
Analyse Numérique
Dérivée Numérique

Simone Deparis

May 17, 2023

Contents

1 Dérivée numérique 1
1.1 Exercice . 4
1.2 Exercice . 6
1.3 Exercice . 7

1 Dérivée numérique

Soit f : [a, b]→ R, de classe C1 et x0 ∈ [a, b]. La dérivée f ′(xo) est donnée par

f ′(x0) = lim
h→0+

f(x0 + h)− f(x0)

h
,

= lim
h→0+

f(x0)− f(x0 − h)

h
,

= lim
h→0

f(x0 + h)− f(x0 − h)

2h
.

Soient x0 ∈ [a, b], (Dy) une approximation de f ′(x0) et (D2y) une approximation de f ′′(x0).

On appelle

• différence finie progressive l’approximation

(Dy)P =
f(x0 + h)− f(x0)

h

• différence finie rétrograde l’approximation

(Dy)R =
f(x0)− f(x0 − h)

h

• différence finie centrée l’approximation

(Dy)C =
f(x0 +

1
2h)− f(x0 − 1

2h)

h

• différence finie centrée d’ordre 2 l’approximation

(D2y)C =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2

1

[1]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

Les différences finies progressive, rétrograde et centrée approchent la dérivée de la fonction au le
point x0.

[2]: # Define a function and a point x0
f = lambda x : 0.25*(x-4)**3 - 4*(x-4)**2 +6
x0 = 5

Choosing finite difference size
h = 4

Defininig first order finite differences
DP = (f(x0 + h) - f(x0)) / h
DR = (f(x0) - f(x0-h)) / h
DC = (f(x0 + h/2) - f(x0-h/2)) / h

defining the straight lines with slope equal to the FDs
dfp = lambda x : f(x0) + DP*(x-x0)
dfr = lambda x : f(x0) + DR*(x-x0)
dfc = lambda x : f(x0-h/2) + DC*(x-x0+h/2)

Drowing points
z = np.linspace(-5, 22, 100)

plt.plot(z, dfp(z), 'g:', z, dfr(z), 'b:', z, dfc(z), 'r:')
plt.plot(z, f(z), 'k', x0,f(x0),'ro')

plt.xlabel('x'); plt.ylabel('$f(x)$');
plt.legend(['D^P', 'D^R', 'D^C', 'f'])
plt.show()

2

La différence finie d’ordre 2 approche la deuxième dérivée de la fonction au le point x0.

Pour le voir graphiquement, on peut dessiner une fonction quadratique qui a la forme

p2(x) = f(x0) + (Dy)C (x− x0) +
1

2
(D2y) (x− x0)

2

[3]: # Define a function and a point x0
f = lambda x : 0.25*(x-4)**3 - 4*(x-4)**2 +6
x0 = 5

Choosing finite difference size
h = 4

Defininig first order centered finite differences
DC = (f(x0 + h/2) - f(x0-h/2)) / h

Defininig second order centered finite differences
D2 = (f(x0 + h) - 2* f(x0) + f(x0-h)) / (h**2)

3

defining the parabola going through (x_0, y_0)
parabola = lambda x : f(x0) + DC*(x-x0) + 0.5 * D2 * (x-x0)**2

Drowing points
z = np.linspace(-5, 22, 100)

plt.plot(z, parabola(z), 'g:')
plt.plot(z, f(z), 'k', x0,f(x0),'ro')

plt.xlabel('x'); plt.ylabel('$f(x)$');
plt.legend(['parabola', 'f'])
plt.show()

1.1 Exercice

Il s’agit de vérifier numériquement que

∣∣f ′(x0)− (Dy)P
∣∣ = O(h1).

On pose x0 = 1, f(x) = sin(x) ∀x ∈ R

4

Calculez l’erreur commise en utilisant la différence finie progressive.

Quelle est la valeur de l’erreur pour h=0.1?

Ensuite vérifiez numériquement l’ordre pour (Dy)R et (Dy)C .

[4]: def DPerror(f,df, x0,h) :
formule de differences finies
DP = (f(x0 + h) - f(x0)) / h
err = abs(DP-df(x0));
return err

def DRerror(f,df, x0,h) :
formule de differences finies
DR = (f(x0) - f(x0-h)) / h
err = abs(DR-df(x0));
return err

def DCerror(f,df, x0,h) :
formule de differences finies
DC = (f(x0 + h/2) - f(x0-h/2)) / h
Similarly, it is possible to define
DC = (f(x0 + h) - f(x0-h)) / (2*h)
err = abs(DC-df(x0));
return err

This function just provides a line to compare the convergence in a log-log␣
↪→plot.

from FiniteDifferenceLib import sampleConvergence
sampleConvergence(h,order,ref) :
computes a pseudo order of convergence on h
ref is a reference maximum value

x0 = 0.2

h = 2**np.linspace(-32,-1,10)
plt.plot(h, DPerror(np.sin, np.cos, x0, h) , 'o')
plt.plot(h, DRerror(np.sin, np.cos, x0, h) , '*')
plt.plot(h, DCerror(np.sin, np.cos, x0, h) , '*')

plt.plot(h, sampleConvergence(h, 1, 1e-1) , ':',
h, sampleConvergence(h, 2, 1e-1) , ':')

plt.xlabel('h'); plt.ylabel('Error');
plt.legend(['DP error','DR error', 'DC error', '$O(h^1)$', '$O(h^2)$'])

5

plt.xscale('log')
plt.yscale('log')
plt.show()

1.2 Exercice

Il s’agit de vérifier numériquement que

∣∣f ′′(x0)− (D2y)
∣∣ = O(h2).

On pose x0 = 1, f(x) = sin(x) ∀x ∈ R

Calculez l’erreur commise par ce schéma.

Que vaut l’erreur pour h=0.1?

[5]: def D2error(f,df, x0,h) :
formule de differences finies
D2 = (f(x0 + h) - 2* f(x0) + f(x0-h)) / (h**2)
err = abs(D2-df(x0));
print(' x0 %e h %e erreur %e \n',x0,h,err)

6

return err

x0 = 0.2

df = lambda x : -np.sin(x)

h = 2**np.linspace(-10,-1,10)
plt.plot(h, D2error(np.sin, df, x0, h) , 'o')
plt.plot(h, sampleConvergence(h, 1, 1e-2) , ':',

h, sampleConvergence(h, 2, 1e-2) , ':')

plt.xlabel('h'); plt.ylabel('D2 error');
plt.legend(['D2 error', '$O(h^1)$', '$O(h^2)$'])
plt.xscale('log')
plt.yscale('log')
plt.show()

1.3 Exercice

Il s’agit de vérifier numériquement que

7

∣∣∣∣f ′(x0)−
3f(x0)− 4f(x0 − h) + f(x0 − 2h)

2h

∣∣∣∣ = O(h2).

Cette formule de différences finies est à l’origine du schéma "BDF2’ ’ pour résoudre numériquement
des équations différentielles (Chapitre 9 du livre).

On pose x0 = 1, f(x) = sin(x) ∀x ∈ R

Calculez l’erreur commise par ce schéma.

Que vaut l’erreur pour h=0.1?

[6]: def bdf2error(f,df, x0,h) :
formule de differences finies BDF2
diff = (3*f(x0)-4*f(x0-h)+f(x0-2*h))/(2*h);
err = abs(diff-df(x0));
print(' x0 %e h %e erreur %e \n',x0,h,err)

return err

x0 = 0.2

h = 2**np.linspace(-10,-1,10)
plt.plot(h, bdf2error(np.sin, np.cos, x0, h) , 'o')
plt.plot(h, sampleConvergence(h, 1, 1e-1) , ':',

h, sampleConvergence(h, 2, 1e-1) , ':')

plt.xlabel('h'); plt.ylabel('BDF2 error');
plt.legend(['BDF2 error', '$O(h^1)$', '$O(h^2)$'])
plt.xscale('log')
plt.yscale('log')
plt.show()

8

9

	 Dérivée numérique
	Exercice
	Exercice
	Exercice

