
Serie13
Simone Deparis

June 5, 2025

Contents

1 Exemple Système ODE 2
1.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour ce problème. 2
1.2 Setup . 2
1.3 Stabilité d’Euler Progressive . 3
1.4 Approximez la solution en utilisant ODESystemLib 3

2 Exemple Système ODE 9
2.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour ce problème. 9
2.2 Approximer la solution en utilisant forwardEulerSystem 9

3 Dynamique de population 14

4 Proie-prédateur 19
4.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour ce problème. 19
4.2 Approximez la solution en utilisant forwardEulerSystem 19
4.3 Stabilité d’Euler progressive . 20
4.4 Stabilité d’Euler progressive . 20
4.5 Stabilité de la solution . 23
4.6 Calcul numérique des valeurs propres de ∂xF . 23
4.7 Calcul analytique des valeurs propres de ∂xF . 23

[1]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

In my case, the OrdinaryDifferentialEquationsLib is in the parent directory,
therfore have have to add the aprent directory to path :
import sys
sys.path.append('..')

from ODESystemLib import forwardEulerSystem, backwardEulerSystem,␣
↪→CrankNicolsonSystem

[2]: # scipy.linalg.eig : eigenvalues of a matrix
from scipy.linalg import eig

1

1 Exemple Système ODE

Le système linéaire

{
y′1(t) = −2y1(t) + y2(t) + e−t

y′2(t) = 3y1(t)− 4y2(t)

avec les conditions initiales y1(0) = y10, y2(0) = y20, s’écrit sous la forme{
y′(t) = Ay(t) + b(t) t > 0,

y(0) = y0,
,

où

y(t) =

[
y1(t)
y2(t)

]
, A =

[
−2 1
3 −4

]
, b(t) =

[
e−t

0

]
, y0 =

[
y10
y20

]
.

Soit h > 0 le pas de temps. Pour n ∈ N, on pose tn = nh, bn = b(tn) et on désigne par un une
valeur approchée de la solution exacte y(tn) au temps tn.

1.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour
ce problème.

Les schémas d’Euler progressif, d’Euler rétrograde et de Crank-Nicolson pour approcher la solution
y(t) de s’écrivent respectivement:

Euler progressif

{
un+1 = un + hAun + hbn = (I + hA)un + hbn

u0 = y0

Euler rétrograde

{
(I − hA)un+1 = un + hbn+1

u0 = y0

Crank-Nicolson

{
(I − h

2A)un+1 = (I + h
2A)un + h

2 (bn + bn+1)

u0 = y0

n = 0, 1, ..., Nh − 1

Il faut remarquer qu’à chaque étape des méthodes de ER et CN, il faut résoudre un système linéaire
avec pour matrice I − hA et I − h

2A respectivement (il s’agit de méthodes implicites).

1.2 Setup

Nous allons définir la matrice A comme dépendante du temps pour généraliser, même si ici elle est
constante

[3]: A = lambda t : np.array([[-2, 1], [3 , -4]]);
b = lambda t : np.array([np.exp(-t), 0]);

y0 = np.array([1,1])
hb = 2/5;
t0 = 0; T = 8; tsp = [t0, T];

2

f = lambda t,x : (A(t)@ x + b(t))

1.3 Stabilité d’Euler Progressive

Il faut calculer les valeurs propres de A

[4]: lk, v = eig(A(0))
print(lk)
j représente le nombre complexe tq j^2 = -1

[-1.+0.j -5.+0.j]

La méthode d’Euler progressive est explicite (il n’y a pas de système linéaire à résoudre), par contre
elle est seulement conditionellement stable. Dans notre cas, les valeurs propres de A sont λ1 = −1 et
λ2 = −5; elles sont bien négatives, donc la condition de stabilité sur h s’applique: comme ρ(A) = 5,
cette condition de stabilité est

h < h̄ =
2

5
.

1.4 Approximez la solution en utilisant ODESystemLib

from ODESystemLib import forwardEulerSystem, backwardEulerSystem, CrankNicolsonSystem

(Regardez dans ODESystemLib comment appeler ces fonctions)

[5]: prop = 0.1
Nh = int(T/(prop*hb));
t01, u01 = forwardEulerSystem(f, tsp, y0, Nh);

prop = 1
Nh = int(T/(prop*hb));
t10, u10 = forwardEulerSystem(f, tsp, y0, Nh);

prop = 0.9
Nh = int(T/(prop*hb));
t09, u09 = forwardEulerSystem(f, tsp, y0, Nh);

prop = 1.2
Nh = int(T/(prop*hb));
tbe, ube = backwardEulerSystem(A, b, tsp, y0, Nh);

Pour tracer le graphe de la solution numérique en fonction du temps, il faut se rappeller que un est
la valeur approchée.

[6]: plt.plot(u01[0,:],u01[1,:],'o-')
plt.plot(u09[0,:],u09[1,:],'o-')
plt.plot(u10[0,:],u10[1,:],'o-')

plt.plot(ube[0,:],ube[1,:],'o-')

3

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend('EP')
plt.grid(True)
plt.show()

On peut aussi déssiner le comportement des deux variables

[7]: plt.plot(t01,u01[0,:],'o-')
plt.plot(t01,u01[1,:],'o-')

labels, title, legend
plt.title("Forward Euler")
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'])
plt.grid(True)
plt.show()

4

[8]: plt.plot(t10,u10[0,:],'o-')
plt.plot(t10,u10[1,:],'o-')

labels, title, legend
plt.title("Forward Euler")
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'])
plt.grid(True)
plt.show()

5

[9]: plt.plot(tbe,ube[0,:],'o-')
plt.plot(tbe,ube[1,:],'o-')

labels, title, legend
plt.title("Forward Euler")
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'])
plt.grid(True)
plt.show()

6

[10]: plt.plot(tbe,ucn[0,:],'o-')
plt.plot(tbe,ucn[1,:],'o-')

labels, title, legend
plt.title("Backward Euler")
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'])
plt.grid(True)
plt.show()

NameError Traceback (most recent call last)
Cell In[10], line 1
----> 1 plt.plot(tbe,ucn[0,:],'o-')

2 plt.plot(tbe,ucn[1,:],'o-')
4 # labels, title, legend

NameError: name 'ucn' is not defined

7

[]:

[]:

8

2 Exemple Système ODE

Le système non-linéaire
y′1(t) = −2y1(t) + sin(y2(t)) + e−t sin(t)

y′2(t) = cos(y1(t))− 4y2(t)

avec les conditions initiales y1(0) = y10, y2(0) = y20,

s’écrit sous la forme
y′(t) = F(t,y(t)),

où

F(t,y(t)) =

[
−2y1(t) + sin(y2(t)) + e0.1t sin(t)

cos(y1(t))− 4y2(t)

]
.

Soit h > 0 le pas de temps. Pour n ∈ N, on pose tn = nh, bn = b(tn) et on désigne par un une
valeur approchée de la solution exacte y(tn) au temps tn.

2.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour
ce problème.

Les schémas d’Euler progressif, d’Euler rétrograde et de Crank-Nicolson pour approcher la solution
y(t) de s’écrivent respectivement:

Euler progressif

{
un+1 = un + hF (tn,un)

u0 = y0

Euler rétrograde

{
un+1 = un + hF (tn+1,un+1)

u0 = y0

Crank-Nicolson

{
un+1 = un + h

2 (F (tn,un) + F (tn+1,un+1))

u0 = y0

n = 0, 1, ..., Nh − 1

Il faut remarquer qu’à chaque étape des méthodes de ER et CN, il faut résoudre un système non-
linéaire (il s’agit de méthodes implicites).

La méthode d’Euler progressive est explicite (il n’y a pas de système linéaire à résoudre), par contre
elle est seulement conditionellement stable. Dans notre cas, les valeurs propres de A sont λ1 = −1 et
λ2 = −5; elles sont bien négatives, donc la condition de stabilité sur h s’applique: comme ρ(A) = 5,
cette condition de stabilité est

h < h̄ =
2

5
.

2.2 Approximer la solution en utilisant forwardEulerSystem

from ODESystemLib import forwardEulerSystem

(Regardez dans ODESystemLib comment appeler ces fonctions)

[11]: # importing libraries used in this book
import numpy as np

9

import matplotlib.pyplot as plt

In my case, the OrdinaryDifferentialEquationsLib is in the parent directory,
therfore have have to add the aprent directory to path :
import sys
sys.path.append('..')

from ODESystemLib import forwardEulerSystem, backwardEulerSystem,␣
↪→CrankNicolsonSystem

[12]: y0 = np.array([1,1])
hb = 2/(3+np.sqrt(2));
t0 = 0; T = 8; tsp = [t0, T];

f = lambda t,x : np.array([-2*x[0] + np.sin(x[1]) + np.exp(-t)*np.sin(t) ,
np.cos(x[0]) - 4*x[1]])

prop = 0.1
Nh = int(T/(prop*hb));
t01, u01 = forwardEulerSystem(f, tsp, y0, Nh);

prop = 1.2
Nh = int(T/(prop*hb));
t12, u12 = forwardEulerSystem(f, tsp, y0, Nh);

prop = 0.9
Nh = int(T/(prop*hb));
t09, u09 = forwardEulerSystem(f, tsp, y0, Nh);

Pour tracer le graphe de la solution numérique en fonction du temps, il faut se rappeller que un est
la valeur approchée.

On peut aussi déssiner le comportement des deux variables

[13]: plt.plot(t01,u01[0,:],'o-')
plt.plot(t01,u01[1,:],'o-')

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'])
plt.grid(True)
plt.show()

10

[14]: plt.plot(t09,u09[0,:],'o-')
plt.plot(t09,u09[1,:],'o-')

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'])
plt.grid(True)
plt.show()

11

[15]: plt.plot(t12,u12[0,:],'o-')
plt.plot(t12,u12[1,:],'o-')

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'])
plt.grid(True)
plt.show()

12

[]:

[]:

13

3 Dynamique de population

On considère une population de y individus dans un environnement où au plus B = 1000 individus
peuvent coexister. On suppose qu’initialement le nombre d’individus est y0 = 100 et que le facteur
de croissance est égal à une constante C. Le modèle de l’évolution de la population considérée sur
100 années est le suivant:

y′(t) = Cy(t)

(
1− y(t)

B

)
, t ∈ (0, 100), y(0) = y0,

où t est mesuré en années, et C = 2/15 an−1.

Soit un l’approximation de y(tn), où tn = nh, n = 0, 1, 2, . . . , Nh, h = 100/Nh étant le pas de temps,
Nh étant le nombre de pas temporels. Plus Nh est grand, plus le pas de temps est petit et plus
l’approximation sera précise.

1. Ecrire les schémas d’Euler progressif (explicite) et rétrograde (implicite) pour calculer une
approximation un de y(tn) (donner les équations de récurrence définissant la suite un dans les
deux cas).

2. On prend h = 1/12 an; donner la valeur u1 qui approche le nombre d’individus y(t1) au temps
t1 (donc après 1 mois), obtenue i) par la méthode d’Euler progressive, puis ii) par la méthode
d’Euler rétrograde. Suggestion: resoudre à la main l’équation pour trouver la nouvelle valeur
ui+1.

3. En utilisant la méthode d’Euler progressif (copier et modifier la fonction forwardEuler.m créé
précédemment), calculer les valeurs approchées un, n = 0, 1, . . . , Nh en Python, pour Nh = 20.

4. Tracer un graphe de la solution numérique trouvée en fonction du temps.

5. Faire à nouveau le calcul précédent, mais en prenant Nh = 1000; tracer la nouvelle solution
numérique.

6. D’après les résultats trouvés, combien d’années sont nécessaires pour que la population at-
teigne le nombre de 900 individus? Suggestion: utiliser la commande find.

Partie 1 En général, un schéma numérique pour le calcul des approximations un des valeurs
y(tn), s’écrit sous la forme d’une équation de récurrence définissant un+1 en fonction de la valeur
un trouvée au pas précedent. Dans notre cas, le schéma d’Euler progressif est donné par

{
un+1 = un + hCun

(
1− un

B

)
,

u0 = 100,

tandis que celui d’Euler rétrograde s’écrit{
un+1 = un + hCun+1

(
1− un+1

B

)
,

u0 = 100.

Partie 2 Avec les valeurs données, aprés un mois la valeur approchée du nombre d’individus que
l’on calcule par la méthode d’Euler progressive est

u1 = 100 +
1

12

2

15
100

(
1− 100

1000

)
= 101.

14

Pour calculer l’approximation selon le schéma d’Euler rétrograde, il faut résoudre une équation avec
u1 comme inconnue:

hC
1

B
u21 + (1− hC)u1 − u0 = 0.

Dans ce cas, la solution n’est pas unique. On a deux racines:

u1 =
B

2hC

[
−(1− hC)±

√
(1− hC)2 + 4hC

u0
B

]
.

Néanmoins, seule la solution positive est acceptable (on rappelle que l’on cherche à calculer un
nombre d’individus). Celle-ci est donc

u1 = 1000 · 45

−(
1− 1

90

)
+

√(
1− 1

90

)2

+
2

450

 = 101.008958.

Partie 3 On sait que le schéma d’Euler progressif pour le problème considéré est{
un+1 = un + hCun

(
1− un

B

)
,

u0 = 100.

En Python, ceci s’écrit

[16]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

In my case, the OrdinaryDifferentialEquationsLib is in the parent directory,
therfore have have to add the aprent directory to path :
import sys
sys.path.append('..')

from OrdinaryDifferentialEquationsLib import forwardEuler, backwardEuler

[17]: C = 2/15; B=1000; # valeurs des paramtres C et B
y0 = 100
Nh = 20; # valeur de Nh
t0 = 0; T = 100.; tsp = [t0, T]
h = (T-t0)/Nh; # pas de temps

f = lambda t,x : (C * x * (1-x/B))
t, u = forwardEuler(f, tsp, y0, Nh);

où on a suivi la suggestion de l’énoncé.

Partie 4 Pour tracer le graphe de la solution numérique en fonction du temps, il faut se rappeller
que un est la valeur approchée au temps tn = nh. Donc on peut taper

15

[18]: plt.plot(t,u,'o-')

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend('EP')
plt.grid(True)
plt.show()

pour obtenir le graphe cherché.

Partie 5 On utilise les mêmes commandes qu’au point a), mais on change la valeur de Nh:

[19]: C = 2/15; B=1000; # valeurs des paramtres C et B
y0 = 100
Nh = 1000; # valeur de Nh
t0 = 0; T = 100.; tsp = [t0, T]
h = (T-t0)/Nh; # pas de temps

f = lambda t,x : (C * x * (1-x/B))
t1, u1 = forwardEuler(f, tsp, y0, Nh);

Ensuite on trace le nouveau graphe avec

16

[20]: plt.plot(t,u,'o-')
plt.plot(t1,u1,'-')

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['Nh=20','Nh=1000'])
plt.grid(True)
plt.title("Solutions de l'équation différentielle pour diverses valeurs de N_h.
↪→")

plt.plot([t0,T], [900,900], 'g-',linewidth=0.2)

plt.savefig("EX020_fig.pdf", dpi=150)
plt.show()

On s’attend à ce que la solution correspondant à Nh = 1000 soit la plus précise, donc la plus proche
de l’évolution exacte de la population.

Partie 6 On peut répondre soit en analysant le graphe de la solution numérique la plus précise
(Nh = 1000), en tracent la droite correspondent à u=900 (avec la commande plt.plot([t0,T],
[900,900], 'g-',linewidth=0.2)), soit en utilisant la commande np.where de numpy. On donne

17

ici un exemple de comment utiliser cette fonction (Remarque: si u est un vecteur, alors (u>=900)
est aussi un vecteur, dont la composante i-ème est égale à 1 si u(i) ≥ 900, zéro autrement. La
commande where retourne alors le vecteur des indices non-nuls de (u>=900); finalement, le premier
élément du vecteur résultant nous donne le plus petit de ces indices) :

[21]: index = np.where(u1 >= 900)

i = index[0][0]; # le plus petit des indices i
tels que u(i)> =900

T = h*i
print(T)

33.0

Donc la population atteint le nombre de 900 individus après T = 33 ans.

[]:

[]:

18

4 Proie-prédateur

Le système non-linéaire
y′1(t) = 0.08 y1(t)− 0.004 y1(t)y2(t),

y′2(t) = −0.06 y2(t) + 0.002 y1(t)y2(t).

avec les conditions initiales y1(0) = 40, y2(0) = 20,

s’écrit sous la forme
y′(t) = F(t,y(t)),

où

F(t,x) =

[
0.08x1 − 0.004x1x2
−0.06x2 + 0.002x1x2

]
.

Soit h > 0 le pas de temps. Pour n ∈ N, on pose tn = nh, bn = b(tn) et on désigne par un une
valeur approchée de la solution exacte y(tn) au temps tn.

4.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour
ce problème.

Les schémas d’Euler progressif, d’Euler rétrograde et de Crank-Nicolson pour approcher la solution
y(t) de s’écrivent respectivement:

Euler progressif

{
un+1 = un + hF (tn,un)

u0 = y0

Euler rétrograde

{
un+1 = un + hF (tn+1,un+1)

u0 = y0

Crank-Nicolson

{
un+1 = un + h

2 (F (tn,un) + F (tn+1,un+1))

u0 = y0

n = 0, 1, ..., Nh − 1

Il faut remarquer qu’à chaque étape des méthodes de ER et CN, il faut résoudre un système non-
linéaire (il s’agit de méthodes implicites).

4.2 Approximez la solution en utilisant forwardEulerSystem

from ODESystemLib import forwardEulerSystem

(Regardez dans ODESystemLib comment appeler ces fonctions)

[22]: # importing libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

In my case, the OrdinaryDifferentialEquationsLib is in the parent directory,
therfore have have to add the aprent directory to path :
import sys
sys.path.append('..')

19

from ODESystemLib import forwardEulerSystem, backwardEulerSystem,␣
↪→CrankNicolsonSystem

[23]: # scipy.linalg.eig : eigenvalues of a matrix
from scipy.linalg import eig
scipy.linalg.lu : LU decomposition
from scipy.linalg import lu
scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky
scipy.linalg.hilbert : Hilbert matrix
from scipy.linalg import hilbert

np.set_printoptions(precision=4, suppress=True, linewidth=120)

[24]: y0 = np.array([40,20])
hb = 2/10.0; # Ici nous n'avons pas d'idée sur la valeur de lambda_max, on␣
↪→invente en on prend lambda_max = 5

t0 = 0; T = 1200; tsp = [t0, T];

f = lambda t,x : np.array([0.08*x[0] - 0.004*x[0]*x[1],
-0.06*x[1] + 0.002*x[0]*x[1]])

4.3 Stabilité d’Euler progressive

La Jacobienne de F est la suivante

∂F

∂x
(t,x) =

[
0.08− 0.004x2 −0.004x1

0.002x2 −0.06 + 0.002x1

]
.

On peut dessiner le countour des valeurs propres dependemment de (x1, x2).

[25]: df = lambda t,x : np.array([[0.08- 0.004*x[1], - 0.004*x[0]] ,
[0.002*x[1],-0.06 + 0.002*x[0]]])

4.4 Stabilité d’Euler progressive

La méthode d’Euler progressive est explicite (il n’y a pas de système linéaire à résoudre), par contre
elle est seulement conditionellement stable.

Il faudrait à chaque pas de temps calculer les valeurs propres et choisir h en conséquence. Nous
allons le faire même si cela n’est pas réaliste.

De plus, comme l’on verra plus bas, le système physique alterne entre moment stables et enstables.

[26]: prop = 0.1
Nh = int(T/(prop*hb));
t01, u01 = forwardEulerSystem(f, tsp, y0, Nh);

20

[27]: prop = 0.9
Nh = int(T/(prop*hb));
t09, u09 = forwardEulerSystem(f, tsp, y0, Nh);

[28]: prop = 1.2
Nh = int(T/(prop*hb));
t12, u12 = forwardEulerSystem(f, tsp, y0, Nh);

Pour tracer le graphe de la solution numérique en fonction du temps, il faut se rappeller que un est
la valeur approchée.

On peut aussi déssiner le comportement des deux variables

[29]: plt.plot(t01,u01[0,:],'.-')
plt.plot(t01,u01[1,:],'.-')

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'])
plt.grid(True)
plt.show()

21

[30]: plt.plot(t09,u09[0,:],'.-')
plt.plot(t09,u09[1,:],'.-')

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'])
plt.grid(True)
plt.show()

[31]: plt.plot(t12,u12[0,:],'.-')
plt.plot(t12,u12[1,:],'.-')

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'])
plt.grid(True)
plt.show()

22

4.5 Stabilité de la solution

Dans le cas général (pas vu en cours), le système est stable quand la partie réelle des valeurs propres
de ∂xF est négative, autrement le système est instable.

On peut calculer ∂xF le long de la solution numérique et identifier des moments où la configuration
est stable ou pas.

On peut le voir en dessinant la trajectoire (u1, u2, avec une élevation z égale au max des valeurs
propres de λ1(∂xF).

4.6 Calcul numérique des valeurs propres de ∂xF

[32]: lam, v = eig(df(0,u01[:,0]))

4.7 Calcul analytique des valeurs propres de ∂xF

Dans ce cas particulier, on peut aussi calculer des valeurs propres de manière analytique :

[33]: def lam1(u):
x = u[0,:]
y = u[1,:]

23

return np.real(x - 2 *y - np.sqrt(x**2 - 4*y*x - 140*x + 4*y**2 - 280*y +␣
↪→4900, dtype=complex) + 10)/1000

def lam2(u):
x = u[0,:]
y = u[1,:]
return np.real(x - 2 *y + np.sqrt(x**2 - 4*y*x - 140*x + 4*y**2 - 280*y +␣

↪→4900, dtype=complex) + 10)/1000

[34]: ## With eig fonction
Nh = u01[1,:].shape[0] -1
lk01 = np.zeros(Nh+1)
for k in range(0,Nh+1) :

lkk, v = eig(df(0,u01[:,k]))
lk01[k] = np.real(lkk[1])

[35]: import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Line3DCollection

def plotLambda(u,lk) :

Assume u01 is shape (2, N) and lk is shape (N,)
x = np.ravel(u[0, :])
y = np.ravel(u[1, :])
z = np.ravel(lk)

Check they have the same length
assert x.shape == y.shape == z.shape, "x, y, z must be 1D arrays of the same␣

↪→length"

Stack into (N, 3) array of points
points = np.vstack([x, y, z]).T # shape (N, 3)

Build line segments between each consecutive point
segments = np.array([points[i:i+2] for i in range(len(points)-1)])

Use average lk value per segment for coloring (length = len(segments))
lk_segment = (z[:-1] + z[1:]) / 2

Create line collection
lc = Line3DCollection(segments, cmap='viridis', norm=plt.

↪→Normalize(lk_segment.min(), lk_segment.max()))
lc.set_array(lk_segment)

Plot
fig = plt.figure()
ax = fig.add_subplot(projection='3d')

24

ax.add_collection3d(lc)

Set axis limits
ax.set_xlim(x.min(), x.max())
ax.set_ylim(y.min(), y.max())
ax.set_zlim(z.min(), z.max())

ax.view_init(elev=20., azim=-35, roll=0)
plt.colorbar(lc, ax=ax, label='lk value')

plt.show()

[36]: plotLambda(u01,lam2(u01))
plotLambda(u09,lam2(u09))
plotLambda(u12,lam2(u12))

25

26

[]:

[]:

27

	Exemple Système ODE
	Ecrire les Schémas d'Euler progressive, retrograde et Crank-Nicolson pour ce problème.
	Setup
	Stabilité d'Euler Progressive
	Approximez la solution en utilisant ODESystemLib

	Exemple Système ODE
	Ecrire les Schémas d'Euler progressive, retrograde et Crank-Nicolson pour ce problème.
	Approximer la solution en utilisant forwardEulerSystem

	Dynamique de population
	Proie-prédateur
	Ecrire les Schémas d'Euler progressive, retrograde et Crank-Nicolson pour ce problème.
	Approximez la solution en utilisant forwardEulerSystem
	Stabilité d'Euler progressive
	Stabilité d'Euler progressive
	Stabilité de la solution
	Calcul numérique des valeurs propres de \partial_x F
	Calcul analytique des valeurs propres de \partial_x F

