs(fb) eps : # b is the solution

<
zero = b
esterr = fb

k=20

return zero, esterr, k, [zero]

if faxfb > 0
print(’ The sign of FUN at the extrema of the interval must be

different”)
return 0,0,0,[0]

We want the fimal error to be smaller than tol,
i.e. k> log((b-a)/tol) / log(2) -1

nmax = int(np.ceil(np.log((b—a)/tol) / np.log(2))) — 1

but nmazr shall be smaller the the mmazimum iterations asked by the user
if (maxIterations < nmax)
nmax = int(round(maxIterations))
print ('Warning: maxlterations is smaller than the minimum number of
iterations necessary to reach the tolerance wished”);

wvector of intermadiate approximations etc
X = np.zeros(nmax+1)

initial error is the length of the interval.
esterr = (b — a)

do mot meed to store all the a"k and b"k, so I call them with a new
variable mame:

bk = b
the values of f at those points are fa and fk

for k in range(nmax+1)

approzimate solution ts midpoint of current interval
x[k]l = (ak + bk) / 2

fx = fun(x[k1);

error estimator is the half of the previous error
esterr = esterr / 2

if we found the solution, stop the algorithm
if np.abs(fx) < eps

error 1s zero

zero = x[k]

esterr = 0;

return zero, esterr, k, x

if fx+fa < 0 : # alpha is in (a,z)
bk = x[k]
fb = fx

elif fx#fb < O : # alpha is in (z,b)
ak = x[k]
fa = fx

else

error ("Algorithm not operating correctly)

zero = x[k];

if esterr > tol

print("Warning: bisection stopped without converging to the desired
tolerance because the maximum number of iterations was reached’);

return zero, esterr, k, x

Vidéos

Pour ce vendredi il faut regarder et comprendre les vidéos 1.1-1.2 des notebook 1.1 et
1.2 (5 vidéos, 25 minutes, environ 50 minutes de travail).

