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1 Equations non-linéaires

Objectif : trouver les zéros (ou racines) d’une fonction f : [a,b] - R :
a€la,b] : fla)=0
# amporting libraries used in this book

import numpy as np
import matplotlib.pyplot as plt

# defining the fonction that we want to interpolate
def f(x):
return x*np.sin(x*2.*np.pi) + 0.5%x - 0.25

[a,b] = [-2,2]

# points used to plot the graph
z = np.linspace(a, b, 100)

plt.plot(z, f(z),'-")
# labels, title, legend

plt.xlabel('x'); plt.ylabel('$f(x)$'); #plt.title('data’)
plt.legend(['$£(t)$'])
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plt.grid(True)

plt.show()
— fi)

l_
D_

=

=
—1 A
_2 —
—3

T T T T
-20 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0
x

1.1 Meéthode de dichotomie ou bissection
Si f est continue et change de signe dans [a, b], alors il existe au moins un « tel que f(«a) = 0.
On peut alors définir 'algorithme suivant :
a® = ¢, b =p. Pour k=0,1, ...
1. 2 = L—%—b(k)
2. si f(z®) =0, alors z(¥) est le zéro cherché.
Autrement:
1. soit f(z®)f(a®) < k = et le zéro a € [a®), z(F)].
On pose aFt1) = ¢(F) et pk+1) = (k)
2. soit f(z®) f(b*)) < k = et le zéro a € [¢F) p(F)].

On pose aFT1) = g(k) ot pkt1) — p(k)



1.1.1 Exercice
Ecrivez une fonction qui effectue I'algorithme de dichotomie ayant la structure suivante:

def bisection(a,b,f,tolerance,maxIterations)
# [a,b] interval of interest
# f function
# tolerance destired accuracy
# mazlterations : mazimum number of iteration
# returns:
# zero, residual, number of iterations

Ensuite testez-la pour trouver la racine de la fonction f(z) = zsin(27zx) + %:c — % dans l'intervalle
[—1.5,1].

[3]: def bisection(a,b,fun,tol,maxIterations)
# [a,b] interval of interest
# fun function
# tolerance destired accuracy
# maxIterations : maximum number of iteration
# returns:
# zero, residual, number of iterations, x_sequence
# x_sequence : the sequence computed by the fized point iterations

if (a >= b)
print(' b must be greater than a (b > a)')
return 0,0,0, [0]

# what we consider as '"zero"
eps = le-12

# evaluate f at the endpoints

fa = fun(a)

fb = fun(b)

if abs(fa) < eps : # a s the solution
zero = a
esterr = fa
k=0

return zero, esterr, k, [zero]

if abs(fb) < eps : # b is the solution
zero = b
esterr = fb
k=0

return zero, esterr, k, [zero]

if faxfb > 0 :



print(' The sign of FUN at the extrema of the interval must bey
—different')
return 0,0,0, [0]

# We want the final error to be smaller than tol,
# i.e. k> log( (b-a)/tol ) / log(2) -1

nmax = int(np.ceil(np.log( (b-a)/tol ) / np.log(2))) - 1

# but nmaxz shall be smaller the the nmazimum iterations asked by the user
if ( maxIterations < nmax )
nmax = int(round(maxIterations))
print(‘Warning: maxIterations is smaller than the minimum number of
—iterations necessary to reach the tolerance wished');

# vector of intermadiate approximations etc
X = np.zeros(nmax+1)

# initial error is the length of the interval.
esterr = (b - a)

# do not need to store all the a“k and bk, so I call them with a new,
—wvartable name:

ak = a

bk = b

# the values of f at those points are fa and fk

for k in range(nmax+1)

# approxzimate solution ts midpoint of current interval
x[k] = (ak + bk) / 2

fx = fun(x[k]);

# error estimator is the half of the previous error
esterr = esterr / 2

# 1f we found the solution, stop the algorithm
if np.abs(fx) < eps

# error 1s zero

zero = x[k]

esterr = 0;

return zero, esterr, k, x

if fxxfa < 0 : # alpha is in (a,z)
bk = x[k]
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fb = fx
elif fx*fb < 0 : # alpha is in (z,b)
ak = x[k]
fa = fx
else
error('Algorithm not operating correctly')

zero = x[k];

if esterr > tol :
print ('Warning: bisection stopped without converging to the desired
—tolerance because the maximum number of iterations was reached');

return zero, esterr, k, x
from NonLinearEquationsLib import plotBisectionIterations

[a,b] = [-.5,1]

tol = 1e-10

maxlter = 4

zero, esterr, k, x = bisection(a,b,f,tol,maxIter)

plt.rcParams.update({'font.size': 16})
plt.figure(figsize=(8, 5))

plotBisectionIterations(a,b,f,x)
# plt.savefig('Bisection-iterations.png’', dpt=600)

print(f'The estimated root is {zero:2.12f}, the estimated error {esterr:1.3e},
—and the residual is {f(zero):1.3e}, after {k} iterations')

Warning: maxIterations is smaller than the minimum number of iterations
necessary to reach the tolerance wished

Warning: bisection stopped without converging to the desired tolerance because
the maximum number of iterations was reached

The estimated root is 0.203125000000, the estimated error 4.688e-02 and the
residual is 4.594e-02, after 4 iterations
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2 Equations non-linéaires
Objectif : trouver les zéros (ou racines) d’une fonction f : [a,b] - R :

a€fa,b] : fla)=0

# amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

2.1 Meéthode de Newton
Soit f : R — R une fonction différentiable.

Soit (® un point donné. On considére I'équation de la droite y(x) qui passe par le point
(®), f(2*)) et qui a comme pente f(z*)),

y(a) = f'@®) (@ —2®) + fa).

On définit ¥+ comme étant le point o cette droite intersecte I'axe z, c’est-a-dire y(az(k+1)) = 0.
On en déduit que :
k
k+1):x(k)_m E=0.1.2
Py ;1,200

x(
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# amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

Exercice (5, Série 1) On cherche les zéros de la fonction

1. Vérifiez qu'’il y a au moins un zéro v dans U'intervalle [0, 2].

2. Ecrivez la méthode de Newton pour trouver le zéro a de la fonction f(x) et calculez la premiére
itération a partir de la valeur initiale z(©) = 1.

3. Calculez les zéros « de la fonction f avec la méthode de Newton (fonction newton que vous
devrez écrire)

def Newton( F, dF, x0, tol, nmax )

NEWTON Find the zeros of a monlinear equations.

NEWTON(F,DF,X0,TOL, NMAX) tries to find the zero X of the

continuous and differentiable function F nearest to X0 using

the Newton method. DF is a function which take X and return the derivative of F.
If the search fails an error message ts displayed.

returns the value of the
restdual B in X,the number of iterations N required for computing X and
INC the increments computed by Newton.

FHOoR R R O™ O™ W™ ™ W

return x, r, n, inc

Choisissez £(9) = 1 comme point de départ pour la méthode et utilisez une tolérance tol = 10~* sur
la valeur absolue de I'incrément entre deux itérations successives |z*F+1) — z(®)|.

Dans le cas de la méthode de Newton, l'incrément est une bonne approrimation de l’erreur.

def Newton( F, dF, x0, tol, nmax )
NEWTON Find the zeros of a nonlinear equations.
NEWTON(F,DF,X0,TOL,NMAX) tries to find the zero X of the
continuous and differentiable function F nearest to X0 using
the Newton method. DF is a function which take X and return the derivative,
—of F.
If the search fails an error message is displayed.

Outputs : [z, 7, n, inc, z_sequencel]

T : the approxzimated root of the function

r : the absolute wvalue of the residualin X

n : the number of iterations N required for computing X and
wnc : the increments computed by Newton.

T_sequence :@ the sequence computed by Newton
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# Initral values

n:
xk

0
= x0

# initialisation of loop components
# increments (in abs wvalue) at each iteration

inc = []
# in case we wish to plot the sequence
x = [x0]

# diff : last increment,
diff = tol + 1 # anitially set larger then tolerance

# Loop until tolerance is reached
while ( diff >= tol and n <= nmax )

df =

x0
tol
nmax

# Newton 2teration
deltax = F(xk) / dF(xk)
xkl = xk - deltax

# increments
diff = np.abs(deltax)
inc.append (diff)

# prepare the next loop
n=n+1

xk = xki

X . append (xk)

# Final residual
rkl = np.abs(F(xkl))

# Warning 1f not converged

if

n > nmax :
print ('Newton stopped without converging to the desired tolerance ')
print('because the maximum number of iterations was reached')

return xk1, rkl, n, inc, np.array(x)

lambda x : 0.5*np.sin(np.pi*x/2)+1-x
lambda x : 0.25%np.pi*np.cos(np.pi*x/2)-1

le-4
10
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zero, residual, niter, inc, x = Newton(f, df, x0, tol, nmax)

print(f'The zero computed is {zero:1.4f}')

print(f'Newton stoppedconverged in {niter} iterations');

print(f'with a residual of {residual:1.4e}.\n');

The zero computed is 1.4031
Newton stoppedconverged in 4 iterations
with a residual of 3.3120e-12.

from NonLinearEquationsLib import plotNewtonIterations

[a,b] = [0,3.5]
x0 =3

zero, residual, niter, inc, x = Newton(f, df, x0, tol, nmax)

# Rezise plots, which are usually too small
plt.figure(figsize=(12, 4))
plt.rcParams.update({'font.size': 12})

# Subplot 1 over 2, 1st ome
plt.subplot(121)

#plt.plot (range(MaxIterations), RelativeError, 'b:.

plt.plot(range(niter), inc, 'b:.')

plt.xlabel('n'); plt.ylabel('$\\delta x$');
plt.grid(True)

#plt.zscale('log')

plt.yscale('log')

plt.legend(['$|\\delta x|$'])

# Subplot 1 over 2, 2nd one
plt.subplot(122)

plotNewtonIterations (a,b,f,x,200)
plt.show()

# Rezise plots, which are usually too small
plt.figure(figsize=(8, 4))
plt.rcParams.update({'font.size': 16})
plotNewtonIterations (a,b,f,x,200)

# plt.savefig('Newton-iterations.png', dpi=600)
plt.show()
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[a;b] = [_1)35]
z = np.linspace(a,b,200)

plt.plot(z,f(z), 'b-', x[6],f(x[6]), 'rx')

plt.ylabel ('$f(x)$'); plt.xlabel('$x$');

# Plot the z,y-azis

plt.plot([a,b], [0,0], 'k-',linewidth=0.1)
plt.plot([0,0], [np.min(f(z)),np.max(f(z))], 'k-',linewidth=0.1)

plt.legend(['$£$', '$\\alpha$'])
# plt.savefig('Newton-fz-alpha.png', dpi=600)
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plt.show()
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2.2 Critéres d’arrét

On a ’estimation
1

(1= ¢'(¢™))

On cherche a obtenir ()| ~ ¢ (une tolérance choisie).

6,(k) —

On trace un graphe de la fonction v(t) = ﬁ
Graph of the fonction $f(t)=1/(1-t)$
100

= [-1,0.9]

np.linspace(a,b,N)

lambda x : 1/(1-x)

o

#
N
a,
z
f

plt.subplot(1,3,1)
plt.plot(z,f(z),'k-")

11

(x(k+1) _ a:(k)). — 'y(qﬁ'(&(k)))(x(k“) _ x(k))
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plt.annotate("(-1,0.5)", (-1.2, 0.7))

plt.annotate("(0,1)", (-0.2, 1.2))

plt.plot([-1.2,1], [0,0], 'k-',linewidth=0.1)
plt.plot([0,0], [-1,10], 'k-',linewidth=0.1)

plt.xlabel('t'); plt.ylabel('1/(1-t)');

# Plot the z,y-azis

plt.show()

Sit<0,~(t) €3,
Sit~0,y(t) =
Sit—1,v(t) = o0

1]

101

1/(1-t)

,e(k)‘ < ,x(kﬂ) — x(k)‘ = ,x(k+1) — x(k)‘ <€

FED) = d@®) = 2l 2] < o1 - ¢ (a))
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3 Methode de point fixe

3.0.1 Exercice (1, Série 3)

On considére les méthodes de point fixe ("D = g;(z(™) (i = 1,2,3) avec:

1 1
@) =22 @) = 2P gy(a™) = 2In(22),

dont les fonctions d’itération g;(x) sont visualisées sur la figure plus bas

1. Pour chaque point fixe T de la fonction d’itération g; (i = 1,2,3), on suppose d’avoir choisi
une valeur initiale (%) proche de Z. Etudiez si la méthode converge vers Z.

2. Pour chaque fonction d’itération g;, déterminez graphiquement pour quelles valeurs initiales
£ Ja méthode de point fixe correspondante converge et vers quel point fixe.

3. Montrez que si Z est un point fixe de la fonction g; (i = 1,2, 3), alors il est aussi un zéro de la
fonction f(x) = e* — 422 (dont le comportement est tracé sur la derniére figure).

4. Comment peut-on calculer les zéros de f7

L’exercice 2 est a faire sur papier, ici une indication par ordinateur

# importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

from NonLinearEquationsLib import plotPhi, FixedPoint, plotPhilterations
plt.rcParams['figure.figsize'] = [20, 5]

plt.subplot(1,3,1)

[a,b] = [-2,5]

phil = lambda x : np.exp(x/2)/2
plotPhi(a,b,phil, '$g_1$')

plt.subplot(1,3,2)

[a,b] = [-2,5]

phi2 = lambda x : - np.exp(x/2)/2
plotPhi(a,b,phi2, '$g_2$"')

plt.subplot(1,3,3)

[a,b] = [le-1,5]

phi3 = lambda x : 2*np.log(2+*x)
plotPhi(a,b,phi3, '$g_3$")

plt.show()
# Graph of the fonction $f(z)=e z-4z"28

N = 100
z = np.linspace(a,b,N)
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f =

lambda x :

plt.subplot(1,3,1)
plt.plot(z,f(z), 'k-")

np.exp(x) - 4*xx*x

plt.xlabel('x'); plt.ylabel('f(x)');
# Plot the z,y-azis
.plot([a,bl, [0,0], 'k-',linewidth=0.1)
.plot([0,0], [np.min(£f(z)),np.max(£f(z))], 'k-',linewidth=0.1)
.legend(['f(x)'])
.title('Graph of $f(x)=e"x-4x"2%')

plt
plt
plt
plt

plt

.show ()
Graph de la fonction g1 Graph de la fonction g» Graph de la fonction g3
0 — o il g2
y=x y=x 4
4 2
2
- ~ 0
S 2 S = &
2 ‘ 0
o I
-4 -2 — 93
o —6 y=x
-2 0 2 -2 0 1 2 3 4 5
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Graph of f(x) = X — 4x?
— f(x)

50 -

40 -

30 -
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Partie 1 Pour chaque point fixze T de la fonction d’itération g; (i = 1,2,3), on suppose choisir une
valeur initiale 9 proche de . Etudiez si la méthode converge vers .

On va utiliser la fonction FixedPoint qui se trouve dans NonLinearEquationsLib.py

def FixedPoint( phi, %0, a, b tol, nmax )
FizedPoint Find the fized point of a function by iterative iterations
FizedPoint( PHI,X0,a,b, TOL,NMAX) tries to find the fizedpoint X of the a
continuous function PHI nearest to X0 using
the fized point iterations method.
[a,b] : if the iterations extit the interval, the method stops
If the search fails an error message ts displayed.

Outputs : [z, T, n, inc, z_sequencel

z : the approzimated fized point of the function

r : the absolute wvalue of the restidual in X : [phi(z) - z/
n : the number of iterations N required for computing X and
T_sequence : the sequence computed by Newton

15
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return zkl, rkl, n, np.array(z)

i

tol = 1le-2
10

nmax

# Choose fonction pht
[a,b] = [-2,5]

phi = phil

label = '$phi_1$'

# Initial Point
x0 =3

zero, residual, niter, x =

plt.subplot(131)
plotPhi (a,b,phi,label)
plt.plot(x,phi(x), 'rx')

FixedPoint (phi, x0, a,b, tol, nmax)

# plot the graphical interpretation of the Fized Point method

plotPhilterations(x)

plt.show()
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Graph de la fonction phi;

61 — phii
y=X
41
3 2]
of —— |
—2-
-2

tol = le-2
10

nmax

# Choose fonction pht

intervals = [ [-2,5] , [-2,5] , [le-2,5] 1]

phiFunctions = [phil, phi2, phi3]

labels = ['$phi_1$', '$phi_2$', '$phi_3$']

# Initral Poaints
initialPoints = [4.2,2,1]

alpha = np.empty(3)

for k in range(3) :

phi = phiFunctions[k]; x0 = initialPoints [k]
a = intervals[k][0]; b = intervals[k] [1]

label = labels[kl]
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alphalk], residual, niter, x = FixedPoint(phi, x0, a,b, tol, nmax)

plt.subplot(1l,3,k+1)

plotPhi (a,b,phi,label)
plt.plot(x,phi(x), 'rx')

# plot the graphical interpretation of the Fixzed Point method

plotPhilterations(x)

plt.show()

FixexPoint stopped without
because the maximum number
FixexPoint stopped without
because the maximum number

Graph de la fonction phiy

converging to the desired tolerance
of iterations was reached
converging to the desired tolerance
of iterations was reached

Graph de la fonction phi, Graph de la fonction phiz

61 — phiy 4| — phiz
y=X y=x
4 24
£ P
Q QU
—21
—/ H
0 Xo —4
-2 —6
-2 0 2 4 -2

plt.subplot(1,3,1)
plt.plot(z,f(z),'k-")

# Solutions found:

Graph of the fonction $f(z)=e xz-4z"28

#

N = 100

a,b = [-2,5]

z = np.linspace(a,b,N)

f = lambda x : np.exp(x) - 4*x*x

plt.plot(alpha,f(alpha),'ro')
plt.annotate("$\\alpha_1$", (alphal0], 2))
plt.annotate("$\\alpha_2$", (alphalll, 2))
plt.annotate("$\\alpha_3$", (alphal[2]+0.1, -4))

plt.xlabel('x'); plt.ylabel('f(x)');
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# Plot the z,y-azis

plt.plot([a,b]l, [0,0], 'k-',linewidth=0.1)

plt.plot([0,0], [np.min(f(z)),np.max(f(z))], 'k-',linewidth=0.1)
plt.legend(['f(x)"', '$\\alpha$'])

plt.title('Graph of $f(x)=e"x-4x"2%')

plt.show()
Graph of f(x) = X — 4x?
50 1
— f(x)
4041 o a
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