
Analyse Numérique
Systèmes linéaires

Simone Deparis

April 27, 2023

Contents

1 Résolution de systèmes linéaires 1
1.1 Méthodes Directes . 1

1.1.1 Exercice 1 série 8 . 1
1.1.2 Critère de Sylvester . 5
1.1.3 Exercice 2 série 8 . 5
1.1.4 Problèmes de précision (Exercice 3 série 8) . 7

1.2 Méthodes itératives . 11
1.3 Méthode de Richardson . 11

1.3.1 Exemple 1 . 11
1.3.2 Méthode de Jacobi . 12
1.3.3 Méthode de Gauss-Seidel . 13
1.3.4 Exercice . 14

1.4 Exemple 2 . 14
1.5 Exemple 3 - Jacobi et Gauss-Seidel avec relaxation 15
1.6 Autres Exemples . 25

1 Résolution de systèmes linéaires

1.1 Méthodes Directes

D’abord quelques exemples d’utilisations de la factorisation LU et de Choleski, ensuite on passe aux
methodes itéreatives

1.1.1 Exercice 1 série 8

On considère le système linéaire Ax = b où :

A =


3 6 7

1 1 4

2 4 8

 , b =


4

5

6

 .

1. Calculez la factorisation LU de la matrice A avec Python à l’aide du code ci-dessous.

2. Résolvez le système linéaire Ax = b en utilisant la factorisation trouvée au point précédent
(Ne plus utiliser Python. Mais ici on va le faire)

1

3. Calculez le déterminant de la matrice A en utilisant sa factorisation LU .

[1]: # importing libraries used in this notebook
import numpy as np
import matplotlib.pyplot as plt

scipy.linalg.lu : LU decomposition
from scipy.linalg import lu
scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky

import pprint

np.set_printoptions(precision=4, suppress=True, linewidth=120)

Partie 1
[2]: A = np.array([[3, 6, 7],

[1, 1, 4],
[2, 4, 8]])

LU factorisation with pivoting
P, L, U = lu(A)

print("A = P L U")
pprint.pprint(P.dot(L.dot(U)))

print("P:")
pprint.pprint(P)

print ("L:")
pprint.pprint(L)

print ("U:")
pprint.pprint(U)

A = P L U
array([[3., 6., 7.],

[1., 1., 4.],
[2., 4., 8.]])

P:
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

L:
array([[1. , 0. , 0.],

[0.3333, 1. , 0.],
[0.6667, -0. , 1.]])

U:

2

array([[3. , 6. , 7.],
[0. , -1. , 1.6667],
[0. , 0. , 3.3333]])

Partie 2 Si P est l’identité, A = LU .

1. résolvez pour y tel que Ly = b par substitution progressive

2. résolvez pour x tel que Ux = y par substitution retrograde

Si P n’est pas l’identité, A = PLU .

Attention, une matrice de permutation est une matrice orthogonale car les colonnes sont orthonor-
mées. Donc P−1 = P T . Du coup : P TA = LU et

Ax = b⇔ P TAx = P Tb⇔ LUx = P Tb.

Alors il faut modifier les calculs précédants comme suit:

1. résolvez pour y tel que Ly = P Tb par substitution progressive

2. résolvez pour x tel que Ux = y par substitution retrograde

[3]: def subst_progressive(L, b):
"""
substitution progressive: résout y, L*y = b
Input:
- L: matrice carrée nxn, triangulaire inférieure
- b: vector de dimension n
Output:
- y: vector de dimension n
"""

Initialisation de la solution
y = np.zeros(L.shape[1])

La première ligne de Ly = b est L_{11} y_1 = b_1
Ensuite pour la ligne k on connait y_1, ..., y_{k-1} et elle s'écrit
L_{kk} y_k = b_k - (L_{k1} y_1 + ... L_{kk-1} y_{k-1})
for k in range(L.shape[0]):

sum_k est (L_{k1} y_1 + ... L_{kk-1} y_{k-1})
sum_k = 0
for j in range(k):

sum_k += L[k,j]*y[j]
y[k] = 1/L[k,k]*(b[k]-sum_k)

return y

def subst_retrograde(U, y):
"""
substitution retrograde: résout pour x, U*x = y
Input:
- U: matrice carrée nxn, triangulaire supérieure

3

- y: vector de dimension n
Output:
- x: vector de dimension n
"""

Initialisation de la solution
x = np.zeros(U.shape[1])

La dernière ligne de Yx = y est U_{nn} x_n = y_n
Ensuite pour la ligne k on connait x_n, ..., x_{k+1} et elle s'écrit
U_{kk} x_k = y_k - (U_{kk+1} x_{k+1} + ... U_{kn} y_{n})
for k in reversed(range(U.shape[0])):

sum_k est (U_{kk+1} x_{k+1} + ... U_{kn} y_{n})
sum_k = 0
for j in range(k+1, U.shape[0]):

sum_k += U[k,j]*x[j]
x[k] = 1/U[k,k]*(y[k]-sum_k)

return x

[4]: b = np.array([4, 5, 6])
Ptb = P.T.dot(b)

y = subst_progressive(L, Ptb)
print("y =", y)

x = subst_retrograde(U, y)
print("x =", x)

check the residual of the equation
print("residual =",b - A.dot(x))

y = [4. 3.6667 3.3333]
x = [3. -2. 1.]
residual = [0. 0. 0.]

Partie 3
detA = detP detL detU

[5]: # scipy.linalg.det : determinant
from scipy.linalg import det

det(P)*det(L)*det(U)

[5]: -10.0

4

1.1.2 Critère de Sylvester

Les mineurs principaux d’une matrice A ∈ Rn×n sont les déterminants des matrices Ap =
(ai,j)1≤i,j≤p, p = 1, ..., n.

Critère de Sylvester: une matrice symétrique A ∈ Rn×n est définie positive si et seulement si les
mineurs principaux de A sont tous positifs.

1.1.3 Exercice 2 série 8

On considère le système linéaire Ax = b où

A =

 ε 1 2
1 3 1
2 1 3

 .

1. Déterminez pour quelles valeurs du paramètre réel ε ∈ R, la matrice A est symétrique définie
positive.

2. Soit maintenant ε = 0. On veut résoudre le système Ax = b par une méthode directe; quelle
factorisation de la matrice A envisageriez-vous? Justifiez votre réponse.

3. En considérant ε = 2, vérifier que dans ce cas la matrice A est définie positive et calculer sa
factorisation de Cholesky A = LLT .

4. En supposant que b = (1, 1, 1)T , résolvez le système linéaire Ax = b en utilisant la factorisa-
tion de Cholesky calculée au point c).

Référence Python pour la factorisation de Cholesky : scipy.linalg.cholesky

Partie 1 En appliquant le critère de Sylvester, il suffit d’imposer


ε > 0,

det
(
ε 1
1 3

)
= 3ε− 1 > 0,

detA = 8ε− 11 > 0,

⇒ ε >
11

8
.

Partie 2 Si ε = 0 la matrice A est sym’etrique, mais elle n’est pas d’efinie positive; donc on ne
peut pas calculer la factorisation de Cholesky. On utilisera la m’ethode d’ ’elimination de Gauss avec
changement de pivot, puisque a11 = 0; par exemple, on peut consid’erer la matrice de permutation
P par lignes:

P =

 0 1 0
1 0 0
0 0 1

 .

On peut facilement voir que A = PLU avec

L =

 1 0 0
0 1 0
2 −5 1

 et U =

 1 3 1
0 1 2
0 0 11

 .

5

https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html

Partie 3 Si ε = 2, la matrice A est syméetrique définie positive. Ici on va utiliser A = LLT . Les
éléments de la matrice L de la factorisation de Cholesky de A sont:

l11 =
√
a11 =

√
2

l21 =
1

l11
· a21 =

1√
2

l22 =
√
a22 − l221 =

√
5

2

l31 =
1

l11
· a31 =

√
2

l32 =
1

l22
· (a32 − l31l21) = 0

l33 =
√
a33 − (l231 + l232) = 1

c’est-à-dire:

L =


√
2 0 0

1√
2

√
5

2
0

√
2 0 1

 .

[6]: # scipy.linalg.eigh : eigenvalues for symmetric matric
from scipy.linalg import eigh
scipy.linalg.eig : eigenvalues of a matrix
from scipy.linalg import eig

[7]: epsilon = 2
A = np.array([[epsilon, 1, 2],

[1, 3, 1],
[2, 1, 3]])

Is A symmetric ?
print(f'max(abs(A-AT)) = {np.max(np.abs(A-A.T))} ')

What are the eigenvlues of A ? (usually, use eig, but here A is symmetric,␣
↪→we can use eigh)

lk, v = eigh(A)
print(f'The eigenvalues of A are {lk}')

Cholesky factorisation: lower : return lower-triangular matrix, A = L L^T
L = cholesky(A, lower=True)
print(f"\n A = L^T L = {L.dot(L.T)}\n")

print (f"L = {L}")

max(abs(A-AT)) = 0
The eigenvalues of A are [0.4242 2.1873 5.3885]

A = LˆT L = [[2. 1. 2.]

6

[1. 3. 1.]
[2. 1. 3.]]

L = [[1.4142 0. 0.]
[0.7071 1.5811 0.]
[1.4142 0. 1.]]

Partie 4
[8]: b = np.array([1,1, 1])

y = np.linalg.solve(L,b)
x = np.linalg.solve(L.T,y)

print(x)

check the residual of the equation
print(b - A.dot(x))

[0.4 0.2 0.]
[0. 0. -0.]

1.1.4 Problèmes de précision (Exercice 3 série 8)

Les erreurs d’arrondis peuvent causer des différences importantes entre la solution calculée par la
méthode d’élimination de Gauss (MEG) et la solution exacte. Cela arrive si le conditionnement de
la matrice du système est très grand.

La matrice de Hilbert de taille n× n est une matrice symétrique définie par

aij =
1

i+ j − 1
, i, j = 1, . . . , n

On peut construire une matrice de Hilbert de taille n quelconque en utilisant la commande A =
scipy.linalg.hilbert(n). Par exemple, pour n = 4, on a:

A =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


On considère les systèmes linéaires Anxn = bn ou An est la matrice de Hilbert de taille n avec
n = 4, 6, 8, 10, 12, 14, . . . , 20 tandis que bn est choisi de sorte que la solution exacte soit xn =
(1, 1, · · · , 1)T .

1. Pour chaque n, calculez le conditionnement de la matrice

2. Résolvez le système linéaire par la factorisation LU et notez ~xLUn la solution calculée.

3. Dessinez le graphique avec le conditionnement obtenu ainsi que l’erreur rélative ‖xn −
xLU
n ‖/‖xn‖ (où ‖ · ‖ est la norme euclidienne d’un vecteur, ‖x‖ =

√
xT · x). Utilisez une

échelle logarithmique pour l’axe y.

7

4. Sur le même graphique, reportez le conditionnement de la matrice A, np.linalg.cond(A)

Répétez la même chose avec la factorisation de Cholesky L = cholesky(A, lower=True) pour
n = 4, 6, 8, 10, 12. Que se passe-t-il si n = 14 ?

[9]: from scipy.linalg import hilbert

[10]: Nrange = range(2,20,2)
err = []
cond = []

for n in Nrange :
A = hilbert(n)
P, L, U = lu(A)

x = np.ones([n,1])

b = A.dot(x)

y = np.linalg.solve(L,P.T.dot(b))
xLU = np.linalg.solve(U,y)

err.append(np.linalg.norm(x-xLU) / np.linalg.norm(x))
cond.append(np.linalg.cond(A))

[11]: plt.plot(Nrange, err, 'b:.',Nrange, cond, 'g:.')

plt.xlabel('n'); plt.ylabel('err');
plt.xscale('log')
plt.yscale('log')
plt.grid(True)
plt.show()

8

[12]: Nrange = range(2,13,2)
err = []
cond = []

for n in Nrange :
A = hilbert(n)
L = cholesky(A, lower=True)

x = np.ones([n,1])

b = A.dot(x)

y = np.linalg.solve(L,b)
xCho = np.linalg.solve(L.T,y)

err.append(np.linalg.norm(x-xCho) / np.linalg.norm(x))
cond.append(np.linalg.cond(A))

[13]: plt.plot(Nrange, err, 'b:.',Nrange, cond, 'g:.')

plt.xlabel('n'); plt.ylabel('err');

9

plt.xscale('log')
plt.yscale('log')
plt.grid(True)
plt.show()

[14]: n = 14
A = hilbert(n)
L = cholesky(A, lower=True)
lk, v = eigh(A)

print(f'lk[0] = {lk[0]:0.5e} , the matrix is not positive definite. Let''s␣
↪→verify with the first eigenvector')

lk[0] = -9.13148e-18 , the matrix is not positive definite. Lets verify with the
first eigenvector

La première valeur propre est négative, cela signifie que (v, Av) = (v, λv) = λ(v,v) = λ‖v‖2 < 0,
où v est le vecteur propre associé à cette valeur propre λ négative.

Vérifions:

[15]: print (A.dot(v[0]).T.dot(v[0]))

10

0.007555533559357492

Pourquoi ? En vérité, le calcul des valeurs et vecteurs propres de A a aussi un problème d’arrondis
à cause du conditionnement. On peut en effet vérifier que le rapport entre les composantes de v et
Av n’est ni égale à λ, ni à une autre constante :

[16]: print(v[0]/A.dot(v[0]))

[-0. -0. -0. 0.0001 -0.0008 0.0052 -0.0292 0.1421
-0.6044 -2.2364 7.0956 18.675 -37.1359

40.0708]

[]:

[]:

1.2 Méthodes itératives

[17]: # importing libraries used in this notebook
import numpy as np
import matplotlib.pyplot as plt

scipy.linalg.eig : eigenvalues of a matrix
from scipy.linalg import eig
scipy.linalg.lu : LU decomposition
from scipy.linalg import lu
scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky
scipy.linalg.hilbert : Hilbert matrix
from scipy.linalg import hilbert

np.set_printoptions(precision=4, suppress=True, linewidth=120)

1.3 Méthode de Richardson

A et b donnés; on cherche à approximer la solution x de Ax = b.

Soit x(0) donné, r(0) = b−Ax(0) pour k = 0, 1, 2, ... :

trouvez z(k) tel que Pz(k) = r(k)

choisissez αk

x(k+1) = x(k) + αkz
(k)

r(k+1) = r(k) − αkAz
(k).

1.3.1 Exemple 1

On considère la matrice A et le terme de droite b suivants

11

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 b =


1
−1
1
−1

 .

1.3.2 Méthode de Jacobi

La diagonale de A est

D =


1 0 0 0
0 6 0 0
0 0 11 0
0 0 0 16

 ;

Prenond α = 1 et P = D. La méthode de Richardson dans ce cas correspond à la méthode de
Jacobi et s’écrit comme suit :

[18]: A = np.array([[1,2,3,4],
[5,6,7,8],
[9,10,11,12],
[13,14,15,16]])

b = np.array([1,-1,1,-1])

Diagonale de A
P = np.diag(np.diag(A))
alpha = 1

Initialisation, par exemple
k=0
xk = np.array([1,0,0,0])

[19]: # Une itération de Richardson

résidu
rk = b- A.dot(xk)
résidu préconditionné :
zk = np.linalg.solve(P,rk)

correction de la solution, x(k+1) :
xk1 = xk + alpha*zk

Préparer la prochaine itération
xk = xk1
print (xk)

[1. -1. -0.7273 -0.875]

Si on execute plusieurs fois ces itérations, la méthode ne converge pas. Pourquoi ?

12

Dans ce cas, la matrice d’itération de la méthode de Richardson est égale à

B = D−1(D −A) = I −D−1A =


0 −2 −3 −4
−5/6 0 −7/6 −4/3
−9/11 −10/11 0 −12/11
−13/16 −14/16 −15/16 0

 .

[20]: # Jacobi
the first diag extracts the diagonal of A, the second one builds a diagonal␣
↪→matrix starting from a vector

D = np.diag(np.diag(A))

efficiently computing the Jacobi iteration matrix without explicitely␣
↪→computing the inverse of D

Bj = np.linalg.solve(D,(D-A))

What are the eigenvlues of Bj ?
lk, v = eig(Bj)
print(f'The eigenvalues of Bj are {lk}\n')
print(f'The spectral radius of Bj is {np.max(np.abs(lk)):.2f} > 1, therefore the␣
↪→Jacobi method does not converge')

The eigenvalues of Bj are [-3.9362+0.j 1.9362+0.j 1. +0.j 1. +0.j]

The spectral radius of Bj is 3.94 > 1, therefore the Jacobi method does not
converge

1.3.3 Méthode de Gauss-Seidel

Prenond α = 1 et P la partie triangulaire inférieure de A avec la diagonale. La méthode de
Richardson dans ce cas correspond à la méthode de Gauss-Seidel et s’écrit comme suit :

[21]: # Gauss-Seidel
Return a copy of an array with elements above the k-th diagonal set to zero.
Pgs = np.tril(A, k=0)

efficiently computing the Gauss-Siedel iteration matrix without explicitely␣
↪→computing the inverse of D

Bgs = np.linalg.solve(Pgs,(Pgs-A))

What are the eigenvlues of Bgs ?
lk, v = eig(Bgs)
print(f'The eigenvalues of Bgs are {lk}\n')
print(f'The spectral radius of Bgs is {np.max(np.abs(lk)):.2f} > 1, therefore␣
↪→the Gauss-Seidel method does not converge')

The eigenvalues of Bgs are [0. +0.j 2.0682+0.j 1. +0.j 1. +0.j]

13

The spectral radius of Bgs is 2.07 > 1, therefore the Gauss-Seidel method does
not converge

La méthode de Gauss-Seidel appliqué à cette matrice ne converge pas.

1.3.4 Exercice

Réprenez ces deux méthodes avec la matrice

A =


3 2 1 0
3 4 3 2
3 2 5 2
1 2 3 4

 .

A = np.array([[3,2,1,0],[3,4,3,2],[3,2,5,2],[1,2,3,4]])

1. Vérifiez si Jacobi et Gauss-Seidel convergent à l’aide de la matrice d’itérations
2. Calculez les premier 10 itérations de ces méthodes.

1.4 Exemple 2

Considerez la matrice A et le vecteur b suivants

A =


3 2 1

1 4 1

2 4 8

 , b =

 4
5
6

 .

Exprimez (sans calculer) P , B, et ρ(B) dans le cas de Jacobi et Gauss-Seidel.

[22]: A = np.array([[3, 2, 1],
[1, 4, 1],
[2, 4, 8]])

[23]: # Jacobi
first diag extract the diagonal of A, the second builds a diagonal matrix␣
↪→starting from a vector

D = np.diag(np.diag(A))

Bj = np.linalg.solve(D,(D-A))
What are the eigenvlues of Bj ?
lk, v = eig(Bj)
print(f'The eigenvalues of Bj are {lk}\n')
print(f'The spectral radius of Bj is {np.max(np.abs(lk)):.2f} < 1, therefore␣
↪→Jacobi converges')

The eigenvalues of Bj are [-0.7026+0.j 0.4205+0.j 0.2821+0.j]

The spectral radius of Bj is 0.70 < 1, therefore Jacobi converges

14

[24]: # Gauss-Seidel
Return a copy of an array with elements above the k-th diagonal zeroed.
Pgs = np.tril(A,k=0)

Bgs = np.linalg.solve(Pgs,(Pgs-A))
What are the eigenvlues of Bgs ?
lk, v = eig(Bgs)
print(f'The eigenvalues of Bgs are {lk} whose moduli are {np.absolute(lk)} \n')
print(f'The spectral radius of Bgs is {np.max(np.absolute(lk)):.2f} < 1,␣
↪→therefore Gauss-Seidel converges')

The eigenvalues of Bgs are [0. +0.j 0.1667+0.1179j 0.1667-0.1179j] whose
moduli are [0. 0.2041 0.2041]

The spectral radius of Bgs is 0.20 < 1, therefore Gauss-Seidel converges

1.5 Exemple 3 - Jacobi et Gauss-Seidel avec relaxation

Nous avons vu que la méthode de Jacobi appliquée à la matrice

A =


3 2 1 0
3 4 3 2
3 2 5 2
1 2 3 4


ne converge pas, alors que celle de Gauss-Seidel converge.

Nous allons utiliser la méthode de Richardson stationnaire avec un paramètre de relaxation α
constant pour voir si on peut améliorer la convergence.

On va utiliser la méthode de Richardson stationnaire avec un paramètre de relaxation α constant
pour voir si on peut améliorer la convergence.

Partie 1 - Matrices d’itérations La matrice d’itérations pour la méthode de Richardson est
B(αk) = I − αkP

−1A. En particulier, pour α constant, nous pouvons faire un graphique du rayon
spectral ρ(B(α)) dans les cas d’un préconditionneur égale à la diagonale de A (similaire à Jacobi)
ou au triangle inférieur de A (similaire à Gauss-Seidel):

Voici comment voir que B(αk) = I − αkP
−1A :

Pour Richardson préconditionné nous avons que

Px(k+1) = Px(k) + αk(b−Ax(k))

Px(k+1) = αkb+ (P − αkA)x
(k)

x(k+1) = αkP
−1b+ P−1(P − αkA)x

(k)

On reconnait la matric d’itération en B(αk) = P−1(P − αkA) = I − αkP
−1A)

[25]: A = np.array([[3,2,1,0],
[3,4,3,2],

15

[3,2,5,2],
[1,2,3,4]])

D = np.diag(np.diag(A))
Pgs = np.tril(A,k=0)

Alphas = np.linspace(0, 2, 3001)

rhoBj = []
rhoBgs = []

for alpha in Alphas :
Bgs = np.linalg.solve(Pgs,(Pgs-alpha*A))
Bj = np.linalg.solve(D,(D-alpha*A))

lk, v = eig(Bj)
rhoBj.append(np.max(np.abs(lk)))

lk, v = eig(Bgs)
rhoBgs.append(np.max(np.abs(lk)))

plt.plot(Alphas, rhoBj, 'b:', label=r'$\rho(B_J(\alpha))$')
plt.plot(Alphas, rhoBgs, 'g:', label=r'$\rho(B_{GS}(\alpha))$')

plt.xlabel(r'α'); plt.ylabel(r'ρ');
plt.title('Spectral radius')
plt.grid(True)
plt.legend(['$\\rho(B_J(\\alpha))$','$\\rho(B_{GS}(\\alpha))$'])
plt.show()

16

On constate que:

1. En utilisant P = D, Richardson converge pour α / 0.8 and the optimal one is for α ≈ 0.75
2. En utilisant P égal au triangle inférieur de A, Richardson converge pour α / 2 ; le paramètre

optimale est α ≈ 1.5

Partie 2 - Implémentation de la Méthode de Richardson Définissez une fonction Python
qui implémente la méthode de Richardson stationnaire avec la structure suivante:

def Richardson(A, b, x0, P, alpha, maxIterations, tolerance) :
Stationary Richardson method to approximate the solution of Ax=b
INPUT :
x0 : initial guess
P : preconditioner
alpha : constant relaxation parameter
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUT :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

La méthode de Richardson, comme toute méthode iterative a besoin d’un critère d’arrêt. Dans ce

17

cas, le plus simple est de poser les critères suivants:

1. On fixe le nombre maximal d’itérations
2. Le résidu relatif est plus petit qu’une tolérance ε :

‖b−Ax(k)‖
‖b‖

< ε

On s’arrête dès que l’un des ces critières est rempli.

[26]: def Richardson(A, b, x0, P, alpha, maxIterations, tolerance) :
Stationary Richardson method to approximate the solution of Ax=b
INPUT :
x0 : initial guess
P : preconditioner
alpha : constant relaxation parameter
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUT :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

we do not keep track of all the sequence, just the last two entries
xk = x0
rk = b - A.dot(xk)

RelativeResidualNorm = []
for k in range(maxIterations) :

zk = np.linalg.solve(P,rk)
xk = xk + alpha*zk
rk = b - A.dot(xk)

you can verify that this is equivalent to
rk = rk - alpha*A.dot(zk)
RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if (RelativeResidualNorm[-1] < tolerance) :

print(f'Richardson converged in {k+1} iterations with a relative␣
↪→residual of {RelativeResidualNorm[-1]:1.3e}')

return xk, RelativeResidualNorm

print(f'Richardson did not converge in {maxIterations} iterations, the␣
↪→relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}')

return xk, RelativeResidualNorm

Partie 3 - Utilisation de la Méthode de Richardson Utilisez la fonction Richardson pour
approcher la solution de Ax = b pour b = (0, 1,−1, 1)T avec une tolérance sur le résidu relatif de
10−6 et le vecteur nul comme point initial et un nombre maximum d’itérations de 200

18

1. En utilisant P = D, avec : α = 0.7, 0.75, 0.79, 0.81, 0.9
2. En utilisant P égal au triangle inférieur de A, avec : α = 1, 1.5, 1.95, 2.05

Comment interprétez-vous ces résultats ?

[27]: b = np.array([0,1,-1,1])
Define the initial guess
x0 = 0*b # trick to have the right size for x0

tolerance = 1e-6
maxIter = 200

[28]: # Jacobi-like preconditioner
P = np.diag(np.diag(A))
legend = []

for alpha in [0.7, 0.75, 0.79,0.81, 0.9] :
x,relRes = Richardson(A,b,x0,P,alpha,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append(str(alpha))

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Richardson converged in 79 iterations with a relative residual of 8.984e-07
8.984498815385382e-07
Richardson converged in 77 iterations with a relative residual of 7.593e-07
7.592562065358359e-07
Richardson did not converge in 200 iterations, the relative residual is
3.379e-06
3.378918951868571e-06
Richardson did not converge in 200 iterations, the relative residual is
8.699e-02
0.08698843985290847
Richardson did not converge in 200 iterations, the relative residual is
2.576e+16
2.575559592693911e+16

19

[29]: # Gauss-Seidel-like preconditioner
P = np.tril(A,k=0)
legend = []

for alpha in [1, 1.5, 1.95,2.05] :
x,relRes = Richardson(A,b,x0,P,alpha,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append(str(alpha))

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Richardson converged in 30 iterations with a relative residual of 9.521e-07
9.520753485686893e-07
Richardson converged in 22 iterations with a relative residual of 7.144e-07

20

7.144137957248418e-07
Richardson did not converge in 200 iterations, the relative residual is
1.071e-04
0.00010708766426366904
Richardson did not converge in 200 iterations, the relative residual is
5.283e+04
52829.70703107408

Partie 4 - Implémentation de la Méthode du Gradient Préconditionné Définissez une
fonction Python qui implémente la méthode de Gradient Préconditionné et qui a la structure

def PrecGradient(A, b, x0, P, maxIterations, tolerance) :
Preconditioned Gradient method to approximate the solution of Ax=b
INPUT :
x0 : initial guess
P : preconditioner
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUTS :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

21

[30]: def PrecGradient(A, b, x0, P, maxIterations, tolerance) :
Preconditioned Gradient method to approximate the solution of Ax=b
INPUT :
x0 : initial guess
P : preconditioner
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUTS :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

we do not keep track of all the sequence, just the last two entries
xk = x0
rk = b - A.dot(xk)

RelativeResidualNorm = []
for k in range(maxIterations) :

zk = np.linalg.solve(P,rk)
Azk = A.dot(zk)

alphak = zk.dot(rk) / zk.dot(Azk)

xk = xk + alphak*zk

rk = b - A.dot(xk)
you can verify that this is equivalent to
rk = rk - alphak*A.dot(zk)
RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if (RelativeResidualNorm[-1] < tolerance) :

print(f'Gradient converged in {k+1} iterations with a relative␣
↪→residual of {RelativeResidualNorm[-1]:1.3e}')

return xk, RelativeResidualNorm

print(f'Graident did not converge in {maxIterations} iterations, the␣
↪→relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}')

return xk, RelativeResidualNorm

Partie 5 - Implémentation de la Méthode du Gradient Conjugué Préconditionné
Définissez une fonction Python qui implémente la méthode du Gradient Conjugué Préconditionné
avec la structure suivante:

def PrecConjugateGradient(A, b, x0, P, maxIterations, tolerance) :
Preconditionate Conjugate Gradient method to approximate the solution of Ax=b
INPUT :
x0 : initial guess

22

P : preconditioner
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUTS :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

[31]: def PrecConjugateGradient(A, b, x0, P, maxIterations, tolerance) :
Preconditionate Conjugate Gradient method to approximate the solution of␣

↪→Ax=b
INPUT :
x0 : initial guess
P : preconditioner
maxIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUTS :
xk : approximate solution to the linear system
rk : vector of relative norm of the residuals

we do not keep track of all the sequence, just the last two entries
xk = x0
rk = b - A.dot(xk)
zk = np.linalg.solve(P,rk)
pk = zk

RelativeResidualNorm = []
for k in range(maxIterations) :

Apk = A.dot(pk)
alphak = pk.dot(rk) / pk.dot(Apk)

xk = xk + alphak*pk

rk = rk - alphak*Apk
you can verify that this is equivalent to
rk = b - A.dot(xk)

zk = np.linalg.solve(P,rk)

betak = Apk.dot(zk) / pk.dot(Apk)
pk = zk - betak*pk

RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if (RelativeResidualNorm[-1] < tolerance) :

print(f'Conjugate Gradient converged in {k+1} iterations with a␣
↪→relative residual of {RelativeResidualNorm[-1]:1.3e}')

23

return xk, RelativeResidualNorm

print(f'Conjugate Gradient did not converge in {maxIterations} iterations,␣
↪→the relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}')

return xk, RelativeResidualNorm

Partie 6 - Utilisation de la Méthode du Gradient Preconditioné et du Gradient Con-
jugué Préconditionné Utilisez les fonctions PrecGradient et PrecConjugateGradient pour
approcher la solution de Ax = b pour b = (0, 1,−1, 1)T avec une tolérance sur le résidu relatif de
10−6 et le vecteur nul comme point initial, et un nombre maximum d’itérations de 200

1. En utilisant P = D
2. En utilisant P égal au triangle inférieur de A

Comment interprétez-vous ces résultats ?

[32]: legend = []

Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Conj Gradient, P=D')

Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');

24

plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Gradient converged in 62 iterations with a relative residual of 8.146e-07
8.145842032913786e-07
Conjugate Gradient converged in 31 iterations with a relative residual of
6.323e-07
6.323181670011519e-07
Gradient converged in 25 iterations with a relative residual of 9.177e-07
9.177277863663321e-07
Conjugate Gradient converged in 31 iterations with a relative residual of
6.529e-07
6.529042663207426e-07

1.6 Autres Exemples

Répétez les expériences numériques ci-dessous pour approcher les solutions de

25

(
2 1

1 3

)
x =

(
1
0

)
,

(
2 2

−1 3

)
x =

(
1
0

)
et

(
5 7

7 10

)
x =

(
1
0

)
.

Pour quelles matrices et méthodes vous attendez-vous à une convergence ? Pour la dernière matrice,
le résultat n’est pas celui attendu, pourquoi ?

[33]: b = np.array([1,0])
Define the initial guess
x0 = np.array([1,1])

tolerance = 1e-6
maxIter = 10
A = np.array([[2,1],[1,3]])
A = np.array([[2,2],[-1,3]])
A = np.array([[5,7],[7,10]])

legend = []

To complete: similarly to previous example:
1) Jacobi, Gauss-Seidel (simple)
2) PrecGradient and PrecConjGradient, with
both Jacobi-like and Gauss-Seidel-like preconditioning

1) Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Jacobi')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Conj Gradient, P=D')

Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(relRes[-1])

26

plt.plot(relRes, ':')
legend.append('Gauss-Seidel')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Richardson did not converge in 10 iterations, the relative residual is 5.751e-04
0.0005751203645832735
Gradient converged in 10 iterations with a relative residual of 4.401e-07
4.40060404871371e-07
Conjugate Gradient converged in 2 iterations with a relative residual of
4.710e-16
4.710277376051325e-16
Richardson converged in 9 iterations with a relative residual of 5.954e-07
5.953741807340762e-07
Gradient converged in 7 iterations with a relative residual of 5.098e-07
5.098498742819304e-07
Conjugate Gradient converged in 2 iterations with a relative residual of
3.511e-16
3.510833468576701e-16

27

La matrice de Hilbert Peut-on utiliser une méthode de Richardson pour résoudre le problème
du mauvais conditionnement de la matrice de Hilbert ?

[34]: n = 10
A = hilbert(n)
xexact = np.ones(n)
b = A.dot(xexact)

Define the initial guess
x0 = b

tolerance = 1e-6
maxIter = 10

legend = []

To complete: similarly to previous example:
1) Jacobi, Gauss-Seidel (simple)
2) PrecGradient and PrecConjGradient, with
both Jacobi-like and Gauss-Seidel-like preconditioning

28

1) Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Jacobi')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Conj Gradient, P=D')

Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Gauss-Seidel')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t␣
↪→{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')
legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');

29

plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Richardson did not converge in 10 iterations, the relative residual is 4.305e+08
The relatove residual and absolute error are : 4.305e+08 1.847e+09

Graident did not converge in 10 iterations, the relative residual is 2.066e-02
The relatove residual and absolute error are : 2.066e-02 8.555e-01

Conjugate Gradient converged in 5 iterations with a relative residual of
2.692e-08
The relatove residual and absolute error are : 2.692e-08 2.280e-02

Richardson did not converge in 10 iterations, the relative residual is 2.883e-03
The relatove residual and absolute error are : 2.883e-03 4.243e-01

Graident did not converge in 10 iterations, the relative residual is 1.158e-03
The relatove residual and absolute error are : 1.158e-03 4.149e-01

Conjugate Gradient did not converge in 10 iterations, the relative residual is
6.569e-04
The relatove residual and absolute error are : 6.569e-04 4.205e-01

30

[]:

31

	Résolution de systèmes linéaires
	Méthodes Directes
	Exercice 1 série 8
	Critère de Sylvester
	Exercice 2 série 8
	Problèmes de précision (Exercice 3 série 8)

	 Méthodes itératives
	Méthode de Richardson
	Exemple 1
	Méthode de Jacobi
	Méthode de Gauss-Seidel
	Exercice

	Exemple 2
	Exemple 3 - Jacobi et Gauss-Seidel avec relaxation
	Autres Exemples

