Analyse Numérique
Dérivée Numérique

Simone Deparis

May 17, 2023
Contents
1 Dérivée numérique 1
1.1 Exercice . . . . . . e 4
1.2 Exercice . . . . . . e 6
1.3 Exercice . . . . . . e 7

1 Dérivée numérique

Soit f : [a,b] — R, de classe C! et zq € [a,b]. La dérivée f'(z,) est donnée par

f(zo+h) — f(=0)

f(xo) = lim

h—0Tt h ’
_ i [@) = flmo—h)
h—0+ h
~ lim f(zo+h) = flzo—h)
h—0 2h

Soient xg € [a,b], (Dy) une approximation de f’(zo) et (D?y) une approximation de f”(z).
On appelle

e différence finie progressive ’approximation

f(zo+h) — f(z0)
h

(Dy)* =

e différence finie rétrograde 'approximation

f(zo) = f(xo — h)
h

(Dy)"* =

e différence finie centrée 'approximation

flzo+ $h) — f(wo — 3h)
h

(Dy)© =

e différence finie centrée d’ordre 2 'approximation

f(zo+h)—2f(x0) + f(xo — h)
2

(D*y)¢ =



[1]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

Les différences finies progressive, rétrograde et centrée approchent la dérivée de la fonction au le
point xg.

[2]: # Define a function and a point z0
f = lambda x : 0.25%(x-4)**3 - 4% (x-4)**2 +6
x0 =5

# Choosing finite difference stize
h=4

# Defininig first order finite differences

DP = ( f(xO + h) - £(x0) ) / h
DR = ( £(x0) - £(x0-h) ) / h
DC = ( £(x0 + h/2) - £(x0-h/2) ) / h

# defining the straight lines with slope equal to the FDs
dfp = lambda x : f(x0) + DP*(x-x0)

dfr = lambda x : £(x0) + DR*(x-x0)

dfc = lambda x : f(x0-h/2) + DCx(x-x0+h/2)

# Drowing points
z = np.linspace(-5, 22, 100)

plt.plot(z, dfp(z), 'g:', z, dfr(z), 'b:', z, dfc(z), 'r:' )
plt.plot(z, f(z), 'k', x0,f(x0),'ro")

plt.xlabel('x'); plt.ylabel('$f(x)$');
plt.legend(['$D~P$', '$D-R$', '$D~C$', '$£$'1)
plt.show()



200

100 +

—100 ~

fx)

—200 ~

—300 ~

—400

—500 ~

La différence finie d’ordre 2 approche la deuxiéme dérivée de la fonction au le point xg.

Pour le voir graphiquement, on peut dessiner une fonction quadratique qui a la forme

pa(a) = F(wo) + (Dy)° (& — 70) + (D) (z — 0)?

[3]: | # Define a function and a point z0
f = lambda x : 0.25%(x-4)#*%3 - 4*x(x-4)**2 +6
x0 =5

# Choosing fintite difference stize
h =4
# Defininig first order centered finite differences

DC = ( £(x0 + h/2) - £(x0-h/2) ) / h

# Defininig second order centered finite differences
D2 = ( £(x0 + h) - 2% £(x0) + £(x0-h) ) / (h**2)



# defining the parabola going through (z_0, y_0)
parabola = lambda x : f£(x0) + DCx(x-x0) + 0.5 * D2 * (x-x0)**2

# Drowing points
z = np.linspace(-5, 22, 100)

plt.plot(z, parabola(z), 'g:' )
plt.plot(z, f(z), 'k', x0,f(x0),'ro")

plt.xlabel('x'); plt.ylabel('$f(x)$');
plt.legend(['parabola', '$£$'])
plt.show()

200 A
parabola

— f

—200 ~

—400 -

flx)

—600 ~

—800 7

—1000

1.1 Exercice

Il s’agit de vérifier numériquement que

|/ (z0) — (Dy)"'| = O(n").

On pose zp = 1, f(z) =sin(z) Vz € R



Calculez I'erreur commise en utilisant la différence finie progressive.
Quelle est la valeur de I'erreur pour h=0.17

Ensuite vérifiez numériquement 1'ordre pour (Dy)% et (Dy)C.

[4]: def DPerror(f,df, x0,h)
# formule de differences finies
DP = ( £(x0 + h) - £(x0) ) / h
err = abs(DP-df (x0));
return err

def DRerror(f,df, x0,h)
# formule de differences finies
DR = ( £(x0) - £(x0-h) ) / h
err = abs(DR-df (x0));
return err

def DCerror(f,df, x0,h)
# formule de differences finies
DC = ( £(x0 + h/2) - £(x0-h/2) ) / h
# Similarly, it 7s possible to define
#DC = ( f(z0 + h) - f(z0-h) ) / (2%h)
err = abs(DC-df (x0)) ;
return err

# This function just provides a line to compare the convergence in a log-log,
—plot.

from FiniteDifferencelib import sampleConvergence

# sampleConvergence (h,order,ref)

# computes a pseudo order of convergence on h

# ref is a reference mazimum value

x0 = 0.2

h = 2**np.linspace(-32,-1,10)

plt.plot(h, DPerror(mnp.sin, np.cos, x0, h) , 'o' )
plt.plot(h, DRerror(mp.sin, np.cos, x0, h) , 'x' )
plt.plot(h, DCerror(mp.sin, np.cos, x0, h) , 'x' )

plt.plot(h, sampleConvergence(h, 1, le-1) , ':',
h, sampleConvergence(h, 2, le-1) , ':')

plt.xlabel('h'); plt.ylabel('Error');
plt.legend(['DP error','DR error', 'DC error', '$0(h~1)$', '$0(h~2)$'1)



plt.xscale('log')
plt.yscale('log')

plt.show()
"
. *
1073 1
__.i"‘ I *
—6 4
10 . 8
) &
5 = - ¥
- 10 *
e +* +*
5 *-
lD—l:! - .
® DP error
10712 1 + DR error
« DC error
10-184 T e O{hl}
..... O{hzj
T T T T T
1072 1077 1073 10~3 1071

1.2 Exercice

Il s’agit de vérifier numériquement que

/" (z0) — (D%y)| = O(h?).
On pose zg =1, f(z) =sin(z) Yz € R
Calculez I'erreur commise par ce schéma.

Que vaut I'erreur pour h=0.17

[56]: def D2error(f,df, x0,h)
# formule de differences finies
D2 = ( £(x0 + h) - 2% £(x0) + £(x0-h) ) / (h*x2)
err = abs(D2-4df (x0));
# print(' z0 Je h Je erreur Je \n',z0,h,err)




return err

x0 = 0.2

df

lambda x : -np.sin(x)

h = 2**np.linspace(-10,-1,10)

plt.plot(h, D2error(np.sin, df, x0, h) , 'o' )

plt.plot(h, sampleConvergence(h, 1, 1e-2) , ':',
h, sampleConvergence(h, 2, le-2) , ':')

plt.xlabel('h'); plt.ylabel('D2 error');
plt.legend(['D2 error', '$0h~1)$', '$0h~2)$']1)
plt.xscale('log')

plt.yscale('log')

plt.show()
10‘2-5 ® D2 error
] olhl)
10-34 O{hzj
1074 3
. ]
= ] .
i) —5 | ot
™ 10 3 -
e ] e
1076 3 .
] e
107 -
E [ ]
1 @
1078 4 — ,
103 102

1.3 Exercice

Il s’agit de vérifier numériquement que



3f(xzo) —4f(xo — h) + f(xo — 2h)
2h

(o) — = O(h?).
Cette formule de différences finies est a l'origine du schéma "BDF2’’ pour résoudre numériquement
des équations différentielles (Chapitre 9 du livre).

On pose xg = 1, f(z) =sin(z) Vz € R
Calculez I'erreur commise par ce schéma.

Que vaut U'erreur pour h=0.17

[6]: def bdf2error(f,df, x0,h)
# formule de differences finies BDF2
diff = (3%£(x0)-4*f(x0-h)+£f(x0-2xh))/(2xh);
err = abs(diff-df(x0));
# print(' 0 Je h /e erreur Je \n',z0,h,err)

return err
x0 = 0.2

h = 2**np.linspace(-10,-1,10)
plt.plot(h, bdf2error(np.sin, np.cos, x0, h) , 'o' )
plt.plot(h, sampleConvergence(h, 1, le-1) , ':',

h, sampleConvergence(h, 2, le-1) , ':')

plt.xlabel('h'); plt.ylabel('BDF2 error');
plt.legend(['BDF2 error', '$0(h~1)$', '$0(h~2)$'1)
plt.xscale('log')

plt.yscale('log')

plt.show()



BDF2 error

1071 3

1072 3

1077 3

1076 3

[ ] BEDF2 error
olhl)

11..... O{hzj

103

102

101




	 Dérivée numérique
	Exercice
	Exercice
	Exercice


