
0.1 Jupyter tutorial

February 16, 2025

1 Jupyter Notebook Tutorial
Course: Analyse Numérique pour SV (MATH-251(c))

Prof Simone Deparis

SSV, BA4, 2022

Adapted from the Jupyter tutorial by Allison Parrish and the version of Prof. Felix Naef for BIO-341

Jupyter Notebook gives you a convenient way to experiment with Python code, interspersing your
experiments with notes and documentation. You can do all of this without having to muck about
on the command line, and the resulting file can be easily published and shared with other people.
In this course, I’ll be using Jupyter Notebook to do in-class examples, and the notes will be made
available as Jupyter Notebooks. Some of the homeworks will be assigned in the form of Jupyter
Notebooks as well.

A Jupyter Notebook consists of a number of “cells,” stacked on the page from top to bottom. Cells
can have text or code in them. You can change a cell’s type using the “Cell” menu at the top of
the page; go to Cell > Cell Type and select either Code for Python code or Markdown for text.
(You can also change this for the current cell using the drop-down menu in the toolbar.)

1.1 Text cells
Make a new cell, change its type to Markdown, type some stuff and press Ctrl-Enter. Jupyter
Notebook will “render” the text and display it on the page in rendered format. You can hit Enter
or click in the cell to edit its contents again. Text in Markdown cells is rendered according to a set
of conventions called Markdown. Markdown is a simple language for marking up text with basic
text formatting information (such as bold, italics, hyperlinks, tables, etc.). Here’s a tutorial. You’ll
also be learning Markdown in more detail in the Foundations course.

1.2 Code cells
You can also press Alt-Enter to render the current cell and create a new cell. New cells will by
default be Code cells. Try it now!

[1]: print("This is a code cell.")
print("")
print("Any Python code you type in this cell will be run when you press the␣

↪'Run' button,")
print("or when you press Ctrl-Enter.")

1

https://moodle.epfl.ch/course/info.php?id=
https://github.com/aparrish/rwet/blob/master/jupyter-notebook-tutorial.ipynb
https://www.decontextualize.com/
http://markdowntutorial.com/

print("")
print("If the code evaluates to something, or if it produces output, that␣

↪output will be")
print("shown beneath the cell after you run it.")

This is a code cell.

Any Python code you type in this cell will be run when you press the 'Run'
button,
or when you press Ctrl-Enter.

If the code evaluates to something, or if it produces output, that output will
be
shown beneath the cell after you run it.

[2]: print("If your Python code generates an error, the error will be displayed in␣
↪addition")

print("to any output already produced.")

1 / 0

If your Python code generates an error, the error will be displayed in addition
to any output already produced.

ZeroDivisionError Traceback (most recent call last)
Cell In[2], line 4

1 print("If your Python code generates an error, the error will be␣
↪displayed in addition")

2 print("to any output already produced.")
----> 4 1 / 0

ZeroDivisionError: division by zero

Any variables you define or modules you import in one code cell will be available in subsequent
code cells. Start with this:

[]: import random
stuff = ["cheddar", "daguerrotype", "elephant", "flea market"]

… and in subsequent cells you can do this:

[]: print(random.choice(stuff))

1.3 Keyboard shortcuts
As mentioned above, Ctrl-Enter runs the current cell; Alt-Enter runs the current cell and then
creates a new cell. Enter will start editing whichever cell is currently selected. To quit editing a

2

cell, hit Esc. If the cursor isn’t currently active in any cell (i.e., after you’ve hit Esc), a number of
other keyboard shortcuts are available to you:

• m converts the selected cell to a Markdown cell
• b inserts a new cell below the selected one
• x “cuts” the selected cell; v pastes a previously cut cell below the selected cell
• h brings up a help screen with many more shortcuts.

1.4 Saving your work
Hit Cmd-S at any time to save your notebook. Jupyter Notebook also automatically saves occa-
sionally. Make sure to give your notebook a descriptive title by clicking on “Untitled0” at the top
of the page and replacing the text accordingly. Notebooks you save will be available on your server
whenever you log in again, from wherever you log into the server.

You can “download” your notebook in various formats via File > Download as. You can download
your notebook as a static HTML file (for, e.g., uploading to a web site), or as a .ipynb file, which
you can share with other people who have Jupyter Notebook or make available online through, e.g.,
nbviewer.

3

http://nbviewer.ipython.org/

0.2 Python tutorial

February 16, 2025

1 Python tutorial
Course: Analyse Numérique pour SV (MATH-251(c)) Professor: Simone Deparis

SSV, BA4, 2022

Adapted from the CS228 Python tutorial by by Volodymyr Kuleshov and Isaac Caswell and the
version of Prof. Felix Naef for BIO-341.

1.1 Introduction
Python is a great general-purpose programming language on its own, but with the help of a few
popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific com-
puting.

We don’t expect that many of you will have some experience with Python and numpy; this section
will serve as a quick crash course both on the Python programming language and on the use of
Python for scientific computing.

Some of you may have previous knowledge in Matlab, in which case we also recommend the
numpy for Matlab users page (https://docs.scipy.org/doc/numpy-1.15.0/user/numpy-for-matlab-
users.html).

In this tutorial, we will cover:

• Basic Python: Basic data types (Containers, Lists, Dictionaries, Sets, Tuples), Functions
• Numpy: Arrays, Array indexing, Datatypes, Array math, Broadcasting
• Matplotlib: Plotting, Subplots, Images

1.2 Basics of Python
Python is a high-level, dynamically typed multiparadigm programming language. Python code is
often said to be almost like pseudocode, since it allows you to express very powerful ideas in very
few lines of code while being very readable. As an example, here is an implementation of the classic
quicksort algorithm in Python:

[1]: def quicksort(arr):
if len(arr) <= 1:

return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]

1

https://moodle.epfl.ch/course/info.php?id=
http://web.stanford.edu/~kuleshov/
https://symsys.stanford.edu/viewing/symsysaffiliate/21335

right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)

print(quicksort([3,6,8,10,1,2,1]))

[1, 1, 2, 3, 6, 8, 10]

1.2.1 Python versions

There are currently two different supported versions of Python, 2.7 and 3.7. Somewhat confusingly,
Python 3.0 introduced many backwards-incompatible changes to the language, so code written for
2.7 may not work under 3.7 and vice versa. For this class all code will use Python 3.7.

You can check your Python version at the command line by running python --version.

1.2.2 Basic data types

Numbers Integers and floats work as you would expect from other languages:

[2]: x = 3
print(x, type(x))

3 <class 'int'>

[3]: print(x + 1) # Addition;
print(x - 1) # Subtraction;
print(x * 2) # Multiplication;
print(x**2) # Exponentiation;

4
2
6
9

[4]: x += 1
print(x) # Prints "4"
x *= 2
print(x) # Prints "8"

4
8

[5]: y = 2.5
print(type(y)) # Prints "<type 'float'>"
print(y, y + 1, y * 2, y ** 2) # Prints "2.5 3.5 5.0 6.25"

<class 'float'>
2.5 3.5 5.0 6.25

Note that unlike many languages, Python does not have unary increment (x++) or decrement (x–)
operators.

2

Booleans Python implements all of the usual operators for Boolean logic, but uses English words
rather than symbols (&&, ||, etc.):

[6]: t, f = True, False
print(type(t)) # Prints "<type 'bool'>"

<class 'bool'>

Now we let’s look at the operations:

[7]: print(t and f) # Logical AND;
print(t or f) # Logical OR;
print(not t) # Logical NOT;
print(t != f) # Logical XOR;

False
True
False
True

Strings
[8]: hello = 'hello' # String literals can use single quotes

world = "world" # or double quotes; it does not matter.
print(hello, len(hello))

hello 5

[9]: hw = hello + ' ' + world # String concatenation
print(hw) # prints "hello world"

hello world

String objects have a bunch of useful methods; for example:

[10]: s = "hello"
print(s.capitalize()) # Capitalize a string; prints "Hello"
print(s.upper()) # Convert a string to uppercase; prints "HELLO"
print(s.rjust(7)) # Right-justify a string, padding with spaces; prints " ␣

↪hello"
print(s.center(7)) # Center a string, padding with spaces; prints " hello "
print(s.replace('l', '(ell)')) # Replace all instances of one substring with␣

↪another;
prints "he(ell)(ell)o"

print(' world '.strip()) # Strip leading and trailing whitespace; prints␣
↪"world"

Hello
HELLO

hello
hello

3

he(ell)(ell)o
world

1.2.3 Containers

Python includes several built-in container types: lists, dictionaries, sets, and tuples.

Lists A list is the Python equivalent of an array, but is resizeable and can contain elements of
different types:

[11]: xs = [3, 1, 2] # Create a list
print(xs, xs[2])
print(xs[-1]) # Negative indices count from the end of the list; prints "2"

[3, 1, 2] 2
2

[12]: xs[2] = 'foo' # Lists can contain elements of different types
print(xs)

[3, 1, 'foo']

[13]: xs.append('bar') # Add a new element to the end of the list
print(xs)

[3, 1, 'foo', 'bar']

[14]: x = xs.pop() # Remove and return the last element of the list
print(x, xs)

bar [3, 1, 'foo']

Slicing In addition to accessing list elements one at a time, Python provides concise syntax to
access sublists; this is known as slicing:

[15]: nums = list(range(5)) # range is a built-in function that creates an␣
↪interator of integers.

#It has to be explicitely converted to a list to do␣
↪slicing

print(nums) # Prints "[0, 1, 2, 3, 4]"
print(nums[2:4]) # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print(nums[2:]) # Get a slice from index 2 to the end; prints "[2, 3, 4]"
print(nums[:2]) # Get a slice from the start to index 2 (exclusive); prints␣

↪"[0, 1]"
print(nums[:]) # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]"
print(nums[:-1]) # Slice indices can be negative; prints ["0, 1, 2, 3]"
nums[2:4] = [8, 9] # Assign a new sublist to a slice
print(nums) # Prints "[0, 1, 8, 9, 4]"

4

[0, 1, 2, 3, 4]
[2, 3]
[2, 3, 4]
[0, 1]
[0, 1, 2, 3, 4]
[0, 1, 2, 3]
[0, 1, 8, 9, 4]

Loops You can loop over the elements of a list like this:

[16]: animals = ['cat', 'dog', 'monkey']
for animal in animals:

print(animal)

cat
dog
monkey

If you want access to the index of each element within the body of a loop, use the built-in enumerate
function:

[17]: animals = ['cat', 'dog', 'monkey']
for idx, animal in enumerate(animals):

print(idx + 1, animal)

1 cat
2 dog
3 monkey

List comprehensions: When programming, frequently we want to transform one type of data
into another. As a simple example, consider the following code that computes square numbers:

[18]: nums = [0, 1, 2, 3, 4]
squares = []
for x in nums:

squares.append(x ** 2)
print(squares)

[0, 1, 4, 9, 16]

You can make this code simpler using a list comprehension:

[19]: nums = [0, 1, 2, 3, 4]
squares = [x ** 2 for x in nums]
print(squares)

[0, 1, 4, 9, 16]

List comprehensions can also contain conditions:

5

[20]: nums = [0, 1, 2, 3, 4]
even_squares = [x ** 2 for x in nums if x % 2 == 0]
print(even_squares)

[0, 4, 16]

Dictionaries A dictionary stores (key, value) pairs, similar to a Map in Java or an object in
Javascript. You can use it like this:

[21]: d = {'cat': 'cute', 'dog': 'furry'} # Create a new dictionary with some data
print(d['cat']) # Get an entry from a dictionary; prints "cute"
print('cat' in d) # Check if a dictionary has a given key; prints "True"

cute
True

[22]: d['fish'] = 'wet' # Set an entry in a dictionary
print(d['fish']) # Prints "wet"

wet

[23]: print(d['monkey']) # KeyError: 'monkey' not a key of d

KeyError Traceback (most recent call last)
Cell In[23], line 1
----> 1 print(d['monkey']) # KeyError: 'monkey' not a key of d

KeyError: 'monkey'

[24]: print(d.get('monkey', 'N/A')) # Get an element with a default; prints "N/A"
print(d.get('fish', 'N/A')) # Get an element with a default; prints "wet"

N/A
wet

[25]: del(d['fish']) # Remove an element from a dictionary
print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"

N/A

It is easy to iterate over the keys in a dictionary:

[26]: d = {'person': 2, 'cat': 4, 'spider': 8}
for animal in d:

legs = d[animal]
print('A', animal, 'has', legs, 'legs')

6

A person has 2 legs
A cat has 4 legs
A spider has 8 legs

If you want access to keys and their corresponding values, use the items method:

[27]: d = {'person': 2, 'cat': 4, 'spider': 8}
for animal, legs in d.items():

print('A', animal, 'has', legs, 'legs')

A person has 2 legs
A cat has 4 legs
A spider has 8 legs

Dictionary comprehensions: These are similar to list comprehensions, but allow you to easily con-
struct dictionaries. For example:

[28]: nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square)

{0: 0, 2: 4, 4: 16}

Sets A set is an unordered collection of distinct elements. As a simple example, consider the
following:

[29]: animals = {'cat', 'dog'}
print('cat' in animals) # Check if an element is in a set; prints "True"
print('fish' in animals) # prints "False"

True
False

[30]: animals.add('fish') # Add an element to a set
print('fish' in animals)
print(len(animals)) # Number of elements in a set;

True
3

[31]: animals.add('cat') # Adding an element that is already in the set does␣
↪nothing

print(len(animals))
animals.remove('cat') # Remove an element from a set
print(len(animals))

3
2

Loops: Iterating over a set has the same syntax as iterating over a list; however since sets are
unordered, you cannot make assumptions about the order in which you visit the elements of the
set:

7

[32]: animals = {'cat', 'dog', 'fish'}
for idx, animal in enumerate(animals):

print(idx + 1,':', animal)
Prints "1 : fish", "2 : dog", "3 : cat"

1 : dog
2 : fish
3 : cat

Set comprehensions: Like lists and dictionaries, we can easily construct sets using set comprehen-
sions:

[33]: from math import sqrt
print({int(sqrt(x)) for x in range(30)})

{0, 1, 2, 3, 4, 5}

Tuples A tuple is an (immutable) ordered list of values. A tuple is in many ways similar to a
list; one of the most important differences is that tuples can be used as keys in dictionaries and as
elements of sets, while lists cannot. Here is a trivial example:

[34]: d = {(x, x + 1): x for x in range(10)} # Create a dictionary with tuple keys
t = (5, 6) # Create a tuple
print(type(t))
print(d[t])
print(d[(1, 2)])

<class 'tuple'>
5
1

[35]: t[0] = 1

TypeError Traceback (most recent call last)
Cell In[35], line 1
----> 1 t[0] = 1

TypeError: 'tuple' object does not support item assignment

1.2.4 Functions

Python functions are defined using the def keyword. For example:

[36]: def sign(x):
if x > 0:

return 'positive'
elif x < 0:

8

return 'negative'
else:

return 'zero'

for x in [-1, 0, 1]:
print(sign(x))

negative
zero
positive

We will often define functions to take optional keyword arguments, like this:

[37]: def hello(name, loud=False):
if loud:

print('HELLO', name.upper())
else:

print('Hello', name)

hello('Bob')
hello('Fred', loud=True)

Hello Bob
HELLO FRED

1.3 Numpy
Numpy is the core library for scientific computing in Python. It provides a high-performance
multidimensional array object, and tools for working with these arrays.

To use Numpy, we first need to import the numpy package:

[38]: import numpy as np

1.3.1 Arrays

A numpy array is a grid of values, all of the same type, and is indexed by a tuple of nonnegative
integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of
integers giving the size of the array along each dimension.

We can initialize numpy arrays from nested Python lists, and access elements using square brackets:

[39]: a = np.array([1, 2, 3]) # Create a rank 1 array
print(type(a), a.shape, a[0], a[1], a[2])
a[0] = 5 # Change an element of the array
print(a)

<class 'numpy.ndarray'> (3,) 1 2 3
[5 2 3]

9

[40]: b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b)

[[1 2 3]
[4 5 6]]

[41]: print(b.shape)
print(b[0, 0], b[0, 1], b[1, 0])

(2, 3)
1 2 4

Numpy also provides many functions to create arrays:

[42]: a = np.zeros((2,2)) # Create an array of all zeros
print(a)

[[0. 0.]
[0. 0.]]

[43]: b = np.ones((1,2)) # Create an array of all ones
print(b)

[[1. 1.]]

[44]: c = np.full((2,2), 7) # Create a constant array
print(c)

[[7 7]
[7 7]]

[45]: d = np.eye(2) # Create a 2x2 identity matrix
print(d)

[[1. 0.]
[0. 1.]]

[46]: e = np.random.random((2,2)) # Create an array filled with random values
print(e)

[[0.40761394 0.33088024]
[0.07710091 0.76909554]]

1.3.2 Array indexing

Numpy offers several ways to index into arrays.

Slicing: Similar to Python lists, numpy arrays can be sliced. Since arrays may be multidimensional,
you must specify a slice for each dimension of the array:

[47]: import numpy as np

10

Create the following rank 2 array with shape (3, 4)
[[1 2 3 4]
[5 6 7 8]
[9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

Use slicing to pull out the subarray consisting of the first 2 rows
and columns 1 and 2; b is the following array of shape (2, 2):
[[2 3]
[6 7]]
b = a[:2, 1:3]
print(b)

[[2 3]
[6 7]]

A slice of an array is a view into the same data, so modifying it will modify the original array.

[48]: print(a[0, 1])
b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1])

2
77

You can also mix integer indexing with slice indexing. However, doing so will yield an array of
lower rank than the original array. Note that this is quite different from the way that MATLAB
handles array slicing:

[49]: # Create the following rank 2 array with shape (3, 4)
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print(a)

[[1 2 3 4]
[5 6 7 8]
[9 10 11 12]]

Two ways of accessing the data in the middle row of the array. Mixing integer indexing with slices
yields an array of lower rank, while using only slices yields an array of the same rank as the original
array:

[50]: row_r1 = a[1, :] # Rank 1 view of the second row of a
row_r2 = a[1:2, :] # Rank 2 view of the second row of a
row_r3 = a[[1], :] # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)
print(row_r2, row_r2.shape)
print(row_r3, row_r3.shape)

[5 6 7 8] (4,)
[[5 6 7 8]] (1, 4)
[[5 6 7 8]] (1, 4)

11

[51]: # We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)
print(col_r2, col_r2.shape)

[2 6 10] (3,)
[[2]
[6]
[10]] (3, 1)

Integer array indexing: When you index into numpy arrays using slicing, the resulting array view
will always be a subarray of the original array. In contrast, integer array indexing allows you to
construct arbitrary arrays using the data from another array. Here is an example:

[52]: a = np.array([[1,2], [3, 4], [5, 6]])

An example of integer array indexing.
The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]])

The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))

[1 4 5]
[1 4 5]

[53]: # When using integer array indexing, you can reuse the same
element from the source array:
print(a[[0, 0], [1, 1]])

Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]]))

[2 2]
[2 2]

One useful trick with integer array indexing is selecting or mutating one element from each row of
a matrix:

[54]: # Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
print(a)

[[1 2 3]
[4 5 6]
[7 8 9]
[10 11 12]]

12

[55]: # Create an array of indices
b = np.array([0, 2, 0, 1])

Select one element from each row of a using the indices in b
print(a[np.arange(4), b]) # Prints "[1 6 7 11]"

[1 6 7 11]

[56]: # Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10
print(a)

[[11 2 3]
[4 5 16]
[17 8 9]
[10 21 12]]

Boolean array indexing: Boolean array indexing lets you pick out arbitrary elements of an array.
Frequently this type of indexing is used to select the elements of an array that satisfy some condition.
Here is an example:

[57]: import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2) # Find the elements of a that are bigger than 2;
this returns a numpy array of Booleans of the same
shape as a, where each slot of bool_idx tells
whether that element of a is > 2.

print(bool_idx)

[[False False]
[True True]
[True True]]

[58]: # We use boolean array indexing to construct a rank 1 array
consisting of the elements of a corresponding to the True values
of bool_idx
print(a[bool_idx])

We can do all of the above in a single concise statement:
print(a[a > 2])

[3 4 5 6]
[3 4 5 6]

For brevity we have left out a lot of details about numpy array indexing; if you want to know more
you should read the documentation.

13

1.3.3 Datatypes

Every numpy array is a grid of elements of the same type. Numpy provides a large set of numeric
datatypes that you can use to construct arrays. Numpy tries to guess a datatype when you create
an array, but functions that construct arrays usually also include an optional argument to explicitly
specify the datatype. Here is an example:

[59]: x = np.array([1, 2]) # Let numpy choose the datatype
y = np.array([1.0, 2.0]) # Let numpy choose the datatype
z = np.array([1, 2], dtype=np.int64) # Force a particular datatype

print(x.dtype, y.dtype, z.dtype)

int64 float64 int64

You can read all about numpy datatypes in the documentation.

1.3.4 Array math

Basic mathematical functions operate elementwise on arrays, and are available both as operator
overloads and as functions in the numpy module:

[60]: x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)

Elementwise sum; both produce the array
print(x + y)
print(np.add(x, y))

[[6. 8.]
[10. 12.]]
[[6. 8.]
[10. 12.]]

[61]: # Elementwise difference; both produce the array
print(x - y)
print(np.subtract(x, y))

[[-4. -4.]
[-4. -4.]]
[[-4. -4.]
[-4. -4.]]

[62]: # Elementwise product; both produce the array
print(x * y)
print(np.multiply(x, y))

[[5. 12.]
[21. 32.]]
[[5. 12.]
[21. 32.]]

14

http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

[63]: # Elementwise division; both produce the array
[[0.2 0.33333333]
[0.42857143 0.5]]
print(x / y)
print(np.divide(x, y))

[[0.2 0.33333333]
[0.42857143 0.5]]
[[0.2 0.33333333]
[0.42857143 0.5]]

[64]: # Elementwise square root; produces the array
[[1. 1.41421356]
[1.73205081 2.]]
print(np.sqrt(x))

[[1. 1.41421356]
[1.73205081 2.]]

Note that unlike MATLAB, * is elementwise multiplication, not matrix multiplication. We instead
use the dot function to compute inner products of vectors, to multiply a vector by a matrix, and to
multiply matrices. dot or @ is available both as a function in the numpy module and as an instance
method of array objects:

[65]: x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])

v = np.array([9,10])
w = np.array([11, 12])

Inner product of vectors; both produce 219
print(v.dot(w))
print(v@w)
print(np.dot(v, w))

219
219
219

[66]: # Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))

[29 67]
[29 67]

[67]: # Matrix / matrix product; both produce the rank 2 array
[[19 22]
[43 50]]
print(x.dot(y))

15

print(np.dot(x, y))

[[19 22]
[43 50]]
[[19 22]
[43 50]]

Numpy provides many useful functions for performing computations on arrays; one of the most
useful is sum:

[68]: x = np.array([[1,2],[3,4]])

print(np.sum(x)) # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"

10
[4 6]
[3 7]

Apart from computing mathematical functions using arrays, we frequently need to reshape or
otherwise manipulate data in arrays. The simplest example of this type of operation is transposing
a matrix; to transpose a matrix, simply use the T attribute of an array object:

[69]: print(x)
print(x.T)

[[1 2]
[3 4]]
[[1 3]
[2 4]]

[70]: v = np.array([[1,2,3]])
print(v)
print(v.T)

[[1 2 3]]
[[1]
[2]
[3]]

1.3.5 Broadcasting

Broadcasting is a powerful mechanism that allows numpy to work with arrays of different shapes
when performing arithmetic operations. Frequently we have a smaller array and a larger array, and
we want to use the smaller array multiple times to perform some operation on the larger array.

For example, suppose that we want to add a constant vector to each row of a matrix. We could do
it like this:

16

[71]: # We will add the vector v to each row of the matrix x,
storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x) # Create an empty matrix with the same shape as x

Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):

y[i, :] = x[i, :] + v

print(y)

[[2 2 4]
[5 5 7]
[8 8 10]
[11 11 13]]

This works; however when the matrix x is very large, computing an explicit loop in Python could
be slow. Note that adding the vector v to each row of the matrix x is equivalent to forming a
matrix vv by stacking multiple copies of v vertically, then performing elementwise summation of x
and vv. We could implement this approach like this:

[72]: vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other
print(vv) # Prints "[[1 0 1]

[1 0 1]
[1 0 1]
[1 0 1]]"

[[1 0 1]
[1 0 1]
[1 0 1]
[1 0 1]]

[73]: y = x + vv # Add x and vv elementwise
print(y)

[[2 2 4]
[5 5 7]
[8 8 10]
[11 11 13]]

Numpy broadcasting allows us to perform this computation without actually creating multiple
copies of v. Consider this version, using broadcasting:

[74]: # We will add the vector v to each row of the matrix x,
storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v # Add v to each row of x using broadcasting
print(y)

17

[[2 2 4]
[5 5 7]
[8 8 10]
[11 11 13]]

The line y = x + v works even though x has shape (4, 3) and v has shape (3,) due to broad-
casting; this line works as if v actually had shape (4, 3), where each row was a copy of v, and the
sum was performed elementwise.

Broadcasting two arrays together follows these rules:

1. If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s
until both shapes have the same length.

2. The two arrays are said to be compatible in a dimension if they have the same size in the
dimension, or if one of the arrays has size 1 in that dimension.

3. The arrays can be broadcast together if they are compatible in all dimensions.
4. After broadcasting, each array behaves as if it had shape equal to the elementwise maximum

of shapes of the two input arrays.
5. In any dimension where one array had size 1 and the other array had size greater than 1, the

first array behaves as if it were copied along that dimension

Here are some applications of broadcasting:

[75]: # Compute outer product of vectors
v = np.array([1,2,3]) # v has shape (3,)
w = np.array([4,5]) # w has shape (2,)
To compute an outer product, we first reshape v to be a column
vector of shape (3, 1); we can then broadcast it against w to yield
an output of shape (3, 2), which is the outer product of v and w:

print(np.reshape(v, (3, 1)) * w)

[[4 5]
[8 10]
[12 15]]

[76]: # Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
giving the following matrix:

print(x + v)

[[2 4 6]
[5 7 9]]

[77]: # Add a vector to each column of a matrix
x has shape (2, 3) and w has shape (2,).
If we transpose x then it has shape (3, 2) and can be broadcast
against w to yield a result of shape (3, 2); transposing this result

18

yields the final result of shape (2, 3) which is the matrix x with
the vector w added to each column. Gives the following matrix:

print((x.T + w).T)

[[5 6 7]
[9 10 11]]

[78]: # Another solution is to reshape w to be a row vector of shape (2, 1);
we can then broadcast it directly against x to produce the same
output.

print(x + np.reshape(w, (2, 1)))

[[5 6 7]
[9 10 11]]

[79]: # Multiply a matrix by a constant:
x has shape (2, 3). Numpy treats scalars as arrays of shape ();
these can be broadcast together to shape (2, 3), producing the
following array:

print(x * 2)

[[2 4 6]
[8 10 12]]

Broadcasting typically makes your code more concise and faster, so you should strive to use it
where possible.

1.3.6 Extracting (generic) matrix blocks

Extracting (generic) matrix blocks is very easily accomplished in Matlab, but in Python/Numpy,
normally this functionality is hidden in tutorials.

[80]: print ("A = ")
A = np.array([[0, 1, 2, 3],

[1, 2, 3, 4],
[2, 3, 4, 5],
[3, 4, 5, 6]])

print(A)

print ("\nA[::2,1::2] # easy because you have a regular structure in the␣
↪sequences")

print (A[::2,1::2])
array([[1, 3],
[3, 5]])

print ("\nA[[0,2],[1,3]] # This extracts the diagonal and not the block ")

19

print (A[[0,2],[1,3]])
array([1, 5])

print ("\nA[np.ix_([0,2],[1,3])] # np.ix_ allows to extract a block ")
print (A[np.ix_([0,2],[1,3])])
array([[1, 3],
[3, 5]])

print ("\nA[(np.array([0,2]).reshape(2,1),np.array([1,3]).reshape(1,2))] #␣
↪hidden manipulation ")

print (A[(np.array([0,2]).reshape(2,1),np.array([1,3]).reshape(1,2))])
array([[1, 3],
[3, 5]])

print ("\nA[np.ix_([0,1],[0,3])] # something hard to accomplish without np.ix_␣
↪")

print (A[np.ix_([0,1],[0,3])])
array([[0, 3],
[1, 4]])

A =
[[0 1 2 3]
[1 2 3 4]
[2 3 4 5]
[3 4 5 6]]

A[::2,1::2] # easy because you have a regular structure in the sequences
[[1 3]
[3 5]]

A[[0,2],[1,3]] # This extracts the diagonal and not the block
[1 5]

A[np.ix_([0,2],[1,3])] # np.ix_ allows to extract a block
[[1 3]
[3 5]]

A[(np.array([0,2]).reshape(2,1),np.array([1,3]).reshape(1,2))] # hidden
manipulation
[[1 3]
[3 5]]

A[np.ix_([0,1],[0,3])] # something hard to accomplish without np.ix_
[[0 3]
[1 4]]

20

1.4 Matplotlib
Matplotlib is a plotting library. In this section give a brief introduction to the matplotlib.pyplot
module, which provides a plotting system similar to that of MATLAB.

[81]: import matplotlib.pyplot as plt

By running this special iPython command, we will be displaying plots inline:

[82]: %matplotlib inline

1.4.1 Plotting

The most important function in matplotlib is plot, which allows you to plot 2D data. Here is a
simple example:

[83]: # Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)

Plot the points using matplotlib
plt.plot(x, y)
plt.show()

21

With just a little bit of extra work we can easily plot multiple lines at once, and add a title, legend,
and axis labels:

[84]: y_sin = np.sin(x)
y_cos = np.cos(x)

Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine', 'Cosine'])
plt.show()

1.4.2 Subplots

You can plot different things in the same figure using the subplot function. Here is an example:

22

[85]: # Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

Set up a subplot grid that has height 2 and width 1,
and set the first such subplot as active.
plt.subplot(2, 1, 1)

Make the first plot
plt.plot(x, y_sin)
plt.title('Sine')

Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')

Show the figure.
plt.show()

23

[]:

[]:

[]:

[]:

24

0.4 Representation des nombres

February 16, 2025

1 Représentation des nombres

[]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

1.1 Représentation de nombres : Exemple 𝑒
L’expression suivante du nombre d’Euler 𝑒 est connue :

𝑒 = lim
𝑛→∞

(1 + 1
𝑛)

𝑛
.

On s’attend donc à ce que 𝑒𝑛 = (1 + 1
𝑛)𝑛 donne des approximations de plus en plus bonnes de 𝑒.

En arithmétique exacte, c’est effectivement le cas. Sur l’ordinateur, la suite calculée ̂𝑒𝑛 se comporte
tout à fait différemment :

[]: # Approximation of e
print(r'10^i \t\t e_n \t\t\t e_n - e')
for i in range(1,16):

n = 10.0 ** i; en = (1 + 1/n) ** n
print('10^%2d \t %20.15f \t %20.15f' % (i, en, en-np.e))

1.2 Représentation de nombres : Exemple 𝑒𝑥

La série de Taylor pour la fonction exponentielle converge pour tout 𝑥 ∈ ℝ :

𝑒𝑥 =
∞

∑
𝑘=0

𝑥𝑘

𝑘! = 1 + 𝑥 + 𝑥2

2 + 𝑥3

6 + 𝑥4

24 + … .

L’ordinateur peut seulement calculer la série partielle

𝑠𝑖(𝑥) =
𝑖

∑
𝑘=0

𝑥𝑘

𝑘! .

Le reste de Taylor est donné par

𝑒𝑥 − 𝑠𝑖(𝑥) = 𝑒𝜉𝑥𝑖+1

(𝑖 + 1)! pour un 𝜉 ∈ ℝ avec 0 < |𝜉| < |𝑥|

1

Si on choisi une tolerance 𝜏 > 0 et 𝑖 tel que |𝑥|𝑖+1/(𝑖 + 1)! ≤ 𝜏𝑠𝑖(𝑥), pour 𝑥 < 0 on obtient

|𝑒𝑥 − 𝑠𝑖(𝑥)| ≤ |𝑥|𝑖+1

(𝑖 + 1)! ≤ 𝜏𝑠𝑖(𝑥) ≈ 𝜏𝑒𝑥.

Au même temps, l’erreur rélative |𝑒𝑥 − 𝑠𝑖(𝑥)|/|𝑒𝑥| est bornée par 𝜏 .

[]: def expeval(x, tol):
#Approximation of e^x
s = 1; k = 1
term = 1
while (abs(term)>tol*abs(s)):

term = term * x / k
s += term ; k += 1

return s

[]: # reproduisez ici le tableau
x & $s_i(x)$ & $\exp(x)$ & $\frac{|\exp(x)-s_i(x)|}{\exp(x)}$

1.3 IEEE 754 in Python
En Python, toutes les opérations sur les nombres réels sont exécutées par défaut en double précision.
Les variables en simple précision sont générées par la commande numpy.float32().

[]: import sys
sys.float_info.min # 2.2251e-308

[]: sys.float_info.max # 1.7977e+308

[]: 1 / 0 # Divide by zero error

[]: 3 * float('inf') # np.inf

[]: -1 / 0 # Divide by zero error

[]: 0 / 0 # Divide by zero error

[]: float('inf') - float('inf') # nan

De manière assez surprenante, et non en accord avec le standard IEEE 754
https://wusun.name/blog/2017-12-18-python-zerodiv/, Python renvoit une erreur lorsqu’une
division par zéro se produit, au lieu de retourner un ∞ signé. Pour éviter cela, on peut utiliser
float64 de numpy. Par exemple, 1/np.float64(0) renvoie inf (comme il se doit).

1.4 Arrondis
1.4.1 Partial sum and sums

Comme exemple, regardons ce qu’il se passe avec de float16 et une somme de nombre de plus en
plus petits.

2

[]: # see what happens with n = 2, 10, 100, 1000, 10000
n = 10000

t and y are 64 bit float (double) numbers
t = np.sin(np.linspace(0,1,n))
y = np.linspace(0,1,n)

y[1::2] = -1 * y[1::2] # odd numbers set to negatives

reduced accuracy
x= np.float16(y)
r= np.float16(t)

[]: # Use the sum function
print('Sum in np.float64: %1.20f'

% sum(y*t))
print('Sum in np.float16: %1.20f'

% sum(x*r))
print('Sum in np.float64 converted in np.float16: %1.20f'

% np.float16(sum(y*t)))
print('Sum in np.float16 converted in np.float16: %1.20f'

% np.float16(sum(x*r)))

[]: # Use the sum function, reverse order
print('Reverse sum in np.float64: %1.20f'

% sum(y[::-1]*t[::-1]))
print('Reverse sum in np.float16: %1.20f'

% sum(x[::-1]*r[::-1]))
print('Reverse sum in np.float64 converted in np.float16: %1.20f'

% np.float16(sum(y[::-1]*t[::-1])))
print('Reverse sum in np.float16 converted in np.float16: %1.20f'

% np.float16(sum(x[::-1]*r[::-1])))

[]: # loop for the sum from the first to the last, in float16
s1 = np.float16(0)
for (xk,rk) in zip(x,r) :

s1 += xk * rk
print('Sum first to last: %1.20f' % s1)

loop for the sum from the last to the first, in float 16
s2 = np.float16(0)
for (xk,rk) in zip(reversed(x), reversed(r)) :

s2 += xk * rk
print('Sum last to first: %1.20f' % s2)

3

1.5 Cancellation, exemple
Considérons

𝑓(𝑥) = 1 − cos(𝑥)
𝑥2 , 𝑥 = 𝑏−𝑘, 𝑘 = 5, ..., 9.

[]: def f(x):
return (1 - np.cos(x))/ (x**2)

Try with b = 2,3,4,10
b = 10

k = np.array(np.arange(6,20))
x = 1.0 / b**k
print('k = \t ', k)
print('x = 10^-k = \t ', x)
print('f(x) = \t ', f(x))

Plot a semilog-x graph with x and f(x)
plt.semilogx(x, f(x),'b*-')

Labels
plt.xlabel('x'); plt.ylabel('f(x)')
plt.title('f(x) with respect to x', fontweight='bold')
plt.legend(['error'])
plt.grid()
plt.show()

1.5.1 Exemple, différences finies

Considérons 𝑓(𝑥) = 𝑒𝑥, 𝑥0 = 0 et

𝑓 ′(𝑥0) = lim
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ .

Attente : L’approximation de 𝑓 ′(𝑥0) par un quotient de différences finies tend à s’améliorer lorsque
ℎ s’approche de 0.

[]: def f(x) :
return np.exp(x)

def df(x) :
return np.exp(x)

x0 = 0

prenez h = 10^{-k} avec k=0,1,...,16
k = np.array(range(0,17))
h = 1/10**k

calculez la difference finie (f(x0+h) - f(x0))/h pour tout les h

4

fprime = (f(x0+h) - f(x0)) / h

calculez l'erreur avec la solution exacte errH = |df(x0) - ..|
errH = np.abs(fprime - df(x0))

dessinez l'erreur en log-log
plt.loglog(h,errH, 'b-*')
plt.xlabel('h'); plt.ylabel('ErrH')
plt.title('Error in finite difference', fontweight='bold')
plt.legend(['error'])
plt.grid()
plt.show()

1.5.2 Exemple, le nombre 𝑒

𝑒 = lim
𝑛→∞

(1 + 1
𝑛)

𝑛

Attente : plus 𝑛 est grand, plus 𝑒𝑛 = (1 + 1
𝑛)𝑛 s’approche de 𝑒.

[]: def limN(n) :
return (1+1/n)**n

prenez n = 10^{k} avec k=0,1,...,16
k = np.array(range(0,17))
n = 10**k

calculez (1+1/n)**n
approxE = limN(n)

calculez l'erreur avec la solution exacte errN = |e - ..|
errN = np.abs(np.e - approxE)

dessinez l'erreur en log-log
plt.loglog(n, errN, 'b-*')
plt.xlabel('n'); plt.ylabel('ErrN')
plt.title('Error in finite difference', fontweight='bold')
plt.legend(['error'])
plt.grid()
plt.show()

[]:

5

	Jupyter Notebook Tutorial
	Text cells
	Code cells
	Keyboard shortcuts
	Saving your work

	Python tutorial
	Introduction
	Basics of Python
	Python versions
	Basic data types
	Containers
	Functions

	Numpy
	Arrays
	Array indexing
	Datatypes
	Array math
	Broadcasting
	Extracting (generic) matrix blocks

	Matplotlib
	Plotting
	Subplots

	Représentation des nombres
	Représentation de nombres : Exemple e
	Représentation de nombres : Exemple e^x
	IEEE 754 in Python
	Arrondis
	Partial sum and sums

	Cancellation, exemple
	Exemple, différences finies
	Exemple, le nombre e

