
Analyse Numérique Mardi 18 février 2025
Prof. Simone Deparis EPFL

Série 0 (Corrigé)

Prise en main de Jupyter et Python
Utilisez le lien https://go.epfl.ch/analyse-num-deparis pour vous connecter au

serveur de Jupyter notebooks “noto” ou suivez les instructions sur Moodle pour utiliser
Jupyter sur un ordinateur.

Ouvrez les notebooks “0.1 Jupyter tutorial”, “0.2 Python tutorial” et “0.3 Some Exer-
cises.ipynb”, “0.4 Representation des nombres.ipynb”

Lisez en entier le premier pour vous familiariser avec cet outils. Vous pouvez l’éditer à
votre discrétion. Ensuite passez au deuxième pour vous familiariser avec Python si nécessaire
Ensuite lisez et resolvez le troisième notebook.

Ces 4 notebooks sont sourtout pour vous familiariser avec Python et Jupyter, ne passez
pas plus que 45 minutes dans cette première partie. Si vous connaissez déjà ces outils,
concentrez-vous sur le 4ème.
Sol. : La solution des Jupyther notebooks se trouve sur moodle sous “analyse-numerique-
chap0”.

Python
L’exercice suivant se trouve dans le notebooks 1.1 Dichotomie. Les vidéos sont à regarder

pour vendredi, ne le faites pas en salle d’exercices autrement vous dérangez les autres.

Exercice 1

Comprenez et completez la fonction suivante dans le notebook 1.1 Dichotomie qui ef-
fectue l’algorithme de dichotomie.

Ensuite testez-la pour trouver la racine de la fonction f(x) = x sin(2πx) + 1
2x − 1

4 dans
l’intervalle [−1.5, 1].
def bisection(a,b,f,tolerance ,maxIterations) :

[a,b] interval of interest
f function
tolerance desired accuracy
maxIterations : maximum number of iteration
returns:
zero, residual, number of iterations

Sol. :

1

https://go.epfl.ch/analyse-num-deparis

def bisection(a,b,fun,tol,maxIterations) :

[a,b] interval of interest
fun function
tolerance desired accuracy
maxIterations : maximum number of iteration
returns:
zero, residual, number of iterations, x_sequence
x_sequence : the sequence computed by the bisection

if (a >= b) :

print(’ b must be greater than a (b > a) ’)
return 0,0,0,[0]

what we consider as "zero"
eps = 1e−12

evaluate f at the endpoints
fa = fun(a)

fb = fun(b)

if abs(fa) < eps : # a is the solution
zero = a

esterr = fa

k = 0

return zero, esterr, k, [zero]

if abs(fb) < eps : # b is the solution
zero = b

esterr = fb

k = 0

return zero, esterr, k, [zero]

if fa∗fb > 0 :
print(’ The sign of FUN at the extrema of the interva l must be

d i f f e ren t ’)
return 0,0,0,[0]

We want the final error to be smaller than tol,
i.e. k > log((b-a)/tol) / log(2) -1

nmax = int(np.ceil(np.log((b−a)/tol) / np.log(2))) − 1

2

but nmax shall be smaller the the nmaximum iterations asked by the user
if (maxIterations < nmax) :

nmax = int(round(maxIterations))

print(’Warning : maxIterations i s smaller than the minimum number of
i tera t ions necessary to reach the tolerance wished ’);

vector of intermadiate approximations etc
x = np.zeros(nmax+1)

initial error is the length of the interval.
esterr = (b − a)

do not need to store all the a^k and b^k, so I call them with a new
variable name:

ak = a

bk = b

the values of f at those points are fa and fk

for k in range(nmax+1) :

approximate solution is midpoint of current interval
x[k] = (ak + bk) / 2

fx = fun(x[k]);

error estimator is the half of the previous error
esterr = esterr / 2

if we found the solution, stop the algorithm
if np.abs(fx) < eps :

error is zero
zero = x[k]

esterr = 0;

return zero, esterr, k, x

if fx∗fa < 0 : # alpha is in (a,x)
bk = x[k]

fb = fx

elif fx∗fb < 0 : # alpha is in (x,b)
ak = x[k]

fa = fx

else :

error(’Algorithm not operating correct ly ’)

zero = x[k];

if esterr > tol :

3

print(’Warning : b isect ion stopped without converging to the desired
tolerance because the maximum number of i tera t ions was reached ’);

return zero, esterr, k, x

Vidéos
Pour ce vendredi il faut regarder et comprendre les vidéos 1.1-1.2 des notebook 1.1 et

1.2 (5 vidéos, 25 minutes, environ 50 minutes de travail).

4

