[1]:

[2]:

Analyse Numérique
Equations Différentielles Ordinaires

Simone Deparis

May 17, 2023

Contents

1 Equations Différentielles Ordinaires 1
1.1 Probleme de Cauchy 1
1.2 Euler Progressif e 2
1.3 Euler Retrograde 6
1.4 Stabilité o e 10
1.5 Convergence e 11

1 Equations Différentielles Ordinaires

1.1 Probléme de Cauchy

f Ry xR — R continue, yp € donné. On cherche y : t € I Cy— y(t) € qui satisfait le probléme

suivant
{ y'(t) = f(t.y(t) Vtel
y(to) = Yo

ouy'(t) = —=—=.

Exemple Ecrivez la discretisation par la méthode d’Euler progressive et rétrograde du probléme
de Cauchy
{ y(t)=—tyt)> vte[0,4]
y(to) =2

La solution de ce probléme est y(t) = Hit?

Heun, Crank-Nicolson, et Euler modifié.

Avec les méthodes de Euler Proressive et Rétrograde,

amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from OrdinaryDifferentialEquationsLib import
—forwardEuler,backwardEuler,Heun,CrankNicolson,modifiedEuler

f = lambda t,x : —tkx*k*2
yO = 2; tspan=[0, 4]

Nh = 20
for method in [forwardEuler,backwardEuler,Heun,CrankNicolson,modifiedEuler]

t, y = method(f, tspan, yO, Nh)
plt.plot(t, y,'o-")
plt.plot(t, y,'o-")

y = lambda t : 2/(1+t**2)

t = np.linspace(tspan[0],tspan[1],100)

plt.plot(t, y(t),'-")

labels, title, legend

plt.xlabel('t'); plt.ylabel('y')

plt.
—legend(['forwardEuler', 'backwardEuler', 'Heun','CrankNicolson', 'modifiedEuler','$y(t)$'])

plt.grid(True)

plt.show()

2.00 - —8— forwardEuler
—o— backwardEuler

1.75 —8— Heun
—8— CrankNicolson

1.50 —8— modifiedEuler
—— y(t)

1.25

=,

1.00 +

0.75 4

0.50 1

0.25 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.2 Euler Progressif

Ecrivez une fonction forwardEuler qui approche la solution du probléme

yl(t) = f(tay(t))’ te (T()an)a y(O) = Yo,
en utilisant la méthode d’Euler progressif. L’entéte de la fonction doit étre la suivante:

def forwardEuler(fun, interval, yO, N)

FORWARDEULER Solve differential equations using the forward Euler method.
[T, U] = FORWARDEULER(FUN, INTERVAL, YO, N), with INTERVAL = [T0, TF],
integrates the system of differential equations y'=f(t, y) from time TO
to time TF, with initial condition Y0, using the forward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column wvector T.

FHOR R B ®

Une fois écrite la fonction forwardEuler, utilisez les commandes suivantes pour calculer la solution:

f = lambda t,x : (2/15%x*(1-x/1000)) # (C=2/15 et B = 1000
tsp = [0,100]

yO = 100; Nh = 25;

t25,u25 = forwardEuler(f,tsp,y0,Nh)

plt.plot(t25,u25,'0")

Approchez la solution de I’équation différentielle

2
/() = 721 —/1000), ¢ € (0,100), y(0) = 100,

avec Ny = 25.

Que se passe-t-il avec N, = 77 Discutez les résultats obtenus.

[3]: | # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

[4]: def forwardEuler(fun, interval, yO, N)

FORWARDEULER Solve differential equations using the forward Euler method.
[T, U] = FORWARDEULER(FUN, INTERVAL, Y0, N), with INTERVAL = [TO, TF],
integrates the system of differential equations y'=f(t, y) from time TO
to time TF, with initial condition Y0, using the forward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column vector T.

HOFH W O™ W W

time step
h = (interval([1] - interval[0]) / N

time snapshots
t = np.linspace(interval[0], interval[1], N+1)

wnitialize the solution vector
u = np.zeros(N+1)
ul0] = yO

time loop (n=0,...,n, but array indeces in Matlab start at 1)
for n in range(N)
uln+1] = uln] + h * fun(tlnl, uln])

return t, u

Nous pouvons alors résoudre 'exercice avec les commandes:

[6]:|f = lambda t,x : (2/15*x*x(1-x/1000)) # C=2/15 et B = 1000
tsp = [0,100]
y0 = 100; Nh = 25;
t25,u25 = forwardEuler(f,tsp,y0,Nh)

plt.plot(t25,u25,'0")

labels, title, legend

plt.xlabel('t_n'); plt.ylabel('u_n'); #plt.title('data’)
plt.legend(['u_n'])

plt.title('$u_n\\approx u(t_n)$')

plt.grid(True)

plt.show()

[6]:

Un = u(tn)

1000+ @& uy ..iiiiiliiiiilii
L
L
800 o
L
600
5 []
400 - e
L
200 e
L

Ps

T T T T T T

0 20 40 60 80 100

Pour résoudre le probléme avec N = 7 et tracer le graphe de la solution, on utilise les commandes

suivantes:
Nh = 7
t7,u7 = forwardEuler(f,tsp,y0,Nh);

plt.plot(t25,u25, 'o-")
plt.plot(t7,u7,'o-")

labels, title, legend

plt.xlabel('t_n'); plt.ylabel('u_n'); #plt.title('data’)
plt.legend(['$N_h=25$','$N_h=7$'1)

plt.title('$u_n\\approx u(t_n)$')

plt.grid(True)

plt.show()

[]:

Un = u(tn)

1000 -
800 -
£ 600 -
400 -
200 A

T
0 20 40 60 80 100

Solutions de ’équation différentielle y'(t) = 21—5‘1’/(1 —y/1000), ¢ € (0,100), y(0) = 100 pour diverses
valeurs de Ny,.

On voit que la solution avec Nj, = 7 est oscillante et ne tend pas vers 1000 lorsque ¢ — oo: en effet,
la condition de stabilité sur le pas de discretisation N}, n’est pas satisfaite.

1.3 Euler Retrograde

Ecrivez une fonction Matlab backwardEuler qui approche la solution du probléme

y/(t) = f(t’y(t))’ le (T()an)a y(O) = Yo,
en utilisant la méthode d’Euler progressif. L’entéte de la fonction doit étre la suivante:

def backwardEuler(fun, interval, yO, N)

BACKWARDEULER Solve differential equations using the backward Euler method.
[T, U] = BACKWARDEULER(FUN, INTERVAL, YO, N), with INTERVAL = [T0, TF],
integrates the system of differential equations y'=f(t, y) from time TO
to time TF, with inttial condition Y0, using the backward Euler method on
an equispaced grid of N intervals. Functton FUN(T, Y) must return

HOR R R

[7]:

[8]:

[9]:

a column vector corresponding to f(t, y). Each row in the solution
array U corresponds to a time returned in the column wvector T.
from scipy.optimize import fsolve

Vous disposez de la fonction scipy.optimize.fsolve pour résoudre une équation non-linéaire
(fsolve cache plusieurs méthodes de resolution, comme Newton ou le point fixe).

Exemple d’utilisation de fsolve: on peut chercher le zéro de F prés de x0 en utilisant le code
suivant:

from scipy.optimize import fsolve
a=5; h=0.1;
F = lambda x : a + np.sin(x) - h*x;

x0 = a+th
zero = fsolve(F, x0)

print(f 'F({zero[0]:5.2f}) = {F(zero)[0]:4.1e}")
Approchez la solution de I’équation différentielle

2
/(1) = To(1—y/1000), ¢ € (0,100), y(0) = 100,

avec N = 25. Que se passe-t-il avec N = 77 Discuter les résultats obtenus.

amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from scipy.optimize import fsolve
a=>5; h=20.1;
F = lambda x : a + np.sin(x) - h*x;

x0 = ath
zero = fsolve(F, x0)

print(f'F({zero[0]:5.2f}) = {F(zero)[0]:4.1le}")
F(41.80) = -8.7e-13

def backwardEuler(fun, interval, yO, N)
BACKWARDEULER Solve differential equations using the backward Euler,
—method.

[T, Ul = BACKWARDEULER(FUN, INTERVAL, Y0, N), with INTERVAL = [T0, TF],
integrates the system of differential equations y'=f(t, y) from time TO
to time TF, with initial condition Y0, using the backward Euler method on
an equispaced grid of N intervals. Function FUN(T, Y) must return
a column vector corresponding to f(t, y). Each row in the solution

H O O ™ R

array U corresponds to a time returned in the column wvector T.
from scipy.optimize import fsolve

[10]:

time step
h = (interval[1] - intervall[0]) / N

time snapshots
t = np.linspace(interval[0], interval[1], N+1)

2nitralize the solution vector
u = np.zeros(N+1)
ul0] = yoO

time loop (n=0,...,n, but array indeces in Matlab start at 1)
for n in range(N)
non-linear function
F = lambda x : u[n] + h * fun(t[n+1],x) - x
solve the non-linear equation using the built-in matladb functiony

—"fsolve"

to compute u[n+1]
uln+1] = fsolve(F, ulnl);
uln+1] = fsolve(F, u[n]+ h * fun(t[n], uln]));

NOTE:

in the call of fsolve, a more accurate initial guess is obtained
by replacing uln] with the forward euler method:

u[n+1] = fsolve(F, u(n) + h * fun(t(n), u(n)), options);

return t, u

Nous pouvons alors résoudre 'exercice avec les commandes:

f =
tsp

lambda t,x : (2/15*x*(1-x/1000)) # C=2/15 et B = 1000
= [0,100]

yO = 100; Nh = 25;

t25,

plt.

u25 = backwardEuler(f,tsp,y0,Nh)

plot(t25,u25,'0")

labels, title, legend

plt.
plt.
plt.
plt.
plt.

xlabel('t_n'); plt.ylabel('u_n'); #plt.title('data’)
legend (['u_n'])

title('$u_n\\approx u(t_n)$"')

grid(True)

show ()

Un = U(tn)

1000+ @ uy Jeoc9eeeesecees
® ®
L
L
800
L
®
600
5 ®
400 - e
L

200 =

®

T T T T T T

0 20 40 60 80 100

tn

Pour résoudre le probléme avec N, = 7 et tracer le graphe de la solution, on utilise les commandes
suivantes:

[11]: Nh = 7
t7,u7 = backwardEuler(f,tsp,y0,Nh);

plt.plot(t25,u25, 'o-")
plt.plot(t7,u7,'o-")

labels, title, legend

plt.xlabel('t_n'); plt.ylabel('u_n'); #plt.title('data’)
plt.legend(['$N_h=25$"','$N_h=7$'1)

plt.title('$u_n\\approx u(t_n)$"')

plt.grid(True)

plt.show()

/Users/simone/opt/anaconda3/1ib/python3.7/site-
packages/scipy/optimize/minpack.py:175: RuntimeWarning: The iteration is not
making good progress, as measured by the

improvement from the last five Jacobian evaluations.

warnings.warn(msg, RuntimeWarning)

/Users/simone/opt/anaconda3/1lib/python3.7/site-
packages/scipy/optimize/minpack.py:175: RuntimeWarning: The iteration is not
making good progress, as measured by the

improvement from the last ten iteratioms.

warnings.warn(msg, RuntimeWarning)

Un = U(tn)

1000

800

600

L

400

200

T
0 20 40 60 80 100
tn

Solutions de ’équation différentielle y'(t) = %(1—3;/1000), t € (0,100), y(0) =100 pour diverses
valeurs de Ny,.

On voit que fsolve n’arrive pas a resoudre ’équation non-linéaire pour N, = 7. Il faut chercher
un meilleur x0.

Dans backwardEuler, replacez le u[n]
u[n+1] = fsolve(F, u[nl);

par la solution correspondante & la méthode d’Euler progressive, i.e.
u[n+1] = fsolve(F, u[n]+ h * fun(t[n], uln]));

Maintenant, pas seulement fsolve trouve une solution, mais en plus 'approximation de 'EDO ne
présente pas d’oscillations.

10

[]:

[]:

1.4 Stabilité

On considére le probléme de Cauchy

{y'oe) = —2y(t), t>0
y(0) =1

La solution exacte de ce probléme est y(t) = e=%

Résolvez ce probléme par les méthodes d’Euler Progressive et Rétrograde sur I'intervalle [0, 10] avec
un pas de temps h = 0.9 et 1.1.

[12]: 1 = -2

= lambda t,x : 1*x

yO = 1; tspan=[0, 10]

h =1.1; Nh = np.ceil((tspan[1] - tspan[0])/h).astype(int)
t_EP, y_EP = forwardEuler(f, tspan, yO, Nh)

t_ER, y_ER = backwardEuler(f, tspan, y0, Nh)

h

plt.plot(t_EP, y_EP,'o-")
plt.plot(t_ER, y_ER,'o-")

y = lambda t : np.exp(lxt)

t = np.linspace(tspan[0],tspan[1],100)
plt.plot(t, y(t),'-")

labels, title, legend
plt.xlabel('t'); plt.ylabel('y')
plt.legend(['EP','ER', '$y(t)$'])
plt.grid(True)

plt.show()

11

[13]:

1.00 - —e EP
—e- ER
0.75 1 — (D)
0.50 A
0.25 A
> 0.00 + —_ L & L L 9
—0.25 -
—0.50 -
—0.75 -
~1.00 -
T T T T T T
0 2 4 6 8 10
t

1.5 Convergence

On considére le probléme de Cauchy

Resolvez ce probléme par les méthodes d’Euler progressive et de Heun sur l'intervalle [0, 12] avec
un pas de temps h = 0.4.

La solution exacte est y(t) = e 01+ On remarque que la solution obtenue par la méthode
de Heun est beaucoup plus précise que celle d’Euler progressive. Par ailleurs, on peut voir que si
on réduit le pas de temps, la solution obtenue par la méthode d’Euler progressive s’approche de la
solution exacte.

f = lambda t,y : (np.cos(t) - 0.1)*y

tspan = [0,12]; yO = 1;
h = 0.4; Nh = np.ceil((tspan[1] - tspan[0])/h).astype(int)

t_EP, y_EP = forwardEuler(f, tspan, yO, Nh)
t_H, y_H = Heun(f, tspan, yO, Nh)

12

plt.plot(t_EP, y_EP,'o-")
plt.plot(t_H, y_H,'o-")

y = lambda t : np.exp(-0.1xt+np.sin(t))

t = np.linspace(tspan[0],tspan[1],100)

plt.plot(t, y(t),'-")

labels, title, legend

plt.xlabel('t'); plt.ylabel('y')

plt.legend(['EP', 'Heun', '$y(t)$']1)

plt.grid(True)

plt.show()

print("Figure: Approximation par le méthodes de Euler Retrograde et Heun.")

2.5 7 —o— EP
—&— Heun
— ylt)
2.0
1.5 A
=
1.0 A
0.5 -
0.0 -
T T T T T T T
0 2 4 6 8 10 12
t

Figure: Approximation par le méthodes de Euler Retrograde et Heun.

[14]: tspan = [0,12]; yO = 1;
NhRange = [30, 50, 100, 500]
for Nh in NhRange :
t, y = forwardEuler(f,tspan,y0,Nh)
plt.plot(t, y,'-")

13

yt = lambda t : np.exp(-0.1*t+np.sin(t))
t = np.linspace(tspan[0],tspan([1],100)

plt.plot(t, yt(t),':")

labels, title, legend

plt.xlabel('t_n'); plt.ylabel('u_n"')

plt.legend(NhRange+['$y(t)$'])

plt.title('$u_n\\approx u(t_n)$')

plt.grid(True)

plt.show()

print("Figure: Solutions obtenues par la méthode d'Euler progressive poury,
—différents pas de temps.")

Upn = u(tn)
2.5 - — 3
—— 50
—— 100
2.0 - —— 500
----- y(t)
1.5 -
S | |
1.0 - \
0.5
0.0
T T T T T T T
0 2 4 6 8 10 12
th

Figure: Solutions obtenues par la méthode d'Euler progressive pour différents
pas de temps.

On veut, maintenant, estimer 'ordre de convergence de ces deux méthodes. Pour cela, on résout le
probléme avec différents pas de temps et on compare les résultats obtenus & 'instant ¢ = 6 avec la
solution exacte.

14

[15]: tspan=[0,6]

NhRange = [30, 50, 100, 500]

errEP = []

errH = []

Solution at end time

y6 = yt(tspan[1])

for Nh in NhRange :
Forward Euler
t, y = backwardEuler (f,tspan,y0,Nh)
Error at the end of the simulation
errEP.append(np.abs(y6 - y[-1]))

Heun

[t, y] = Heun(f, tspan, y0, Nh);

Error at the end of the simulation
errH.append(np.abs(y6 - y[-1]))

h = (tspan[1] - tspan[0])/np.array(NhRange)

plt.loglog(h,errEP, 'o-b',h,errH, 'o-r')
plt.loglog(h,h*(errEP[0]/h[0]),": ' b, (h**2*(errH[0] /h[0]*%2)),"':")
plt.xlabel('h'); plt.ylabel('$|y(6)-u_{N_h}|$")
plt.legend(['EP', 'Heun', 'h', '$h~2$'])

plt.title('Decay of the error')

plt.grid(True)

plt.show()

print("Figure: Erreurs en échelle logarithmique commises par les méthodes" +
" d'Euler progressive et de Heun dans le calcul de y(6).")

15

[]1:

Decay of the error

104?

104?

104?

|y{6.:| - L'f-r'lllnl

10-4?

101

Figure: Erreurs en échelle logarithmique commises par les méthodes d'Euler
progressive et de Heun dans le calcul de y(6).

La figure montre, en échelle logarithmique, les erreurs commises par les deux méthodes en fonction
de h. On voit bien que la méthode d’Euler progressive converge & ’ordre 1 tandis que celle de Heun
a lordre 2.

16

	Equations Différentielles Ordinaires
	Problème de Cauchy
	Euler Progressif
	Euler Retrograde
	Stabilité
	Convergence

