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1 Interpolation et approximation de données

1.1 Position du probléme
1.1.1 Interpolation de données

Soit n > 0 un nombre entier. Etant donnés (1 4 1) noeuds distincts xg, x1,... x, et (n + 1) valeurs
Y0, Y1,- - - Yn, on cherche un polynome p de degré n, tel que

plg)=y;  pour0<j<n

Exemple On cherche le polyndme 11, de degré n = 4 tel que I—In(x]') =Y j =1,..5 avec les
données suivantes



Xk Yk

1 3
15 4
2 2
25 5
3 1

[1]: | # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

[2]:  # Some data given: z=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1
X = np.linspace(l, 3, 5) # equivalent to np.array([ 1, 1.5, 2, 2.5, 3 ])
y = np.array([3, 4, 2, 5, 1])

# Plot the points using matplotlibd
plt.plot(x, y, 'ro')

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(['data'])
plt.show()

5.0 1 ® ® data
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Si ce polyndme existe, on le note p = I1,,. On appelle 11, le polynéme d’interpolation des valeurs
yjauxnoeuds xj, j =0,...,n.



[3]: # Plot the interpolating function

# Defining the polynomial function
def p(x):
# coefficients of the interpolating polynomial
a = np.array([-140.0, 343.0, -872./3., 104.0, -40./3.1)

# value of the polynomial in all the points t
return al[0] + alll*x + al[2]*(x**2) + al[3]*(x**3) + al[4]*(x**4)

# points used to plot the graph
z = np.linspace(l, 3, 100)

plt.plot(x, y, 'ro', z, p(z))
plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(['data', '$\Pi_2(x)$'1)

plt.show()
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1.1.2 Interpolation de fonctions

Soit f € C(I) et x, ..., x, € I. Si on prend

]/]:f(x]), OS]SH,



alors le polyndéme d’interpolation IT,(x) est noté IL,f(x) et est appelé l'interpolant de f aux
noeuds xy,. .. X;.

Exemple Soient
x1=1,x=175,x3 =25,x4 =3.25,x5 =4

les points d’interpolation et
f(x) = xsin(27x).
On cherche l'interpolant I'l,, f de degré n = 4
[4]: | # defining the fonction that we want to interpolate

def f(x):
return x*np.sin(x*2.*np.pi)

# The interpolation must occour at points z=1, 1.75, 2.5, 3.25, 4
x = np.linspace(l, 4, 5)

# points used to plot the graph
z = np.linspace(l, 4, 100)

plt.plot(x, f(x), 'ro', z, f(z),':")

# labels, title, legend

plt.xlabel('x'); plt.ylabel('$f(x)$'); #plt.title('data’)
plt.legend(['$f(x_k)$', '$£(x)$'1)

plt.show()

10 15 20 25 30 35 40



[5]: # Plot the interpolating function

# Defining the polynomial function

def p(x):
# coefficients of the interpolating polynomial
a = np.array([0, 7.9012, -13.037, 5.9259, -0.79012])

# value of the polynomial in all the points x
return af[0] + al1l*x + al[2]*(x**2) + al3]*(x*x*3) + al4]*(x**4)

# points where to evaluate the polynomial

z = np.linspace(1l, 4, 100)

plt.plot(x, f(x), 'ro', z, £(z),':"', z, p(z))
plt.xlabel('$x$'); plt.ylabel('$f(x)$'); #plt.title('data’)

plt.legend(['$f(x_k)$', '$£(x)$"', '$\Pi_n(x)$']1)

plt.show()

10 15 20 25 30 35 40

1.1.3 Matrice de Vandermonde

Il est possible d’écrire un systeme d’équations et de trouver les coefficients de maniére directe. Ce
n’est pas toujours la meilleure solution.



Nous cherchons les coefficients du polynéme p(x) = ag + a1x + ... + a,x" qui satisfont les (n + 1)
équations p(xg) = yx, k =0, ..., n, c’est-a-dire

ao+ a1 Xk + .. + apx} =y, k=0,..,n

Ce systéeme s’écrit sous forme matricielle

1 x x3 xp ag Yo
1 x, 22 - x") \ay, Yn

Pour construire cette matrice, vous pouvez utiliser la fonction

# Defining the mzn Vandermonde matriz
def VandermondeMatrix(x):
# Input
# x : +1 array with interpolation nodes
# Output
# Matrixz of Vandermonde of size n = n

que vous pouvez importer avec la commande
from InterpolationLib import VandermondeMatrix

Exemple On cherche les coefficients du polynome d’interpolation de degré n = 4 des valeurs

suivantes
Xk Yk
1 3
15 4
2 2
25 5
3 1

[6]: from InterpolationLib import VandermondeMatrix

# Some data given: z=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1
x = np.linspace(l, 3, 5)

y = np.array([3, 4, 2, 5, 11)

n = x.size - 1

A = VandermondeMatrix(x)

# print (4)

# compute coefficients
a = np.linalg.solve(d, y) # Resouds Az = b avec b=y et rends z



# print the coeffictents on screen

print('The coefficients a_0, ..., a_n are')

print(a)

The coefficients a_0, ..., a_n are

[-140. 343. -290.66666667 104. -13.33333333]

[7]1: # Now we can define the polynomial
p = lambda x : al[0] + al[l]l*x + a[2]*(x**2) + a[3]*(x**3) + al4]*(x*x*4)

# points used to plot the graph
z = np.linspace(l, 3, 100)

plt.plot(x, y, 'ro', z, p(z))
plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(['data', 'p(x)'])

plt.show()
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1.1.4 Alternatives : polyfit et polyval

Les fonctions polyfit et polyval de numpy font essentiellement la méme chose que les para-
graphes ci-dessous. Plus tard nous verrons des méthodes plus performantes.

a = numpy.polyfit(x, y, n, ... ):

¢ input: x,y les données a interpoler, n le degré du polyndme recherché



* output : les coefficients du polyndme, dans I'ordre inverse de ce que nous avons vu !

[8]: Some data given: z=1, 1.5, 2, 2.5, 3 and y = 3,4,2,5,1
= np.linspace(l, 3, 5)
np.array([3, 4, 2, 5, 1])

x.size - 1

B Mow
I

np.polyfit(x,y,n)

)
Il

# Now we can define the polynomial, with coeffs in the reverse order !
p = lambda x : al4] + al[3]*x + a[2]*(x**2) + al[l1]lx(x**3) + al0]*(x**4)

# We can also use polyval instead !
# np.polyval (a,z)

# points used to plot the graph
z = np.linspace(l, 3, 100)

plt.plot(x, y, 'ro', z, p(z), '.', z, np.polyval(a,z))
plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(['data’', 'p(x)', 'polyval'l)

plt.show()

® data
¢ plx)
14 polyval
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[]:



1.2 Interpolation de Lagrange
1.2.1 Base de Lagrange

On considere les polynomes ¢, k = 0, ..., n de degré n tels que

or(xj)) =0,  kj=0,...,n,

oudj =1sij=ketdy =0sij# k. Explicitement, on a

o (x—x)
]
pi(x) = :
=0,k (xk - xj)
[9]: | # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

Exercice (théorique) Vérifiez que

1. B={¢rk=0,...,n} est une base de P,(R)
2. Chaque polynome ¢y est de degré n
3. q)k(x]) = jkl k,ij,...,n

[10]: # Defining the Lagrange bastis functions
def phi(x,k,z):
# the input variables are:
# x : the interpolatory points
# k : which basts function
# z : where to evaluate the function

# careful, there are n+l interpolation points!
n = x.size - 1

# init result to ome, of same type and size as z
result = np.zeros_like(z) + 1

# first few checks on k:
if (type(k) != int) or (x.size < 1) or (k > n) or (k < 0):
raise ValueError('Lagrange basis needs a positive integer k, smaller,
—than the size of x')

# loop on n to compute the product
for j in range(0,n+1)
if (j == k)
continue

if (x[k] == x[j1)



raise ValueError('Lagrange basis: all the interpolation points need
—~to be distinct')

result = result * (z - x[j]) / (x[x] - x[j])

return result

Exemple Pourn =2,x)= —1,x; =0, xo =1, les polynomes de la base de Lagrange sont

X —x1)(x —x 1

po(x) = (o—x%;xo—;z =5x(x—1),
x —xp)(x —x

piix) = xl—xz <x1—§2 kD)
(x — xOS(x —x1)

= = 1
P2(x) (x2 — x0) (%2 — x1) 2 x(x+1).

[11]: # plot the Lagrange Basis functions
x = np.linspace(-1., 1, 3)
z = np.linspace(-1.1, 1.1, 100)

plt.plot(z, phi(x,0,z), 'g', z, phi(x,1,z), 'r', z, phi(x,2,2),':")

plt.xlabel('x'); plt.ylabel('$\\varphi_{k}(x)$'); plt.title('Lagrange basis
—~functions"')

plt.legend(['$\\varphi_{0}$"', '$\\varphi_{1}$"', '$\\varphi_{2}$'])
plt.grid(True)
plt.show()
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Lagrange basis functions

ol x)

Exercice Visualisez la base de Lagrange associée aux points x; = 1,1.5,2,2.5,3. Evaluez sur le
graphique les valeurs de ¢ (x;)

[12]: # plot the Lagrange Basis functions
x = np.linspace(l., 3, 5)
z = np.linspace(0.9, 3.1, 100)

plt.plot(z, phi(x,0,z), 'g', z, phi(x,1,2), 'r', z, phi(x,2,2),':', 2z,
~phi(x,3,2z),':', z, phi(x,4,2),"':")

plt.xlabel('x'); plt.ylabel('phi(x)'); plt.title('Lagrange Basis functions')
plt.legend(['$\\varphi_0$"', '$\\varphi_1$','$\\varphi_28',
"$\\varphi_3$', '$\\varphi_4$'])
plt.grid(True)
plt.show()

11



Lagrange Basis functions
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1.2.2 Polynoéme d’interpolation

Le polyndme d’interpolation I'l, des valeurs y; aux noeuds x;, j = 0,. .., n, s’écrit
n
I, (x) = Y yege(x), (1)
k=0

car il vérifie Hn(xj) =Yr0 ykqvk(x]') =VYj-

1.3 Interpolation d’une fonction continue

Soit f : [a,b] — R continue et x, ..., x, € [a,b] des noeuds distincts. Le polynéme d’interpolation
IT,(x) est noté I'L, f(x) et est appelé I'interpolant de f aux noeuds xy, . .., xj.

Si on prend
Ve = f(xx),k=0,..,n,

alors on aura
n

I f(x) =} f () pe(x).

k=0

Exercice Ecrivez une fonction Python qui a la définition suivante, en utilisant la fonction phi
définie plus haut. Ecrivez aussi un petit test sur la base de 1’exercice précédent.

12



# Lagrange

Interpolation of data (x,y), evaluated at ordinate(s) z

def LagrangePi(x,y,z):
# the input variables are:
# ¢ : the interpolatory points
# y : the corresponding data at the points x
# z : where to evaluate the function

Utilisez le fait que {@k, k = 0, ..., n} est une base des polynomes de degré < n et que le vecteur y
représente les coordonnées du polyndme d’interpolation recherché par rapport a cette base, c’est-

a-dire

].—.[n(Z) = YoPo + ...+ YnPn

[13]:  # <mporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from InterpolationLib import LagrangeBasis as phi

[14]: | # Lagrange

Interpolation of data (z,y), evaluated at ordinate(s) z

def LagrangePi(x,y,z):

# the

wnput variables are:

# x : the interpolatory points

# y : the corresponding data at the points x

# z : where to evaluate the function

# {phi(z,k,.), k=0,...,n} is a basis of the polynomials of degree n

# y represents the coordinates of the interpolating polynomial with respect,
—to this basis.

# Therefore LagrangePi(z,y,.) = y[0] phi(z,0,.) + ... + y[n] phi(z,n,.)

# careful, there are n+l basis functions!

n = Xx.

size - 1

# init result to zero, of same type and size as z

result

= np.zeros_like(z)

# loop on n to compute the product

for k

in range(0,n+1)

result = result + y[k] * phi(x,k,z)

return result

[15]: | # vecteur

des points d'interpolation

x = np.linspace(0, 1, 5)

# vecteur

des valeurs

13



y = np.array([3.38, 3.86, 3.85, 3.59, 3.49])

z = np.linspace(-0.1, 1.1, 100)
plt.plot(x, y, 'ro', z, LagrangePi(x,y,z))

plt.xlabel('x'); plt.ylabel('y');
plt.legend(['data’', 'p(x)'])

plt.show()
® data
38 - — px)
36 1
-
34
32 A
3-0 ’ Ll T I L I |
0.0 0.2 04 0.6 08 10

1.3.1 Erreur d’interpolation

Soient xo, X1, . . ., Xn, (n + 1) nceuds équirépartis dans I = [a, b] et soit f € C"*!(I). Alors

. n+1
max () ~ T f(0)] < 5ot (P5) maxl ) @

xel (n+1 xel
On remarque que l'erreur d’interpolation dépend de la dérivée (1 + 1)-ieme de f.

Exercice On considére les points d’interpolation
X0 — 1, X1 = 1.75, Xy = 2.5, X3 = 325, Xq4 = 4

et la fonction
f(x) = xsin(27x)

14



[16]:

1. Calculez la base de Lagrange associée a ces points. D’abord sur papier, ensuite utilisez
Python pour en dessiner le graphique.

2. Calculez le polynome d’interpolation I'l; a l'aide de la base de Lagrange. D’abord sur papier,
ensuite avec Python.

3. Quelle est I’erreur théorique d’interpolation ?

Comportement pour n grand: eg, la fonction de Runge. Le fait que

1 b—ﬂ n+1
;115202(71—1-1)( n > =0

n’implique pas forcément que maxy¢y |E,. f (x)| tende vers zéro quand n — co.

Soit f(x) = T x € [-5,5]. Si on linterpole dans des noeuds équirépartis, l'interpolant
présente des oscillations au voisinage des extrémités de l'intervalle.

# Runge fonction
f = lambda x : 1./(1+x**2)

# Values of N to use
Nrange = [3,5,10]

# plotting points

z = np.linspace(-5, 5, 100)

for n in Nrange :

x = np.linspace(-5,5,n+1)
y = £(x);
plt.plot(z, LagrangePi(x,y,z), ':')

plt.plot(z,f(z), 'b')

plt.xlabel('x'); plt.ylabel('y'); plt.title('Runge function')
plt.legend (Nrange)

plt.show()

15



Runge function
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sympy est une librairie pour le calcul symbolique en Python. Nous allons l'utiliser pour étudier le
comportement de I’erreur d’interpolation de la fonction de Runge.

[17]: # Using symbolic python to compute derivatives
import sympy as sp

# define = as symbol
X = sp.symbols('x")

# define Runge function
f = 1/(1+x*%2)

# pretty print the 5th derivative of f
f5 = sp.diff(f, x,5)

# display f5
sp.init_printing(use_unicode=True)
display(£5)

# evalf can be used to compute the value of a function at a given point
print('5th derivative evaluated at 3 :')
print( f5.evalf (subs={x: 3}) )

16



[18]:

16x* 16x>
240x <—(x2+x1)2 xz—f-l — 3>

(2 +1)*
5th derivative evaluated at 3 :
-0.112320000000000
Pour définir une fonction qui accepte un array de valeur, il faut utiliser les lignes suivantes.

Ensuite on peut aussi dessiner le graphe ...

# to evaluate a function at many given points, we need the following trick
diff_f_func = lambda t: float(sp.diff(f,x,k).evalf(subs={x: t}))
diff_f = np.vectorize(diff_f_func)

# the derivative can be set with k (not very elegant...)
k=4
print(diff_£(4.5))

# plotting points
z = np.linspace(-5, 5, 100)
# plot the derivative between -5 and 5

plt.plot(z,diff_f(z), 'b')
plt.xlabel('t'); plt.ylabel('y'); plt.title('Derivatives of Runge function')

plt.legend(Nrange)
plt.show()

0.0102402235718104
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Derivatives of Runge function
” — 3

~

. ou évaluer le maximum pour plusieurs 7 et voir le comportement de max | f(")| en fonction de
n.

[19]: | # Plot maz(abs(fn)) in the range -5,5
z = np.linspace(-5, 5, 100)

Nmax = 10
maxValFn = np.zeros(Nmax)
for k in range(Nmax) :
maxValFn[k] = np.max(np.abs(diff_£(z)))

plt.plot(range(10), maxValFn)
plt.yscale('log')
plt.xlabel('n'); plt.ylabel('$\max|\partial f|$');

plt.title('Max of $|\partial™n f[|$');
plt.show()

18



[20]:

Max of |a”f]

10° 1
10° 5
‘E_ 103 4
b
[1o]
=
10° 4
10 +
10‘3 -
0 2 4 6 8
n
1.3.2 Interpolation de Chebyshev
Pour chaque entier positif n > 1, pouri = 0,...n, on note
% = —cos(mi/n) € [—1,1]
les points de Chebyshev et on définit
a+b b—a,
X = + 5 i € [a,b],

pour un intervalle arbitraire [4,b]. Pour une fonction continue f € C!([a,b]), le polyndme
d’interpolation I'l, f de degré n aux noeuds {x;,i =0, ..., n} converge uniformément vers f quand

n — 00.

# Chebichev points on the interval [-1,1]

z = np.linspace(0,1, 100)
plt.plot(np.cos(np.pi*z), np.sin(np.pi*z))
n =5
z = np.linspace(0,1, n+1)
plt.plot(np.cos(np.pi*z),
plt.plot(np.cos(np.pi*z),

np.sin(anp.pi*z), 'o')
O*xz, 'x')

19



[21]:

e

for k in range(O,n+1) :
plt.plot([np.cos(np.pi*z[k]),np.cos(np.pi*z[k])], [0,np.sin(np.pi*z[k])],":
plt.axis('equal')
plt.xlabel('t');
plt.title('Chebyshev points')
plt.show()
Chebyshev points

12 4

10

0.8 A
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-0.2 4

-1.00 -0.75 -0.50 -0.25 000

025 050 075 100

t

Exemple On reprend le méme exemple mais on interpole la fonction de Runge dans les points
de Chebyshev. La figure montre les polynomes de Chebyshev de degrés n = 5et n = 10. On
remarque que les oscillations diminuent lorsqu’on augmente le degré du polyndme.

# Runge fonction
f = lambda x : 1./(1+x%%2)

# Values of N to use
Nrange = [3,5,10]

# plotting points
[a,b] = [-5,5]

z = np.linspace(a,b, 100)

for n in Nrange :

20



[]1:

# Chebyshev points on [-1,1]

hx = -np.cos(np.pi*np.linspace(0,n,n+1)/n)
# mapped to [a,b]

x =(atb)/2 + (b-a)/2*hx

y = £(x);
plt.plot(z, LagrangePi(x,y,z), ':')
plt.plot(z,f(z), 'b')

plt.xlabel('x"'); plt.ylabel('y'); plt.title('Chebyshev interpolation')
plt.legend(Nrange)

plt.show()
Chebyshev interpolation
10 A
0.8 1
0.6 1
)
0.4 1
0.2 1
0.0 1 T T T T T
-4 -2 0 2 -
X

1.4 Interpolation par intervalles
1.4.1 Interpolation linéaire par morceaux
Soit f : [a,b] — R continueeta = xp < ... < x, = b.

On choisit une partition de [a,b] en N sous-intervalles de la forme [x;, x;11],i = 0,..., N —1]. Sur

21



[22]:

[23]:

chaque sous-intervalle, on fait une interpolation de degré 1 avec les 2 noeuds x;, x;;1. Sur chaque
sous-intervalle I; = [x;,x;;1], on interpole f|; par un polynome de degré 1. Le polynome par
morceaux (polyndme composite) qu’on obtient est noté ITH f(x) et on a:

M () = fa) + LD ZFED () pourx € [ i)

Xiy1 — X
Dans le cas de données y, cela s’écrit
H Yit1 — Vi
I (x) =yi + =———=(x —x;) pourx € [x;, Xj1]
Xit1 — X

Le choix le plus simple est le suivant :

J onposeH:bﬁ”

¢ ensuitex; =a+iH pouri=0,..,N

# amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from InterpolationLib import PiecewiselinearInterpolation as PiH1

La fonction PiH1 implémente l'interpolation linéaire par morceaux pour des points équidistribués

def PiecewiseLinearInterpolation(a,b,N,f,z):
# the input wvariables are:
# a,b : z[0] = a, z[n] = Db
# f : the corresponding data at the points
# z : where to evaluate the function

1.4.2 Exercice

Soient xi,k = 0,..,4 des points équidistribués sur lintervalle [1,5] et y =
(3.38,3.86,3.85,3.59, 3.49) les valeurs d'une fonction en ces points.

¢ Dessinez le graphe de l'interpolateur par morceaux de cette fonction
* Calculez numériquement (sur papier) la valeur de I (4.5) et vérifiez le résultat sur le

graphique
# intervalle d'interpolation
a=1; b=5
# vecteur des wvaleurs aux points equidistribué
y = np.array([3.38, 3.86, 3.85, 3.59, 3.49])
N = y.size-1
x = np.linspace(a,b,N+1)

N
Il

np.linspace(a, b, 100)
plt.plot(x, y, 'ro', z, PiH1(a,b,N,y,z) )
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plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(['data’', 'p(x)'])

plt.show()
® data
38 - — p(x)
3.7 1
™ 361
3.5 1
34 -

10 15 20 25 30 35 40 45 5.0

1.4.3 Exercice

Dessinez le graphe de la fonction de Runge et 'interpolateur linéaire par morceaux sur 'intervalle
[—5,5] pour N = 3,5,10

[24]: # interval and function
a=-5;b=5
lambda x : 1/(1+x**2)

'_h
1l

# Values of N to use
Nrange = [3,5,10]

# plotting points

z = np.linspace(-5, 5, 100)

for N in Nrange :
plt.plot(z, PiH1(a,b,N,f,z), ':')

plt.plot(z, f(z), 'b')

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(Nrange)
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plt.show()
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0.6 1
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1.4.4 Erreur d’interpolation linéaire par morceaux
Théoréme Soient f € C?([a,b]), H = b_T“, xi=a+iHpouri=0,..,N.

Soit Ef f(x) = f(x) — [T f(x), alors

HZ
H < 1" )
max | Ey' f(x) |< - max |f"(x)|

Preuve D’apres la formule, sur chaque intervalle I; = [x;, xj;1], ona

HZ
EH <t Z .
(max TES @) 1< g gy mad £

Remarque On peut aussi montrer que, si 'on utilise un polynome de degré n (> 1) et si I'on
dénote EX f(x) = f(x) — IT}1f(x), dans chaque sous-intervalle I;, on trouve

max | EHf(x) |< Lﬂrrlax\f(”ﬂ)(x)].
x€l n - 2(71 + 1) xel

1.4.5 Interpolation quadratique par morceaux

Soit f : [a,b] — R continue eta = xp < ... < x, = b. Sur chaque sous-intervalle [x;, x;1], on fait
une interpolation de degré 2 avec les 3 noeuds x;, x; 110 %ig, ou x; +1 est le milieu de [x;, x;41]. Sur
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[25]:

chaque sous-intervalle I; = [x;, x;11], on interpole f|; par un polyndme de degré 2. Le polynome
par morceaux (polyndme composite) qu’on obtient est noté I} f(x) et on a:

M5 f(x) = F(xi)gy) () + f(x; )9t (¥) + f(xia) @y (x)  pour x € [xj, ¥ 11]

(i) (i)

ot ¢y’ (x), ; (x),q)(()i)(x) sont les polyndomes de la base de Lagrange associés aux noeuds

(xi, Xitls Xit1)-
from InterpolationLib import PiecewiseQuadraticInterpolation as PiH2
# intervalle et fonction

a=-5;b=5
f lambda x : 1/(1+x**2)

# Values of N to use
Nrange = [3,5,10]

# plotting points

z = np.linspace(-5, 5, 100)

for N in Nrange :
plt.plot(z, PiH2(a,b,N,f,z), ':")

plt.plot(z, f£(z), 'b")

plt.xlabel('x'); plt.ylabel('y'); #plt.title('data’)
plt.legend(Nrange)

plt.show()
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[26]:

Exercice Calculez1’erreur d’interpolation de la fonction de Runge dans l'intervalle [—5, 5] quand
on utilise I'interpolation linéaire par morceaux

1. Théoriquement
2. Faites un graphique qui montre la convergence en fonction de H = h;N” = %
3. Refaites le méme exercice pour l'interpolation quadratique par morceaux

Remarque On s’attend a ce que l'erreur soit quadratique en H. Pour le voir il faut utiliser des
axes logarithmiques dans les deux directions.

Admettons que I'erreur converge quadratiquement vers 0 par rapport a H, e.g
err = lambda H : 3*xH**2 + 2%H*%*3;

Comment est le graphique de cette fonction dans I'intervalle [107%,1] ? Que se passe-t-il si on
change les axes avec plt.xscale('log') et plt.yscale('log') ? Quelle est la pente de err dans
ce systeme ?

## Assume the error is quadratic
err = lambda H : 10xH**2 + 20%H**3;

# take h has powers of 2: 2°(-20),2°(-19), ..., 2°(-1)
h = np.power(2,np.linspace(-20, -1, 20, endpoint=True) )

plt.plot(h, err(h), 'b:.')
plt.xlabel('h'); plt.ylabel('err');

# plt.zscale('log')
# plt.yscale('log')

plt.grid(True)

# try with and wothout equal azts
plt.axis('equal')

plt.show()
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1.5 Approximation au sens des moindres carrés

Soit m > 0 un nombre entier. Etant donnés (1 4 1) points distinets xg, x1,... x, et (n + 1) valeurs
Y0, Y1,- - - Yn, on cherche un polynome p de degré m < n , tel que

n
Z lyj — p(x)) 2 soit le plus petit possible.
j=0

On appelle polyndéme aux moindres carrés de degré m le polynome p,(x) de degré m tel que

n

Y lyi = pu(x)P < Y lyj— pu(x))* Vpu(x) € Py 3)
=0 =0

Nous cherchons les coefficients du polynéme p(x) = ag + a1x + ... + a,x™ qui satisfait au mieux
les (n + 1) équations p(xx) = yx, k =0, ..., n, c’est-a-dire

ap+ a1 xg + ... +amxy =y, k=0,..,n

Ce systeme s’écrit sous forme matricielle
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1 x - x\ [ag Yo

1 x, --- X! i Yn

Puisque m < n, on ne peut pas résoudre ce systeme de fagon classique.

Il faut le résoudre au sens des moindres carrés, en considérant:
B'Ba = BTy
Ou B est la matrice (m + 1) x (n+ 1) du systéme, a € R"*! le vecteur des inconnues et y € R"*!

le vecteur des données.

Ce systeme linéaire est dit systeme d’équations normales. On peut montrer que les équations
normales sont équivalentes au probléme de minimisation.

Remarque: La résolution de ce systeme demande parfois des méthodes plus avancées que I'élimination de
Gauss, comme la factorisation QR. Pour l'instant on va se contenter d'utiliser np.linalg.solve

Pour construire cette matrice, vous pouvez utiliser la fonction

def VandermondeMatrix(x, m=0):

que vous pouvez importer avec la commande

from InterpolationlLib import VandermondeMatrix

Exemple On considére un test mécanique pour établir le lien entre contraintes (MPa =
100N /cm?) et déformations relatives (cm/cm) d’un échantillon de tissu biologique (disque inter-
vertébral, selon P. Komarek, Ch. 2 de Biomechanics of Clinical Aspects of Biomedicine, 1993, ]. Valenta
ed., Elsevier).
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" disques intervertébraux

On cherche a approximer au sens des moindres carrés avec un polynéme p, de degré n = 1,2,3.
Les mesures effectuées sont les suivantes

sigma = np.array([0.00, 0.06, 0.14, 0.25, 0.31, 0.47, 0.50, 0.70]1);
epsilon = np.array([0.00, 0.08, 0.14, 0.20, 0.22, 0.26, 0.27, 0.29]);

[27]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt
from InterpolationlLib import VandermondeMatrix
[28]: # data given:
sigma = np.array([0.00, 0.06, 0.14, 0.25, 0.31, 0.47, 0.50, 0.70]);
epsilon = np.array([0.00, 0.08, 0.14, 0.20, 0.22, 0.26, 0.27, 0.29]);

# degree of the polynomzal
m=1;

B = VandermondeMatrix(sigma,m)
# print (B)

# compute coefficients
a = np.linalg.solve( B.T.dot(B), B.T.dot(epsilon))
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# print the coefficients on screen

print('The coefficients a_0, ..., a_m are')
print(a)
The coefficients a_0, ..., a_m are

[0.06288442 0.39379615]

[29]: def polynomial(a,x):
m = a.size-1
# \hat p = a_0 +a_lz+ ... +a.nz™m
# 1is equal to the scalar product between the vectors a and (1, =, ..., °m)
return np.power( np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).dot(a)

# points used to plot the graph, slightly larger than data
z = np.linspace(sigma[0]-0.1, sigma[-1]*1.1, 100)

plt.plot(sigma, epsilon, 'ro', z, polynomial(a,z),'b')
plt.xlabel('$\sigma$'); plt.ylabel('$\epsilon$');
plt.legend(['data','$\hat p_n$'l)

plt.show()
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The coefficients a_0, ..., a_n are
[-0.01356599 0.00791249]

[34]: def expPolynomial(a,x):
m = a.size-1
# \hat p = a_0 + a_l x + ... + a_n x’m

# 1s equal to the scalar product between the vectors a and (1, z, ..., z°m) :

return np.exp(np.power( np.tile(x, (m+1, 1)).T , np.linspace(0,m,m+1)).
~dot(a))

# points used to plot the graph, slightly larger than data
z = np.linspace(x[0], 2020, 100)

plt.plot(x, np.exp(y), 'ro', z, expPolynomial(a,z),'b')
plt.xlabel('année'); plt.ylabel('Population');
plt.legend(['data','$\hat p_n$'])

plt.show()
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