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1 Interpolation et approximation de données

1.1 Position du problème

1.1.1 Interpolation de données

Soit n � 0 un nombre entier. Etant donnés (n + 1) noeuds distincts x0, x1,. . . xn et (n + 1) valeurs
y0, y1,. . . yn, on cherche un polynôme p de degré n, tel que

p(xj) = yj pour 0  j  n.

Exemple On cherche le polynôme Pn de degré n = 4 tel que Pn(xj) = yj, j = 1, ..., 5 avec les
données suivantes
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xk yk

1 3
1.5 4
2 2
2.5 5
3 1

[1]: # importing libraries used in this book

import numpy as np

import matplotlib.pyplot as plt

[2]: # Some data given: x=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1

x = np.linspace(1, 3, 5) # equivalent to np.array([ 1, 1.5, 2, 2.5, 3 ])

y = np.array([3, 4, 2, 5, 1])

# Plot the points using matplotlib

plt.plot(x, y, 'ro')

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')

plt.legend(['data'])

plt.show()

Si ce polynôme existe, on le note p = Pn. On appelle Pn le polynôme d’interpolation des valeurs
yj aux noeuds xj, j = 0, . . . , n.
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[3]: # Plot the interpolating function

# Defining the polynomial function

def p(x):

# coefficients of the interpolating polynomial

a = np.array([-140.0, 343.0, -872./3., 104.0, -40./3.])

# value of the polynomial in all the points t

return a[0] + a[1]*x + a[2]*(x**2) + a[3]*(x**3) + a[4]*(x**4)

# points used to plot the graph

z = np.linspace(1, 3, 100)

plt.plot(x, y, 'ro', z, p(z))

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')

plt.legend(['data','$\Pi_2(x)$'])

plt.show()

1.1.2 Interpolation de fonctions

Soit f 2 C
0(I) et x0, . . . , xn 2 I. Si on prend

yj = f (xj), 0  j  n,
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alors le polynôme d’interpolation Pn(x) est noté Pn f (x) et est appelé l’interpolant de f aux
noeuds x0,. . . xn.

Exemple Soient
x1 = 1, x2 = 1.75, x3 = 2.5, x4 = 3.25, x5 = 4

les points d’interpolation et
f (x) = x sin(2px).

On cherche l’interpolant Pn f de degré n = 4

[4]: # defining the fonction that we want to interpolate

def f(x):

return x*np.sin(x*2.*np.pi)

# The interpolation must occour at points x=1, 1.75, 2.5, 3.25, 4

x = np.linspace(1, 4, 5)

# points used to plot the graph

z = np.linspace(1, 4, 100)

plt.plot(x, f(x), 'ro', z, f(z),':')

# labels, title, legend

plt.xlabel('x'); plt.ylabel('$f(x)$'); #plt.title('data')

plt.legend(['$f(x_k)$','$f(x)$'])

plt.show()
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[5]: # Plot the interpolating function

# Defining the polynomial function

def p(x):

# coefficients of the interpolating polynomial

a = np.array([0, 7.9012, -13.037, 5.9259, -0.79012])

# value of the polynomial in all the points x

return a[0] + a[1]*x + a[2]*(x**2) + a[3]*(x**3) + a[4]*(x**4)

# points where to evaluate the polynomial

z = np.linspace(1, 4, 100)

plt.plot(x, f(x), 'ro', z, f(z),':', z, p(z))

plt.xlabel('$x$'); plt.ylabel('$f(x)$'); #plt.title('data')

plt.legend(['$f(x_k)$','$f(x)$','$\Pi_n(x)$'])

plt.show()

1.1.3 Matrice de Vandermonde

Il est possible d’écrire un système d’équations et de trouver les coefficients de manière directe. Ce
n’est pas toujours la meilleure solution.
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Nous cherchons les coefficients du polynôme p(x) = a0 + a1x + ... + anx
n qui satisfont les (n + 1)

équations p(xk) = yk, k = 0, ..., n, c’est-à-dire

a0 + a1xk + ... + anx
n

k
= yk, k = 0, ..., n

Ce système s’écrit sous forme matricielle

0

B@
1 x0 x

2
0 · · · x

n

0
...

...
1 xn x

2
n · · · x

n
n

1

CA

0

B@
a0
...

an

1

CA =

0

B@
y0
...

yn

1

CA

Pour construire cette matrice, vous pouvez utiliser la fonction

# Defining the mxn Vandermonde matrix

def VandermondeMatrix(x):

# Input

# x : +1 array with interpolation nodes

# Output

# Matrix of Vandermonde of size n x n

que vous pouvez importer avec la commande

from InterpolationLib import VandermondeMatrix

Exemple On cherche les coefficients du polynôme d’interpolation de degré n = 4 des valeurs
suivantes

xk yk

1 3
1.5 4
2 2
2.5 5
3 1

[6]: from InterpolationLib import VandermondeMatrix

# Some data given: x=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1

x = np.linspace(1, 3, 5)

y = np.array([3, 4, 2, 5, 1])

n = x.size - 1

A = VandermondeMatrix(x)

# print(A)

# compute coefficients

a = np.linalg.solve(A, y) # Resouds Ax = b avec b=y et rends x
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# print the coefficients on screen

print('The coefficients a_0, ..., a_n are')

print(a)

The coefficients a_0, ..., a_n are

[-140. 343. -290.66666667 104. -13.33333333]

[7]: # Now we can define the polynomial

p = lambda x : a[0] + a[1]*x + a[2]*(x**2) + a[3]*(x**3) + a[4]*(x**4)

# points used to plot the graph

z = np.linspace(1, 3, 100)

plt.plot(x, y, 'ro', z, p(z))

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')

plt.legend(['data','p(x)'])

plt.show()

1.1.4 Alternatives : polyfit et polyval

Les fonctions polyfit et polyval de numpy font essentiellement la même chose que les para-
graphes ci-dessous. Plus tard nous verrons des méthodes plus performantes.

a = numpy.polyfit(x, y, n, ... ) :

• input : x, y les données à interpoler, n le degré du polynôme recherché
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• output : les coefficients du polynôme, dans l’ordre inverse de ce que nous avons vu !

[8]: # Some data given: x=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1

x = np.linspace(1, 3, 5)

y = np.array([3, 4, 2, 5, 1])

n = x.size - 1

a = np.polyfit(x,y,n)

# Now we can define the polynomial, with coeffs in the reverse order !

p = lambda x : a[4] + a[3]*x + a[2]*(x**2) + a[1]*(x**3) + a[0]*(x**4)

# We can also use polyval instead !

# np.polyval(a,x)

# points used to plot the graph

z = np.linspace(1, 3, 100)

plt.plot(x, y, 'ro', z, p(z), '.', z, np.polyval(a,z))

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')

plt.legend(['data','p(x)','polyval'])

plt.show()

[ ]:
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1.2 Interpolation de Lagrange

1.2.1 Base de Lagrange

On considère les polynômes jk, k = 0, . . . , n de degré n tels que

jk(xj) = djk, k, j = 0, . . . , n,

où djk = 1 si j = k et djk = 0 si j 6= k. Explicitement, on a

jk(x) =
n

’
j=0,j 6=k

(x � xj)

(xk � xj)
.

[9]: # importing libraries used in this book

import numpy as np

import matplotlib.pyplot as plt

Exercice (théorique) Vérifiez que

1. B = {jk, k = 0, . . . , n} est une base de Pn(R)
2. Chaque polynôme jk est de degré n

3. jk(xj) = djk, k, j = 0, . . . , n

[10]: # Defining the Lagrange basis functions

def phi(x,k,z):

# the input variables are:

# x : the interpolatory points

# k : which basis function

# z : where to evaluate the function

# careful, there are n+1 interpolation points!

n = x.size - 1

# init result to one, of same type and size as z

result = np.zeros_like(z) + 1

# first few checks on k:

if (type(k) != int) or (x.size < 1) or (k > n) or (k < 0):

raise ValueError('Lagrange basis needs a positive integer k, smaller�

,!than the size of x')

# loop on n to compute the product

for j in range(0,n+1) :

if (j == k) :

continue

if (x[k] == x[j]) :
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raise ValueError('Lagrange basis: all the interpolation points need�

,!to be distinct')

result = result * (z - x[j]) / (x[k] - x[j])

return result

Exemple Pour n = 2, x0 = �1, x1 = 0, x2 = 1, les polynômes de la base de Lagrange sont

j0(x) =
(x � x1)(x � x2)
(x0 � x1)(x0 � x2)

=
1
2

x(x � 1),

j1(x) =
(x � x0)(x � x2)
(x1 � x0)(x1 � x2)

= �(x + 1)(x � 1),

j2(x) =
(x � x0)(x � x1)
(x2 � x0)(x2 � x1)

=
1
2

x(x + 1).

[11]: # plot the Lagrange Basis functions

x = np.linspace(-1., 1, 3)

z = np.linspace(-1.1, 1.1, 100)

plt.plot(z, phi(x,0,z), 'g', z, phi(x,1,z), 'r', z, phi(x,2,z),':')

plt.xlabel('x'); plt.ylabel('$\\varphi_{k}(x)$'); plt.title('Lagrange basis�

,!functions')

plt.legend(['$\\varphi_{0}$','$\\varphi_{1}$','$\\varphi_{2}$'])

plt.grid(True)

plt.show()
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Exercice Visualisez la base de Lagrange associée aux points xk = 1, 1.5, 2, 2.5, 3. Evaluez sur le
graphique les valeurs de jk(xj)

[12]: # plot the Lagrange Basis functions

x = np.linspace(1., 3, 5)

z = np.linspace(0.9, 3.1, 100)

plt.plot(z, phi(x,0,z), 'g', z, phi(x,1,z), 'r', z, phi(x,2,z),':', z,�

,!phi(x,3,z),':', z, phi(x,4,z),':')

plt.xlabel('x'); plt.ylabel('phi(x)'); plt.title('Lagrange Basis functions')

plt.legend(['$\\varphi_0$','$\\varphi_1$','$\\varphi_2$',

'$\\varphi_3$','$\\varphi_4$'])

plt.grid(True)

plt.show()
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1.2.2 Polynôme d’interpolation

Le polynôme d’interpolation Pn des valeurs yj aux noeuds xj, j = 0, . . . , n, s’écrit

Pn(x) =
n

Â
k=0

yk jk(x), (1)

car il vérifie Pn(xj) = Ân

k=0 yk jk(xj) = yj.

1.3 Interpolation d’une fonction continue

Soit f : [a, b] ! R continue et x0, . . . , xn 2 [a, b] des noeuds distincts. Le polynôme d’interpolation
Pn(x) est noté Pn f (x) et est appelé l’interpolant de f aux noeuds x0, . . . , xn.

Si on prend
yk = f (xk), k = 0, ..., n,

alors on aura

Pn f (x) =
n

Â
k=0

f (xk)jk(x).

Exercice Ecrivez une fonction Python qui a la définition suivante, en utilisant la fonction phi

définie plus haut. Ecrivez aussi un petit test sur la base de l’exercice précédent.
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# Lagrange Interpolation of data (x,y), evaluated at ordinate(s) z

def LagrangePi(x,y,z):

# the input variables are:

# x : the interpolatory points

# y : the corresponding data at the points x

# z : where to evaluate the function

Utilisez le fait que {jk, k = 0, ..., n} est une base des polynômes de degré  n et que le vecteur y

représente les coordonnées du polynôme d’interpolation recherché par rapport à cette base, c’est-
à-dire

Pn(z) = y0j0 + ... + yn jn

[13]: # importing libraries used in this book

import numpy as np

import matplotlib.pyplot as plt

from InterpolationLib import LagrangeBasis as phi

[14]: # Lagrange Interpolation of data (x,y), evaluated at ordinate(s) z

def LagrangePi(x,y,z):

# the input variables are:

# x : the interpolatory points

# y : the corresponding data at the points x

# z : where to evaluate the function

# {phi(x,k,.), k=0,...,n} is a basis of the polynomials of degree n

# y represents the coordinates of the interpolating polynomial with respect�

,!to this basis.

# Therefore LagrangePi(x,y,.) = y[0] phi(x,0,.) + ... + y[n] phi(x,n,.)

# careful, there are n+1 basis functions!

n = x.size - 1

# init result to zero, of same type and size as z

result = np.zeros_like(z)

# loop on n to compute the product

for k in range(0,n+1) :

result = result + y[k] * phi(x,k,z)

return result

[15]: # vecteur des points d'interpolation

x = np.linspace(0, 1, 5)

# vecteur des valeurs
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y = np.array([3.38, 3.86, 3.85, 3.59, 3.49])

z = np.linspace(-0.1, 1.1, 100)

plt.plot(x, y, 'ro', z, LagrangePi(x,y,z))

plt.xlabel('x'); plt.ylabel('y');

plt.legend(['data','p(x)'])

plt.show()

1.3.1 Erreur d’interpolation

Soient x0, x1, . . ., xn, (n + 1) nœuds équirépartis dans I = [a, b] et soit f 2 C
n+1(I). Alors

max
x2I

| f (x)� Pn f (x)|  1
2(n + 1)

✓
b � a

n

◆n+1
max
x2I

| f
(n+1)(x)|. (2)

On remarque que l’erreur d’interpolation dépend de la dérivée (n + 1)-ième de f .

Exercice On considère les points d’interpolation

x0 = 1, x1 = 1.75, x2 = 2.5, x3 = 3.25, x4 = 4

et la fonction
f (x) = x sin(2px)

.
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1. Calculez la base de Lagrange associée à ces points. D’abord sur papier, ensuite utilisez
Python pour en dessiner le graphique.

2. Calculez le polynôme d’interpolation Pn à l’aide de la base de Lagrange. D’abord sur papier,
ensuite avec Python.

3. Quelle est l’erreur théorique d’interpolation ?

Comportement pour n grand: eg, la fonction de Runge. Le fait que

lim
n!•

1
2(n + 1)

✓
b � a

n

◆n+1
= 0

n’implique pas forcément que maxx2I |En f (x)| tende vers zéro quand n ! •.

Soit f (x) =
1

1 + x2 , x 2 [�5, 5]. Si on l’interpole dans des noeuds équirépartis, l’interpolant
présente des oscillations au voisinage des extrémités de l’intervalle.

[16]: # Runge fonction

f = lambda x : 1./(1+x**2)

# Values of N to use

Nrange = [3,5,10]

# plotting points

z = np.linspace(-5, 5, 100)

for n in Nrange :

x = np.linspace(-5,5,n+1)

y = f(x);

plt.plot(z, LagrangePi(x,y,z), ':')

plt.plot(z,f(z), 'b')

plt.xlabel('x'); plt.ylabel('y'); plt.title('Runge function')

plt.legend(Nrange)

plt.show()
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sympy est une librairie pour le calcul symbolique en Python. Nous allons l’utiliser pour étudier le
comportement de l’erreur d’interpolation de la fonction de Runge.

[17]: # Using symbolic python to compute derivatives

import sympy as sp

# define x as symbol

x = sp.symbols('x')

# define Runge function

f = 1/(1+x**2)

# pretty print the 5th derivative of f

f5 = sp.diff(f, x,5)

# display f5

sp.init_printing(use_unicode=True)

display(f5)

# evalf can be used to compute the value of a function at a given point

print('5th derivative evaluated at 3 :')

print( f5.evalf(subs={x: 3}) )
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240x

✓
� 16x

4

(x2+1)2 +
16x

2

x2+1 � 3
◆

(x2 + 1)4

5th derivative evaluated at 3 :

-0.112320000000000

Pour définir une fonction qui accepte un array de valeur, il faut utiliser les lignes suivantes.

Ensuite on peut aussi dessiner le graphe . . .

[18]: # to evaluate a function at many given points, we need the following trick

diff_f_func = lambda t: float(sp.diff(f,x,k).evalf(subs={x: t}))

diff_f = np.vectorize(diff_f_func)

# the derivative can be set with k (not very elegant...)

k = 4

print(diff_f(4.5))

# plotting points

z = np.linspace(-5, 5, 100)

# plot the derivative between -5 and 5

plt.plot(z,diff_f(z), 'b')

plt.xlabel('t'); plt.ylabel('y'); plt.title('Derivatives of Runge function')

plt.legend(Nrange)

plt.show()

0.0102402235718104
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. . . ou évaluer le maximum pour plusieurs n et voir le comportement de max | f
(n)| en fonction de

n.

[19]: # Plot max(abs(fn)) in the range -5,5

z = np.linspace(-5, 5, 100)

Nmax = 10

maxValFn = np.zeros(Nmax)

for k in range(Nmax):

maxValFn[k] = np.max(np.abs(diff_f(z)))

plt.plot(range(10), maxValFn)

plt.yscale('log')

plt.xlabel('n'); plt.ylabel('$\max|\partial f|$');

plt.title('Max of $|\partial^n f|$');

plt.show()
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1.3.2 Interpolation de Chebyshev

Pour chaque entier positif n � 1, pour i = 0, . . . n, on note

x̂i = � cos(pi/n) 2 [�1, 1]

les points de Chebyshev et on définit

xi =
a + b

2
+

b � a

2
x̂i 2 [a, b],

pour un intervalle arbitraire [a, b]. Pour une fonction continue f 2 C
1([a, b]), le polynôme

d’interpolation Pn f de degré n aux noeuds {xi, i = 0, . . . , n} converge uniformément vers f quand
n ! •.

[20]: # Chebichev points on the interval [-1,1]

z = np.linspace(0,1, 100)

plt.plot(np.cos(np.pi*z), np.sin(np.pi*z))

n =5

z = np.linspace(0,1, n+1)

plt.plot(np.cos(np.pi*z), np.sin(np.pi*z), 'o')

plt.plot(np.cos(np.pi*z), 0*z, 'x')
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for k in range(0,n+1) :

plt.plot([np.cos(np.pi*z[k]),np.cos(np.pi*z[k])],[0,np.sin(np.pi*z[k])],':')

plt.axis('equal')

plt.xlabel('t');

plt.title('Chebyshev points')

plt.show()

Exemple On reprend le même exemple mais on interpole la fonction de Runge dans les points
de Chebyshev. La figure montre les polynômes de Chebyshev de degrés n = 5 et n = 10. On
remarque que les oscillations diminuent lorsqu’on augmente le degré du polynôme.

[21]: # Runge fonction

f = lambda x : 1./(1+x**2)

# Values of N to use

Nrange = [3,5,10]

# plotting points

[a,b] = [-5,5]

z = np.linspace(a,b, 100)

for n in Nrange :
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# Chebyshev points on [-1,1]

hx = -np.cos(np.pi*np.linspace(0,n,n+1)/n)

# mapped to [a,b]

x =(a+b)/2 + (b-a)/2*hx

y = f(x);

plt.plot(z, LagrangePi(x,y,z), ':')

plt.plot(z,f(z), 'b')

plt.xlabel('x'); plt.ylabel('y'); plt.title('Chebyshev interpolation')

plt.legend(Nrange)

plt.show()

[ ]:

1.4 Interpolation par intervalles

1.4.1 Interpolation linéaire par morceaux

Soit f : [a, b] ! R continue et a = x0 < . . . < xn = b.

On choisit une partition de [a, b] en N sous-intervalles de la forme [xi, xi+1], i = 0, ..., N � 1]. Sur

21



chaque sous-intervalle, on fait une interpolation de degré 1 avec les 2 noeuds xi, xi+1. Sur chaque
sous-intervalle Ii = [xi, xi+1], on interpole f|Ii

par un polynôme de degré 1. Le polynôme par
morceaux (polynôme composite) qu’on obtient est noté PH

1 f (x) et on a:

PH

1 f (x) = f (xi) +
f (xi+1)� f (xi)

xi+1 � xi

(x � xi) pour x 2 [xi, xi+1]

Dans le cas de données y, cela s’écrit

PH

1 (x) = yi +
yi+1 � yi

xi+1 � xi

(x � xi) pour x 2 [xi, xi+1]

Le choix le plus simple est le suivant :

• on pose H = b�a

N

• ensuite xi = a + iH pour i = 0, ..., N

[22]: # importing libraries used in this book

import numpy as np

import matplotlib.pyplot as plt

from InterpolationLib import PiecewiseLinearInterpolation as PiH1

La fonction PiH1 implémente l’interpolation linéaire par morceaux pour des points équidistribués

def PiecewiseLinearInterpolation(a,b,N,f,z):

# the input variables are:

# a,b : x[0] = a, x[n] = b

# f : the corresponding data at the points x

# z : where to evaluate the function

1.4.2 Exercice

Soient xk, k = 0, ..., 4 des points équidistribués sur l’intervalle [1, 5] et yk =
(3.38, 3.86, 3.85, 3.59, 3.49) les valeurs d’une fonction en ces points.

• Dessinez le graphe de l’interpolateur par morceaux de cette fonction
• Calculez numériquement (sur papier) la valeur de PH

1 (4.5) et vérifiez le résultat sur le
graphique

[23]: # intervalle d'interpolation

a = 1; b = 5

# vecteur des valeurs aux points equidistribué

y = np.array([3.38, 3.86, 3.85, 3.59, 3.49])

N = y.size-1

x = np.linspace(a,b,N+1)

z = np.linspace(a, b, 100)

plt.plot(x, y, 'ro', z, PiH1(a,b,N,y,z) )
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plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')

plt.legend(['data','p(x)'])

plt.show()

1.4.3 Exercice

Dessinez le graphe de la fonction de Runge et l’interpolateur linéaire par morceaux sur l’intervalle
[�5, 5] pour N = 3, 5, 10

[24]: # interval and function

a = -5; b = 5

f = lambda x : 1/(1+x**2)

# Values of N to use

Nrange = [3,5,10]

# plotting points

z = np.linspace(-5, 5, 100)

for N in Nrange :

plt.plot(z, PiH1(a,b,N,f,z), ':')

plt.plot(z, f(z), 'b')

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')

plt.legend(Nrange)
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plt.show()

1.4.4 Erreur d’interpolation linéaire par morceaux

Théorème Soient f 2 C
2([a, b]), H = b�a

N
, xi = a + iH pour i = 0, ..., N.

Soit E
H

1 f (x) = f (x)� PH

1 f (x), alors

max
x2I

| E
H

1 f (x) | H
2

4
max
x2I

| f
00(x)|.

Preuve D’après la formule, sur chaque intervalle Ii = [xi, xi+1], on a

max
x2[xi ,xi+1]

| E
H

1 f (x) | H
2

2(1 + 1)
max
x2Ii

| f
00(x) | .

Remarque On peut aussi montrer que, si l’on utilise un polynôme de degré n (� 1) et si l’on
dénote E

H
n f (x) = f (x)� PH

n f (x), dans chaque sous-intervalle Ii, on trouve

max
x2I

| E
H

n f (x) | H
n+1

2(n + 1)
max
x2I

| f
(n+1)(x)| .

1.4.5 Interpolation quadratique par morceaux

Soit f : [a, b] ! R continue et a = x0 < . . . < xn = b. Sur chaque sous-intervalle [xi, xi+1], on fait
une interpolation de degré 2 avec les 3 noeuds xi, x

i+ 1
2
, xi+1, où x

i+ 1
2

est le milieu de [xi, xi+1]. Sur
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chaque sous-intervalle Ii = [xi, xi+1], on interpole f|Ii
par un polynôme de degré 2. Le polynôme

par morceaux (polynôme composite) qu’on obtient est noté PH

2 f (x) et on a:

PH

2 f (x) = f (xi)j(i)
0 (x) + f (x

i+ 1
2
)j(i)

1 (x) + f (xi+1)j(i)
2 (x) pour x 2 [xi, xi+1]

où j(i)
0 (x), j(i)

1 (x), j(i)
0 (x) sont les polynômes de la base de Lagrange associés aux noeuds

(xi, x
i+ 1

2
, xi+1).

[25]: from InterpolationLib import PiecewiseQuadraticInterpolation as PiH2

# intervalle et fonction

a = -5; b = 5

f = lambda x : 1/(1+x**2)

# Values of N to use

Nrange = [3,5,10]

# plotting points

z = np.linspace(-5, 5, 100)

for N in Nrange :

plt.plot(z, PiH2(a,b,N,f,z), ':')

plt.plot(z, f(z), 'b')

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data')

plt.legend(Nrange)

plt.show()
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Exercice Calculez l’erreur d’interpolation de la fonction de Runge dans l’intervalle [�5, 5] quand
on utilise l’interpolation linéaire par morceaux

1. Théoriquement
2. Faites un graphique qui montre la convergence en fonction de H = b�a

N
= 10

N

3. Refaites le même exercice pour l’interpolation quadratique par morceaux

Remarque On s’attend à ce que l’erreur soit quadratique en H. Pour le voir il faut utiliser des
axes logarithmiques dans les deux directions.

Admettons que l’erreur converge quadratiquement vers 0 par rapport à H, e.g

err = lambda H : 3*H**2 + 2*H**3;

Comment est le graphique de cette fonction dans l’intervalle [10�6, 1] ? Que se passe-t-il si on
change les axes avec plt.xscale('log') et plt.yscale('log') ? Quelle est la pente de err dans
ce système ?

[26]: ## Assume the error is quadratic

err = lambda H : 10*H**2 + 20*H**3;

# take h has powers of 2: 2^(-20),2^(-19), ..., 2^(-1)

h = np.power(2,np.linspace(-20, -1, 20, endpoint=True) )

plt.plot(h, err(h), 'b:.')

plt.xlabel('h'); plt.ylabel('err');

# plt.xscale('log')

# plt.yscale('log')

plt.grid(True)

# try with and wothout equal axis

plt.axis('equal')

plt.show()
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[ ]:

1.5 Approximation au sens des moindres carrés

Soit m � 0 un nombre entier. Etant donnés (n + 1) points distincts x0, x1,. . . xn et (n + 1) valeurs
y0, y1,. . . yn, on cherche un polynôme p de degré m < n , tel que

n

Â
j=0

|yj � p(xj)|2 soit le plus petit possible.

On appelle polynôme aux moindres carrés de degré m le polynôme p̂n(x) de degré m tel que

n

Â
j=0

|yj � p̂n(xj)|2 
n

Â
j=0

|yj � pn(xj)|2 8pm(x) 2 Pm (3)

Nous cherchons les coefficients du polynôme p(x) = a0 + a1x + ... + amx
m qui satisfait au mieux

les (n + 1) équations p(xk) = yk, k = 0, ..., n, c’est-à-dire

a0 + a1xk + ... + amx
m

k
= yk, k = 0, ..., n

Ce système s’écrit sous forme matricielle
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Puisque m < n, on ne peut pas résoudre ce système de façon classique.

Il faut le résoudre au sens des moindres carrés, en considérant:

B
T

Ba = B
Ty

Où B est la matrice (m + 1)⇥ (n + 1) du système, a 2 Rn+1 le vecteur des inconnues et y 2 Rm+1

le vecteur des données.

Ce système linéaire est dit système d’équations normales. On peut montrer que les équations
normales sont équivalentes au problème de minimisation.

Remarque: La résolution de ce système demande parfois des méthodes plus avancées que l’élimination de

Gauss, comme la factorisation QR. Pour l’instant on va se contenter d’utiliser np.linalg.solve

Pour construire cette matrice, vous pouvez utiliser la fonction

def VandermondeMatrix(x, m=0):

# Input

# x : +1 array with interpolation nodes

# m : degree of the polynomial. If empty, chooses m=size(x)-1

# Output

# Matrix of Vandermonde of size m x n

que vous pouvez importer avec la commande

from InterpolationLib import VandermondeMatrix

Exemple On considère un test mécanique pour établir le lien entre contraintes (MPa =
100N/cm

2) et déformations relatives (cm/cm) d’un échantillon de tissu biologique (disque inter-
vertébral, selon P. Komarek, Ch. 2 de Biomechanics of Clinical Aspects of Biomedicine, 1993, J. Valenta
ed., Elsevier).
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On cherche à approximer au sens des moindres carrés avec un polynôme p̂n de degré n = 1, 2, 3.
Les mesures effectuées sont les suivantes

sigma = np.array([0.00, 0.06, 0.14, 0.25, 0.31, 0.47, 0.50, 0.70]);

epsilon = np.array([0.00, 0.08, 0.14, 0.20, 0.22, 0.26, 0.27, 0.29]);

[27]: # importing libraries used in this book

import numpy as np

import matplotlib.pyplot as plt

from InterpolationLib import VandermondeMatrix

[28]: # data given:

sigma = np.array([0.00, 0.06, 0.14, 0.25, 0.31, 0.47, 0.50, 0.70]);

epsilon = np.array([0.00, 0.08, 0.14, 0.20, 0.22, 0.26, 0.27, 0.29]);

# degree of the polynomial

m = 1;

B = VandermondeMatrix(sigma,m)

# print(B)

# compute coefficients

a = np.linalg.solve( B.T.dot(B), B.T.dot(epsilon))
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# print the coefficients on screen

print('The coefficients a_0, ..., a_m are')

print(a)

The coefficients a_0, ..., a_m are

[0.06288442 0.39379615]

[29]: def polynomial(a,x):

m = a.size-1

# \hat p = a_0 + a_1 x + ... + a_n x^m

# is equal to the scalar product between the vectors a and (1, x, ..., x^m) :

return np.power( np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).dot(a)

# points used to plot the graph, slightly larger than data

z = np.linspace(sigma[0]-0.1, sigma[-1]*1.1, 100)

plt.plot(sigma, epsilon, 'ro', z, polynomial(a,z),'b')

plt.xlabel('$\sigma$'); plt.ylabel('$\epsilon$');

plt.legend(['data','$\hat p_n$'])

plt.show()

30



The coefficients a_0, ..., a_n are

[-0.01356599 0.00791249]

[34]: def expPolynomial(a,x):

m = a.size-1

# \hat p = a_0 + a_1 x + ... + a_n x^m

# is equal to the scalar product between the vectors a and (1, x, ..., x^m) :

return np.exp(np.power( np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).

,!dot(a))

# points used to plot the graph, slightly larger than data

z = np.linspace(x[0], 2020, 100)

plt.plot(x, np.exp(y), 'ro', z, expPolynomial(a,z),'b')

plt.xlabel('année'); plt.ylabel('Population');

plt.legend(['data','$\hat p_n$'])

plt.show()

[ ]:
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