Analyse Numérique
Systeémes linéaires
Simone Deparis

April 27, 2023

Contents

1 Résolution de systémes linéaires

1.1 Meéthodes Directes L
1.1.1 Exercice 1 s€rie 8 e e e
1.1.2 Critére de Sylvester e
1.1.3 Exercice 2 s€rie 8 e e
1.1.4 Problémes de précision (Exercice 3 série 8)

1.2 Méthodes itératives e e e

1.3 Méthode de Richardson
1.3.1 Exemple 1. e e
1.3.2 Méthode de Jacobi
1.3.3 Méthode de Gauss-Seidel L o
1.3.4 Exercice e e

1.4 Exemple 2 L e

1.5 Exemple 3 - Jacobi et Gauss-Seidel avec relaxation L.

1.6 Autres Exemples

1 Reésolution de systémes linéaires

1.1 Meéthodes Directes

D’abord quelques exemples d’utilisations de la factorisation LU et de Choleski, ensuite on passe aux

methodes itéreatives

1.1.1 Exercice 1 série 8

On considére le systéme linéaire Ax = b ou :

36 7 4
A=|1 14|, b=]5
2 4 8 6

1. Calculez la factorisation LU de la matrice A avec Python a I’aide du code ci-dessous.

2. Résolvez le systéme linéaire Ax = b en utilisant la factorisation trouvée au point précédent

(Ne plus utiliser Python. Mais ici on va le faire)

3. Calculez le déterminant de la matrice A en utilisant sa factorisation LU.

[1]: | # importing libraries used in this notebook
import numpy as np
import matplotlib.pyplot as plt

scipy.linalg.lu : LU decomposition

from scipy.linalg import lu

scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky

import pprint

np.set_printoptions(precision=4, suppress=True, linewidth=120)

Partie 1
[2]: A = np.array([[3, 6, 7],
[1’ 1’ 4]’
(2, 4, 81 1)

LU factorisation with pivoting
P, L, U = 1u(A)

print("A = P L U")
pprint.pprint (P.dot(L.dot(U)))

print("P:")
pprint.pprint (P)

print ("L:")
pprint.pprint (L)

print ("U:")
pprint.pprint (U)

A=PLTUT
array([[3., 6., 7.],
[1., 1., 4.7,
[2., 4., 8.11)
P:
array([[1., 0., 0.],
[0., 1., 0.1,
0., 0., 1.11)
L:
array([[1. , O. , O. 1,
[0.3333, 1. , 0. 1,
[0.6667, -0. , 1. 1D
U:

array([[3. , 6. , 7. 1,
[o. , -1. , 1.6667],
[o. , 0. , 3.3333]11)

Partie 2 Si P est l'identité, A = LU.
1. résolvez pour y tel que Ly = b par substitution progressive
2. résolvez pour x tel que Ux = y par substitution retrograde
Si P n’est pas l'identité, A = PLU.

Attention, une matrice de permutation est une matrice orthogonale car les colonnes sont orthonor-
mées. Donc P! = PT. Du coup : PTA= LU et

Ax =b e PTAx = P'b & LUx = P™b.
Alors il faut modifier les calculs précédants comme suit:
1. résolvez pour y tel que Ly = PTb par substitution progressive

2. résolvez pour x tel que Ux = y par substitution retrograde

[3]: def subst_progressive(L, b):
substitution progressive: résout y, L*y = b
Input:
- L: matrice carrée nzn, triangulaire inférieure
- b: vector de dimension n
Output:
- y: vector de dimension n

nnn

Initialisation de la solution
y = np.zeros(L.shape[1])

La premiére ligne de Ly = b est L_{11} y_1 = b_1

Ensuite pour la ligne k on comnait y_1, ..., y_{k-1} et elle s'écrit
L_{kk} y_k = b_k - (L_{k1} y_1 + ... L_{kk-1} y_{k-1})
for k in range(L.shape[0]):

sum_k est (L_{k1} y_1 + ... L_{kk-1} y_{k-1})

sum_k = 0

for j in range(k):
sum_k += L[k, jl*y[j]
y[k] = 1/L[k,k]*(b[k]-sum_k)
return y

def subst_retrograde(U, y):
mimn
substitution retrograde: résout pour x, Utxr =y
Input:
- U: matrice carrée nzn, triangulaire supérieure

- y: vector de dimension n
Output:
- x: vector de dimension n

nnn

Initialisation de la solution
x = np.zeros(U.shape[1])

La derniére ligne de Yz = y est U_{nn} z_n = y_n

Ensuite pour la ligne k on conmnait z_n, ..., z_{k+1} et elle s'écrit
U {kk} z_k = y_k - (U{kk+1} z_{k+1} + ... U_{kn} y_{n})
for k in reversed(range(U.shape[0])):

sum_k est (U_{kk+1} z_{k+1} + ... U_{kn} y_{n})

sum_k = 0

for j in range(k+1, U.shape[0]):
sum_k += Ulk,jl*x[j]
x[k] = 1/U[k,k]*(y[k]-sum_k)
return x

[4]: b = np.array([4, 5, 6])
Ptb = P.T.dot(b)

y = subst_progressive(L, Ptb)
print("y =", y)

X = subst_retrograde (U, y)
print("x =", x)

check the restdual of the equation
print("residual =",b - A.dot(x))

y = [4. 3.6667 3.3333]
x=1[3. -2. 1.]
residual = [0. 0. 0.]

Partie 3
det A = det P det L detU

[6]: # scipy.linalg.det : determinant
from scipy.linalg import det

det (P) *det (L) *det (U)

[5]: -10.0

1.1.2 Critére de Sylvester

Les mineurs principaux d’une matrice A € R"*" sont les déterminants des matrices A, =
(@ijh<ij<p, =1, .n

Critére de Sylvester: une matrice symétrique A € R™*"™ est définie positive si et seulement si les
mineurs principaux de A sont tous positifs.

1.1.3 Exercice 2 série 8

On considére le systéme linéaire Ax = b ou

A=

RO = M

1 2
31
1 3
1. Déterminez pour quelles valeurs du paramétre réel € € R, la matrice A est symétrique définie

positive.

2. Soit maintenant € = 0. On veut résoudre le systéme Ax = b par une méthode directe; quelle
factorisation de la matrice A envisageriez-vous? Justifiez votre réponse.

3. En considérant € = 2, vérifier que dans ce cas la matrice A est définie positive et calculer sa
factorisation de Cholesky A = LL™.

4. En supposant que b = (1,1,1)7 résolvez le systéme linéaire Ax = b en utilisant la factorisa-
tion de Cholesky calculée au point c).

Référence Python pour la factorisation de Cholesky : scipy.linalg.cholesky

Partie 1 En appliquant le critére de Sylvester, il suffit d’imposer

e >0,

e 1 11
det<1 3>—3E—1>0, = €>§.
det A=8z—11>0,

Partie 2 Si ¢ = 0 la matrice A est sym’etrique, mais elle n’est pas d’efinie positive; donc on ne
peut pas calculer la factorisation de Cholesky. On utilisera la m’ethode d’’elimination de Gauss avec
changement de pivot, puisque a1 = 0; par exemple, on peut consid’erer la matrice de permutation
P par lignes:

>

I
O = O
S O =
= o O

On peut facilement voir que A = PLU avec
0
1

1 0 1 3 1
L=120 0 et U=101 2
2 1 0 0

—_
—_

-5

https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.cholesky.html

Partie 3 Si e =2, la matrice A est syméetrique définie positive. Ici on va utiliser A = LLT. Les
éléments de la matrice L de la factorisation de Cholesky de A sont:

lhh = ai=V2
1 1

lor = LT

1 2
)
o = Jan —13 = \/g

1
Isn = — a3 =V?2
l11
1
I3z = . (as2 —l31l21) =0
22

l33 = \/a33 - (l%l + l§2) =1
c’est-a-dire:
V2 0 0

V2 V2
V2 0 1

[6]: # scipy.linalg.eigh : eigenvalues for symmetric matric
from scipy.linalg import eigh
scipy.linalg.eig : etgenvalues of a matric
from scipy.linalg import eig

[7]: epsilon = 2
A = np.array([[epsilon, 1, 2],
(1, 3, 11,
[2, 1, 31 D

Is A symmetric ?
print (f 'max(abs(A-AT)) = {np.max(np.abs(A-A.T))} ')

What are the etgenvlues of 4 ? (usually, use eig, but here 4 is symmetric,
—we can use eigh)

1k, v = eigh(A)

print (f'The eigenvalues of A are {1k}')

Cholesky factorisation: lower : return lower-triangular matriz, 4 = L L°T
L = cholesky(A, lower=True)
print(f"\n A = L°T L = {L.dot(L.T)}\n")

print (f"L = {L}")

max (abs (A-AT)) = 0
The eigenvalues of A are [0.4242 2.1873 5.3885]

A=LTL-=[[2. 1. 2.]

—
= W

mrmM m
N
w =
—_
| N—

L = [[1.4142 0. 0.]
[0.7071 1.5811 0.]
[1.4142 0. 1. 1]

Partie 4
b = np.array([1,1, 1])

y = np.linalg.solve(L,b)
x = np.linalg.solve(L.T,y)

print(x)

check the restdual of the equation
print(b - A.dot(x))

[0.4 0.2 0.]
[0. 0. -0.]

1.1.4 Problémes de précision (Exercice 3 série 8)

Les erreurs d’arrondis peuvent causer des différences importantes entre la solution calculée par la
méthode d’élimination de Gauss (MEG) et la solution exacte. Cela arrive si le conditionnement de
la matrice du systéme est trés grand.

La matrice de Hilbert de taille n x n est une matrice symétrique définie par

1

R E— g =1,...
Z-+j_17 Z?]) 7n

aij =

On peut construire une matrice de Hilbert de taille n quelconque en utilisant la commande A =
scipy.linalg.hilbert(n). Par exemple, pour n =4, on a:

1 1 1

L P

A=11 1 1 1

Pl d

i1 5 6 7
On considére les systémes linéaires A,x, = b, ou A, est la matrice de Hilbert de taille n avec
n = 4,6,8,10,12,14,...,20 tandis que b, est choisi de sorte que la solution exacte soit x, =

(17 17 Ty 1)T

1. Pour chaque n, calculez le conditionnement de la matrice
2. Résolvez le systéme linéaire par la factorisation LU et notez #-U la solution calculée.

3. Dessinez le graphique avec le conditionnement obtenu ainsi que lerreur rélative ||x, —
xEU| /(1% (ot || - || est la norme euclidienne d'un vecteur, |x|| = vxT -x). Utilisez une
échelle logarithmique pour 'axe .

4. Sur le méme graphique, reportez le conditionnement de la matrice A, np.linalg.cond(A)

Répétez la méme chose avec la factorisation de Cholesky L = cholesky(A, lower=True) pour
n=4,6,8,10,12. Que se passe-t-il sin =147

[9]: from scipy.linalg import hilbert
[10]: Nrange = range(2,20,2)

err = []
cond = []

for n in Nrange :
A = hilbert(n)
P, L, U = 1u(A)

np.ones([n,1])

»
I

o
I

A . dot (x)

y = np.linalg.solve(L,P.T.dot(b))
xLU = np.linalg.solve(U,y)

err.append(np.linalg.norm(x-xLU) / np.linalg.norm(x))
cond.append(np.linalg.cond(4))

[11]: plt.plot(Nrange, err, 'b:.',6Nrange, cond, 'g:.')

plt.xlabel('n'); plt.ylabel('err');
plt.zscale('log')
plt.yscale('log')

plt.grid(True)

plt.show()

lﬂla ' TTITELE T |

1013

108 1

=i
=

-

L 3

10—12 - _++"

[12]: Nrange = range(2,13,2)
err = []
cond = []

for n in Nrange :
A = hilbert(n)
L = cholesky(A, lower=True)

x = np.ones([n,1])
b = A.dot(x)
y = np.linalg.solve(L,b)

xCho = np.linalg.solve(L.T,y)

err.append(np.linalg.norm(x-xCho) / np.linalg.norm(x))
cond.append(np.linalg.cond(A))

[13]: plt.plot(Nrange, err, 'b:.',6Nrange, cond, 'g:.')

plt.xlabel('n'); plt.ylabel('err');

plt.zscale('log')
plt.yscale('log')
plt.grid(True)
plt.show()

I
4

lDlS

N

lDll -

lD?_ -.'

=1

1071 1

107 - T M

10713 1 BT &

[14]: n 14
A = hilbert(n)
L = cholesky(4, lower=True)
1k, v = eigh(A)

print(f'1k[0] = {1k[0]:0.5e} , the matrix is not positive definite. Let''s,
—verify with the first eigenvector')

1k[0] = -9.13148e-18 , the matrix is not positive definite. Lets verify with the
first eigenvector

La premiére valeur propre est négative, cela signifie que (v, Av) = (v, \v) = A\(v,v) = \||v|? < 0,
ol v est le vecteur propre associé a cette valeur propre A négative.

Vérifions:

[15]: print (A.dot(v[0]).T.dot(v[0]))

10

0.007555533559357492

Pourquoi ? En vérité, le calcul des valeurs et vecteurs propres de A a aussi un probléme d’arrondis
a cause du conditionnement. On peut en effet vérifier que le rapport entre les composantes de v et
Av n’est ni égale a A, ni & une autre constante :

[16]: print(v[0]/A.dot(v[0]))

[-0. -0. -0. 0.0001 -0.0008 0.0052 -0.0292 0.1421
-0.6044 -2.2364 7.0956 18.675 -37.1359
40.0708]
[]:
[]:

1.2 Meéthodes itératives

[17]: # <mporting libraries used in this notebook
import numpy as np
import matplotlib.pyplot as plt

scipy.linalg.etg : eigenvalues of a matriz
from scipy.linalg import eig

scipy.linalg.lu : LU decomposition

from scipy.linalg import lu

scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky

scipy.linalg.hilbert : Hilbert matriz

from scipy.linalg import hilbert

np.set_printoptions(precision=4, suppress=True, linewidth=120)

1.3 Meéthode de Richardson
A et b donnés; on cherche & approximer la solution x de Ax = b.

Soit x(© donné, r® =b — Ax® pour k =0,1,2,... :

trouvez z® tel que Pz*) = ¢(k)

choisissez ay,
x (kD) — 5 (k) 4 Oékz(k)

P+ — B _ o A5 0R),

1.3.1 Exemple 1

On considére la matrice A et le terme de droite b suivants

11

1 2 3 4 1

5 6 7 8 -1
A= 9 10 11 12 b= 1
13 14 15 16 -1
1.3.2 Meéthode de Jacobi
La diagonale de A est
10 0 O
06 0 O
b= 0 0 11 0|’
0 0 0 16

Prenond a« = 1 et P = D. La méthode de Richardson dans ce cas correspond & la méthode de
Jacobi et s’écrit comme suit :

[18]: A = np.array([[1,2,3,4],
[(5,6,7,8]1,
[9,10,11,12],
[13,14,15,161]1)
b = np.array([1,-1,1,-1])

Diagonale de 4
P = np.diag(np.diag(A))
alpha = 1

Inittalisation, par exemple
k=0
xk = np.array([1,0,0,0])

[19]: # Une itération de Richardson
résidu
rk = b- A.dot(xk)
résidu préconditionné :

zk = np.linalg.solve(P,rk)

correction de la solution, z(k+1) :
xkl = xk + alpha*zk

Préparer la prochaine ttération

xk = xki
print (xk)
[1. -1. -0.7273 -0.875]

Si on execute plusieurs fois ces itérations, la méthode ne converge pas. Pourquoi ?

12

Dans ce cas, la matrice d’itération de la méthode de Richardson est égale a

0 —2 -3 —4
i eia | —5/6 0 ~7/6 —4/3
B=D"(D=A)=I=D"A=| o1 o1 0 -12/11

—13/16 —14/16 —15/16 0

[20]: # Jacobi
the first diag extracts the diagonal of A, the second one burlds a diagonal,

—matriz starting from a vector
D = np.diag(np.diag(A))

effictently computing the Jacobi iteration matriz without explicitely,
—computing the inverse of D
Bj = np.linalg.solve(D, (D-4))

What are the eigenvlues of Bj ?

1k, v = eig(Bj)

print(f'The eigenvalues of Bj are {lk}\n')

print(f'The spectral radius of Bj is {np.max(np.abs(1lk)):.2f} > 1, therefore the,
—Jacobi method does not converge')

The eigenvalues of Bj are [-3.9362+0.j 1.9362+0.j 1. +0.5 1. +0.3]

The spectral radius of Bj is 3.94 > 1, therefore the Jacobi method does not
converge

1.3.3 Meéthode de Gauss-Seidel

Prenond o = 1 et P la partie triangulaire inférieure de A avec la diagonale. La méthode de
Richardson dans ce cas correspond & la méthode de Gauss-Seidel et s’écrit comme suit :

[21]: # Gauss-Seidel
Return a copy of an array with elements above the k-th diagonal set to zero.

Pgs = np.tril(A, k=0)

efficiently computing the Gauss-Stedel tteration matriz without explicitely,
—computing the inverse of D
Bgs = np.linalg.solve(Pgs, (Pgs-A))

What are the etgenvlues of Bgs ?

1k, v = eig(Bgs)

print(f'The eigenvalues of Bgs are {lk}\n')

print(f'The spectral radius of Bgs is {np.max(np.abs(lk)):.2f} > 1, therefore
—the Gauss-Seidel method does not converge')

The eigenvalues of Bgs are [O. +0.j 2.0682+0.j 1. +0.j 1. +0.73]

13

The spectral radius of Bgs is 2.07 > 1, therefore the Gauss-Seidel method does
not converge

La méthode de Gauss-Seidel appliqué a cette matrice ne converge pas.

1.3.4 Exercice

Réprenez ces deux méthodes avec la matrice

N DN

1
3
5

— W W w
NN O

2 3 4
A = np.array([[3,2,1,0],[3,4,3,2],[3,2,5,2]1,[1,2,3,411)

1. Vérifiez si Jacobi et Gauss-Seidel convergent a ’aide de la matrice d’itérations
2. Calculez les premier 10 itérations de ces méthodes.

1.4 Exemple 2

Considerez la matrice A et le vecteur b suivants

3 2 1 A
2 4 8 6

Exprimez (sans calculer) P, B, et p(B) dans le cas de Jacobi et Gauss-Seidel.

[22]: A = np.array([[3, 2, 1],
(1, 4, 11,
(2, 4, 81 1)

[23]: # Jacobt
first diag extract the diagonal of A, the second builds a diagonal matriz,
—starting from a vector

D = np.diag(np.diag(A))

Bj = np.linalg.solve(D, (D-4))

What are the eigenvlues of Bj§ 2

1k, v = eig(Bj)

print(f'The eigenvalues of Bj are {lk}\n')

print(f'The spectral radius of Bj is {np.max(np.abs(1lk)):.2f} < 1, therefore,
—Jacobi converges')

The eigenvalues of Bj are [-0.7026+0.j 0.4205+0.j 0.2821+0.j]

The spectral radius of Bj is 0.70 < 1, therefore Jacobi converges

14

[24]:

[25]:

Gauss-Setdel
Return a copy of an array with elements above the k-th diagonal zeroed.
Pgs = np.tril(A,k=0)

Bgs = np.linalg.solve(Pgs, (Pgs-A))

What are the eigenvlues of Bgs ?

1k, v = eig(Bgs)

print (f'The eigenvalues of Bgs are {lk} whose moduli are {np.absolute(lk)} \n')

print(f'The spectral radius of Bgs is {np.max(np.absolute(lk)):.2f} < 1,
—therefore Gauss-Seidel converges')

The eigenvalues of Bgs are [O. +0.j 0.1667+0.1179j 0.1667-0.1179j] whose
moduli are [O. 0.2041 0.2041]

The spectral radius of Bgs is 0.20 < 1, therefore Gauss-Seidel converges

1.5 Exemple 3 - Jacobi et Gauss-Seidel avec relaxation

Nous avons vu que la méthode de Jacobi appliquée & la matrice

3210
4 3
2 95
2 3

=N N

ne converge pas, alors que celle de Gauss-Seidel converge.

Nous allons utiliser la méthode de Richardson stationnaire avec un parameétre de relaxation «
constant pour voir si on peut améliorer la convergence.

On va utiliser la méthode de Richardson stationnaire avec un parameétre de relaxation « constant

pour voir si on peut améliorer la convergence.

Partie 1 - Matrices d’itérations La matrice d’itérations pour la méthode de Richardson est
B(ag) = I — a3, P~'A. En particulier, pour o constant, nous pouvons faire un graphique du rayon
spectral p(B(«)) dans les cas d’un préconditionneur égale a la diagonale de A (similaire a Jacobi)
ou au triangle inférieur de A (similaire & Gauss-Seidel):

Voici comment voir que B(ag) =1 —apP7 1A :

Pour Richardson préconditionné nous avons que

P+ = pr®) 4oy (b — Az)
Pz = b + (P — apA)z®
2D = 0 P71+ PP — apA)z®)
On reconnait la matric d’itération en B(ay) = P~Y(P — azA) = I — ap, P71 A)

A = np.array([[3,2,1,0],
P Er il

15

[3,2,5,2],

[1,2,3,411)
D = np.diag(np.diag(A))
Pgs = np.tril(A,k=0)

Alphas = np.linspace(0, 2, 3001)

(]
(]

rhoBj
rhoBgs

for alpha in Alphas :
Bgs = np.linalg.solve(Pgs, (Pgs-alphax*A))
Bj = np.linalg.solve(D, (D-alphaxA))

1k, v = eig(Bj)
rhoBj .append(np.max(np.abs(lk)))

1k, v = eig(Bgs)
rhoBgs . append(np.max(np.abs(1k)))

plt.plot(Alphas, rhoBj, 'b:', label=r'$\rho(B_J(\alpha))$')
plt.plot(Alphas, rhoBgs, 'g:', label=r'$\rho(B_{GS}(\alpha))$')

plt.xlabel(r'α'); plt.ylabel(r'ρ');
plt.title('Spectral radius')

plt.grid(True)
plt.legend(['$\\rho(B_J(\\alpha))$','$\\rho(B_{GS}(\\alpha))$'l)
plt.show()

16

Spectral radius

----- plByla))

Lo | " PlBos()

4.0

3.0

2.5

1.5 -
1.0+t

0.5_ ey - .1..11.4-'.1

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
o

On constate que:

1. En utilisant P = D, Richardson converge pour a $ 0.8 and the optimal one is for a ~ 0.75
2. En utilisant P égal au triangle inférieur de A, Richardson converge pour a g 2 ; le paramétre
optimale est o ~ 1.5

Partie 2 - Implémentation de la Méthode de Richardson Définissez une fonction Python
qui implémente la méthode de Richardson stationnaire avec la structure suivante:

def Richardson(A, b, x0, P, alpha, maxIterations, tolerance)
Stationary Richardson method to approzimate the solution of Az=b

INPUT

x0 : initial guess

P : preconditioner

alpha : constant relazxation parameter

maxzlterations : maximum number of iterations

tolerance : tolerance for relative residual

OUTPUT

xk : approzimate solution to the linear system
rk : wvector of relative norm of the residuals

La méthode de Richardson, comme toute méthode iterative a besoin d’un critére d’arrét. Dans ce

17

cas, le plus simple est de poser les critéres suivants:

1. On fixe le nombre maximal d’itérations
2. Le résidu relatif est plus petit qu’une tolérance e :

Ib — Ax®|
bl

On s’arréte dés que 'un des ces critiéres est rempli.

[26]: def Richardson(A, b, x0, P, alpha, maxIterations, tolerance)
Stationary Richardson method to approximate the solution of Az=b

INPUT

x0 : initial guess

P : preconditioner

alpha : constant relazxation parameter

maxlIterations : mazimum number of iterations

tolerance : tolerance for relative residual

OUTPUT

zk : approzimate solution to the linear system
rk : vector of relative norm of the residuals

we do mnot keep track of all the sequence, just the last two entries
xk = x0
rk = b - A.dot(xk)

RelativeResidualNorm = []
for k in range(maxIterations)

zk = np.linalg.solve(P,rk)
xk = xk + alphaxzk
rk = b - A.dot(xk)

you can verify that this is equivalent to
rk = rk - alpha*4.dot (zk)
RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if (RelativeResidualNorm[-1] < tolerance)
print(f'Richardson converged in {k+1} iterations with a relative
—residual of {RelativeResidualNorm[-1]:1.3e}')
return xk, RelativeResidualNorm

print(f'Richardson did not converge in {maxIterations} iterations, the
—relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}")
return xk, RelativeResidualNorm

Partie 3 - Utilisation de la Méthode de Richardson Utilisez la fonction Richardson pour
approcher la solution de Ax = b pour b = (0,1, —1,1)T avec une tolérance sur le résidu relatif de
1076 et le vecteur nul comme point initial et un nombre maximum d’itérations de 200

18

1. En utilisant P = D, avec : a = 0.7,0.75,0.79,0.81,0.9
2. En utilisant P égal au triangle inférieur de A, avec : a =1,1.5,1.95,2.05

Comment interprétez-vous ces résultats 7

[27]: b = np.array([0,1,-1,1])
Define the initial guess
x0 = Oxb # trick to have the right size for z0

tolerance = 1e-6
maxIter = 200

[28]: # Jacobi-like preconditioner
P = np.diag(np.diag(A))
legend = []

for alpha in [0.7, 0.75, 0.79,0.81, 0.9]
x,relRes = Richardson(A,b,x0,P,alpha,maxIter,tolerance)
print(relRes[-1])
plt.plot(relRes, ':')
legend. append(str(alpha))

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')

plt.show()

Richardson converged in 79 iterations with a relative residual of 8.984e-07
8.984498815385382e-07

Richardson converged in 77 iterations with a relative residual of 7.593e-07
7.592562065358359e-07

Richardson did not converge in 200 iterations, the relative residual is
3.379e-06

3.378918951868571e-06

Richardson did not converge in 200 iterations, the relative residual is
8.699%e-02

0.08698843985290847

Richardson did not converge in 200 iterations, the relative residual is
2.576e+16

2.575559592693911e+16

19

[29]:

Relative residuals

B [0.7
0.75
o 0.79
..... 0.81
| 2 0.9
107
o
10% A
101 H
T
I
T T T I I I I I I
0 25 50 75 00 s o s 200
n

Gauss-Setdel-ltke preconditioner
P = np.tril(A,k=0)
legend = []

for alpha in [1, 1.5, 1.95,2.05]

x,relRes = Richardson(A,b,x0,P,alpha,maxIter,tolerance)

print(relRes[-1])
plt.plot(relRes, ':')
legend.append(str(alpha))

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')

plt.show()

20

Richardson converged in 30 iterations with a relative residual of 9.521e-07
9.520753485686893e-07
Richardson converged in 22 iterations with a relative residual of 7.144e-07

7.144137957248418e-07

Richardson did not converge in 200 iterations, the relative residual is
1.071e-04

0.00010708766426366904

Richardson did not converge in 200 iterations, the relative residual is
5.283e+04

52829.70703107408

Relative residuals

5 4
1.0 l
----- 1.5
03] 1.95
101 .
" ?
1014 %
103 A
1075
T T T T T T T T T
0 25 50 75 100 125 150 175 200

n

Partie 4 - Implémentation de la Méthode du Gradient Préconditionné Définissez une
fonction Python qui implémente la méthode de Gradient Préconditionné et qui a la structure

def PrecGradient(A, b, x0, P, maxIterations, tolerance)
Preconditioned Gradient method to approximate the solution of Az=b

INPUT

x0 : initial guess

P : preconditioner

mazIterations : mazimum number of iterations

tolerance : tolerance for relative residual

OUTPUTS

xzk : approxzimate solution to the linear system
rk : wvector of relative norm of the residuals

21

[30]: def PrecGradient(A, b, x0, P, maxIterations, tolerance)
Preconditioned Gradient method to approxzimate the solution of Ax=b

INPUT

x0 : tntttal guess

P : preconditioner

maxlterations : maxzimum number of tterations

tolerance : tolerance for relative residual

OUTPUTS

zk : approzimate solution to the linear system
rk : wector of relative norm of the residuals

we do mot keep track of all the sequence, just the last two entries
xk = x0
rk = b - A.dot(xk)

RelativeResidualNorm = []
for k in range(maxIterations)

zk = np.linalg.solve(P,rk)
Azk = A.dot(zk)

alphak = zk.dot(rk) / zk.dot (Azk)

xk = xk + alphak*zk

rk = b - A.dot(xk)
you can verify that this is equivalent to
rk = rk - alphak*4.dot (zk)
RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if (RelativeResidualNorm[-1] < tolerance)

print(f'Gradient converged in {k+1} iterations with a relative

—residual of {RelativeResidualNorm[-1]:1.3e}')
return xk, RelativeResidualNorm

print(f'Graident did not converge in {maxIterations} iterations, the
—relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}")
return xk, RelativeResidualNorm

Partie 5 - Implémentation de la Méthode du Gradient Conjugué Préconditionné
Définissez une fonction Python qui implémente la méthode du Gradient Conjugué Préconditionné
avec la structure suivante:

def PrecConjugateGradient(A, b, x0, P, maxIterations, tolerance)
Preconditionate Conjugate Gradient method to approxrimate the solution of Ax=b
INPUT :
x0 : initial guess

22

P : preconditioner

mazIterations : mazimum number of iterations

tolerance : tolerance for relative residual

OUTPUTS

zk : approxzimate solution to the linear system
rk : wvector of relative norm of the residuals

[31]: def PrecConjugateGradient(A, b, x0, P, maxIterations, tolerance)
Preconditionate Conjugate Gradient method to approxzimate the solution of,

—Az=b
INPUT
x0 : wnttial guess
P : preconditioner
maxlIterations : maximum number of iterations
tolerance : tolerance for relative residual
OUTPUTS
zk : approxzimate solution to the linear system
rk : wector of relative norm of the residuals

we do mot keep track of all the sequence, just the last two entries
xk = x0

rk = b - A.dot(xk)

zk = np.linalg.solve(P,rk)

pk = zk

RelativeResidualNorm = []
for k in range(maxIterations)

Apk = A.dot(pk)
alphak = pk.dot(rk) / pk.dot(Apk)

xk = xk + alphak*pk

rk = rk - alphak*Apk

you can verify that this is equivalent to
rk =b - 4.dot(zk)

zk = np.linalg.solve(P,rk)

betak = Apk.dot(zk) / pk.dot(Apk)
pk = zk - betak*pk

RelativeResidualNorm.append(np.linalg.norm(rk)/np.linalg.norm(b))
if (RelativeResidualNorm[-1] < tolerance)
print(f'Conjugate Gradient converged in {k+1} iterations with a
—relative residual of {RelativeResidualNorm[-1]:1.3e}')

23

return xk, RelativeResidualNorm

print(f'Conjugate Gradient did not converge in {maxIterations} iterationmns,,
—the relative residual is {np.linalg.norm(rk)/np.linalg.norm(b):1.3e}"')
return xk, RelativeResidualNorm

Partie 6 - Utilisation de la Méthode du Gradient Preconditioné et du Gradient Con-
jugué Préconditionné Utilisez les fonctions PrecGradient et PrecConjugateGradient pour
approcher la solution de Ax = b pour b = (0,1, —1,1)7 avec une tolérance sur le résidu relatif de
1076 et le vecteur nul comme point initial, et un nombre maximum d’itérations de 200

1. En utilisant P =D
2. En utilisant P égal au triangle inférieur de A

Comment interprétez-vous ces résultats ?

[32]: legend = []

Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot(relRes, ':')

legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot(relRes, ':')

legend.append('Conj Gradient, P=D')

Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot(relRes, ':')

legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient (A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot(relRes, ':')

legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');

24

plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Gradient converged in 62 iterations with a relative residual of 8.146e-07
8.145842032913786e-07

Conjugate Gradient converged in 31 iterations with a relative residual of
6.323e-07

6.323181670011519e-07

Gradient converged in 25 iterations with a relative residual of 9.177e-07
9.177277863663321e-07

Conjugate Gradient converged in 31 iterations with a relative residual of
6.529e-07

6.529042663207426e-07

Relative residuals

0 4
1073 A Gradient, P=D
] Conj Gradient, P=D
10-1 4 ----- Gradient, lower A
: Ve e Conj Gradient, lower A
1072
w 1077 3
2 :
107
1075 3
1075 3 =T
- T T T T T T T
0 10 20 30 40 50 60
n

1.6 Autres Exemples

Répétez les expériences numériques ci-dessous pour approcher les solutions de

25

2 1 (1) 2 2 (1) 5 7 (1)
X = s X = et X = .
1 3 0 -1 3 0 7 10 0
Pour quelles matrices et méthodes vous attendez-vous & une convergence 7 Pour la derniére matrice,
le résultat n’est pas celui attendu, pourquoi 7

[33]: b = np.array([1,0])
Define the initial guess
x0 = np.array([1,1])

tolerance = le-6

maxIter = 10

A = np.array([[2,1],[1,3]1])

4 = np.array([[2,2],[-1,3]])
4 = np.array([[5,7],[7,10]])

legend = []

To complete: similarly to previous exzample:

1) Jacobi, Gauss-Seidel (simple)

2) PrecGradient and PrecConjGradient, with

both Jacobi-like and Gauss-Seidel-like preconditioning

1) Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(relRes[-1])

plt.plot(relRes, ':')

legend.append (' Jacobi')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-11)

plt.plot(relRes, ':')

legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot(relRes, ':')

legend.append('Conj Gradient, P=D')

Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)
print(relRes[-11)

26

plt.plot(relRes, ':')
legend.append('Gauss-Seidel')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-1])

plt.plot(relRes, ':')

legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)
print(relRes[-11)

plt.plot(relRes, ':')

legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');
plt.title('Relative residuals')
plt.yscale('log')

plt.show()

Richardson did not converge in 10 iterations, the relative residual is 5.751e-04
0.0005751203645832735

Gradient converged in 10 iterations with a relative residual of 4.401e-07
4.40060404871371e-07

Conjugate Gradient converged in 2 iterations with a relative residual of
4.710e-16

4.710277376051325e-16

Richardson converged in 9 iterations with a relative residual of 5.954e-07
5.9563741807340762e-07

Gradient converged in 7 iterations with a relative residual of 5.098e-07
5.098498742819304e-07

Conjugate Gradient converged in 2 iterations with a relative residual of
3.511e-16

3.510833468576701e-16

27

101

Relative residuals
e

10—2 i

10—5 i

res

10—11 i

----- Jacobi

Gradient, P=D
10—14 i

Conj Gradient, P=D

Gauss-Seidel

Gradient, lower A

Conj Gradient, lower A
T

2

1]
H
]
i
]
Ll
%
L]
L]
|
\
bl
H
1]
\
]
]
]
L]
L]
i
\
]
¥
1]
1]
lD_E’ . H
[
]
]
¥
1]
L]
1
\
]
¥
|
[
]
[]
L]
(]
i
[
'
1
Y
]
t
|
[]
]
1
i

T
5] 8
n

La matrice de Hilbert Peut-on utiliser une méthode de Richardson pour résoudre le probléme
du mauvais conditionnement de la matrice de Hilbert ?

[34]: |n = 10

A = hilbert(n)

xexact

np.ones(n)
b = A.dot(xexact)

Define the initial guess
x0 =D

tolerance

maxIter

= le-6
10

legend = []

To complete: similarly to previous exzample:
1) Jacobi, Gauss-Seidel (simple)

2) PrecGradient and PrecConjGradient, with

both Jacobi-like and Gauss-Setdel-like preconditioning

28

1) Jacobi-like precondtioner
P = np.diag(np.diag(A))

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)

print (f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}\n"')

plt.plot(relRes, ':')

legend.append (' Jacobi')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)

print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')

legend.append('Gradient, P=D')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)

print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')

legend.append('Conj Gradient, P=D')

Gauss-Seidel-like precondtioner
P = np.tril(A,k=0)

x,relRes = Richardson(A,b,x0,P,1,maxIter,tolerance)

print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')

legend.append('Gauss-Seidel')

x,relRes = PrecGradient(A,b,x0,P,maxIter,tolerance)

print(f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')

legend.append('Gradient, lower A')

x,relRes = PrecConjugateGradient(A,b,x0,P,maxIter,tolerance)

print (f'The relatove residual and absolute error are : \t {relRes[-1]:1.3e} \t,
—{np.linalg.norm(x-xexact):1.3e}\n')

plt.plot(relRes, ':')

legend.append('Conj Gradient, lower A')

plt.legend(legend)

plt.xlabel('n'); plt.ylabel('res');

29

plt.title('Relative residuals')
plt.yscale('log')
plt.show()

Richardson did not converge in 10 iterations, the relative residual is 4.305e+08
The relatove residual and absolute error are : 4 .305e+08 1.847e+09

Graident did not converge in 10 iterations, the relative residual is 2.066e-02
The relatove residual and absolute error are : 2.066e-02 8.555e-01

Conjugate Gradient converged in 5 iterations with a relative residual of
2.692e-08
The relatove residual and absolute error are : 2.692e-08 2.280e-02

Richardson did not converge in 10 iterations, the relative residual is 2.883e-03
The relatove residual and absolute error are : 2.883e-03 4.243e-01

Graident did not converge in 10 iterations, the relative residual is 1.158e-03
The relatove residual and absolute error are : 1.158e-03 4.149e-01

Conjugate Gradient did not converge in 10 iterations, the relative residual is

6.569e-04
The relatove residual and absolute error are : 6.569e-04 4.205e-01

30

Relative residuals

g
10°7 ... Jacobi
Gradient, P=D
o | Conj Gradient, P=D
107 ... Gauss-Seidel
----- Gradient, lower A .
03 Conj Gradient, lower A
[74]
E 100
:;.I':.'.‘:'a.q_._..”: lllllll
lD_3 | . W e e e —— . aht)
1076 1
T T I I I
0 2 4 © ®

[]:

31

	Résolution de systèmes linéaires
	Méthodes Directes
	Exercice 1 série 8
	Critère de Sylvester
	Exercice 2 série 8
	Problèmes de précision (Exercice 3 série 8)

	 Méthodes itératives
	Méthode de Richardson
	Exemple 1
	Méthode de Jacobi
	Méthode de Gauss-Seidel
	Exercice

	Exemple 2
	Exemple 3 - Jacobi et Gauss-Seidel avec relaxation
	Autres Exemples

