[1]:

[2]:

Seriel3

Simone Deparis

June 5, 2025

Contents

1 Exemple Systéme ODE

1.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour ce probléme.
1.2 Setup . . . o e
1.3 Stabilité d’Euler Progressive
1.4 Approximez la solution en utilisant ODESystemLib

Exemple Systéme ODE
2.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour ce probléme.
2.2 Approximer la solution en utilisant forwardEulerSystem.

Dynamique de population

Proie-prédateur

4.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour ce probléme. 19

4.2 Approximez la solution en utilisant forwardEulerSystem
4.3 Stabilité d’Euler progressive L Lo
4.4 Stabilité d’Euler progressive o
4.5 Stabilité de la solution L L
4.6 Calcul numérique des valeurs propres de O, F
4.7 Calcul analytique des valeurs propres de O, F

amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

In my case, the OrdinaryDifferentialEquationsLib ts wn the parent directory,
therfore have have to add the aprent directory to path :

import sys

sys.path.append('..")

from ODESystemLib import forwardEulerSystem, backwardEulerSystem,,
—CrankNicolsonSystem

scipy.linalg.etg : eigenvalues of a matriz
from scipy.linalg import eig

1 Exemple Systéme ODE

Le systéme linéaire

{y’l(t) = =2y(t) + y2(t) + e
ya(t) = 3yi(t) — 4ya(t)

avec les conditions initiales y1(0) = y10, y2(0) = y20, s’écrit sous la forme

Ay(t) +b(t) t>0,

)

Y1 (75)] [—2 1 } [e_t] [910]
t) = , A= , b(t)=) = .
y() [?/2@) 3 —4 ®) 0 YO~ Lyao
Soit A > 0 le pas de temps. Pour n € N, on pose t, = nh, b, = b(t,) et on désigne par u, une
valeur approchée de la solution exacte y(t,) au temps t,.

—N—
= X
S =
I
<
e

ou

1.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour
ce probléme.

Les schémas d’Euler progressif, d’Euler rétrograde et de Crank-Nicolson pour approcher la solution
y(t) de s’écrivent respectivement:

. u,+1 = u, + hAu, + hb,, = (I + hA)u, + hb,
Euler progressif

Up = Yo

Euler rétrograde (U1 =u, + 11
Up = Yo

Crank-Nicolson (I = 3A)un1 =+ 3A)u, + 5 (bp +bpi)
Up = Yo

n=01,...,Ny—1

I1 faut remarquer qu’a chaque étape des méthodes de ER et CN, il faut résoudre un systéme linéaire
avec pour matrice I — hA et I — %A respectivement (il s’agit de méthodes implicites).

1.2 Setup

Nous allons définir la matrice A comme dépendante du temps pour généraliser, méme si ici elle est
constante

[3]1: A = lambda t : np.array([[-2, 11, [3, -4 11);
b = lambda t : np.array([np.exp(-t), 0]1);

yO = np.array([1,1])
hb = 2/5;
t0 = 0; T = 8; tsp = [t0, T;

[4] :

[5]:

[6]:

f = lambda t,x : (A(t)@ x + b(t))

1.3 Stabilité d’Euler Progressive

Il faut calculer les valeurs propres de A

1k, v = eig(A(0))
print (1k)
9 représente le nmombre complexze tq 7°2 = -1

[-1.+0.j -5.+0.j]

La méthode d’Euler progressive est explicite (il n’y a pas de systéme linéaire a résoudre), par contre

elle est seulement conditionellement stable. Dans notre cas, les valeurs propres de A sont A\; = —1 et
A2 = —5; elles sont bien négatives, donc la condition de stabilité sur h s’applique: comme p(A) = 5,
cette condition de stabilité est
h<h= 2
£

1.4 Approximez la solution en utilisant ODESystemLib
from ODESystemLib import forwardEulerSystem, backwardEulerSystem, CrankNicolsonSystem

(Regardez dans ODESystemLib comment appeler ces fonctions)

prop = 0.1
Nh = int(T/(prop+*hb));
t01, u01 = forwardEulerSystem(f, tsp, yO, Nh);

prop = 1
Nh = int(T/(prop+*hb));
t10, ul0 = forwardEulerSystem(f, tsp, yO, Nh);

prop = 0.9
Nh = int(T/(prop+*hb));
t09, u09 = forwardEulerSystem(f, tsp, yO, Nh);

prop = 1.2
Nh = int(T/(prop*hb));
tbe, ube = backwardEulerSystem(A, b, tsp, yO, Nh);

Pour tracer le graphe de la solution numérique en fonction du temps, il faut se rappeller que u,, est
la valeur approchée.

plt.plot(u01[0,:],u01[1,:],'0-")
plt.plot(u09([0,:]1,u09([1,:]1,'0-")
plt.plot(ul0[0,:],ul0[1,:],'0-")

plt.plot(ubel0,:],ubell,:],'0-")

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend('EP')

plt.grid(True)

plt.show()

1.0~

0.8

0.6

0.4

L

0.2

0.0

—0.2 7

0.0 0.2 0.4 0.6 0.8 1.0

On peut aussi déssiner le comportement des deux variables

[7]: plt.plot(t01,u01[0,:]1,'0-")
plt.plot(t01,u01[1,:1,"'0o-")

labels, title, legend
plt.title("Forward Euler")
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'1)
plt.grid(True)

plt.show()

[8]:

plt.
plt.

Forward Euler

plot (£10,u10[0,:1, 0~ ")
plot(t10,ul0[1,:]1,'0-")

labels, title, legend

plt.
plt.
plt.
plt.
.show ()

plt

title("Forward Euler")

xlabel ('t'); plt.ylabel('u_n')
legend (['u_1', 'u_2'1)
grid(True)

Forward Euler

1.0 - —— U]
—— L7

0.8 R

0.6

L

0.4 Y
0.2 V
0.0 s V v‘ Y

[9]: plt.plot(tbe,ubel0,:]1,'0-")
plt.plot(tbe,ubell,:]1, " '0o-")

labels, title, legend
plt.title("Forward Euler")
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_28'1)
plt.grid(True)

plt.show()

Forward Euler

1.0 4 ——

——
0.8 1
0.6 1

=

0.4 1
0.2 1
0.0 1

T T T T T T T T T

0 1 2 3 4 5 6 7 8

t

[10]: plt.plot(tbe,ucn[0,:],"'o-")
plt.plot(tbe,ucn(l,:]1, " 'o-")

labels, title, legend
plt.title("Backward Euler")
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', '$u_2%'1)
plt.grid(True)

plt.show()

NameError Traceback (most recent call last)
Cell In[10], line 1
----> 1 plt.plot(tbe,ucnl[0,:],'o-")

2 plt.plot(tbe,ucn[1,:],'0-")

4 # labels, title, legend

NameError: name 'ucn' is not defined

[1:

[]:

[11]:

2 Exemple Systéme ODE

Le systéme non-linéaire
Yi(t) = =2u1(t) + sin(ya(t)) + e~ sin(t)
Ya(t) = cos(y1(t)) — 4ya(t)
avec les conditions initiales y1(0) = y10, y2(0) = y20,

s’écrit sous la forme
y,(t) = F(t7y(t))7
ou
—2y1 (t) + sin(ya(t)) + e sin(t)

F(t,y(t)) = cos(y1(t)) — 4ya(t)

Soit A > 0 le pas de temps. Pour n € N, on pose t,, = nh, b, = b(t,) et on désigne par u,, une
valeur approchée de la solution exacte y(t,) au temps t,.

2.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour
ce probléme.

Les schémas d’Euler progressif, d’Euler rétrograde et de Crank-Nicolson pour approcher la solution
y(t) de s’écrivent respectivement:

= hF(t
Euler progressif {u”+1 u, + hF(t, ap)

U = Yo
= hE(t
Euler rétrograde Up41 = Up + (tns1, Ung1)
Uo = Yo
h
= 2 (F(t n F(t ,
Crank-Nicolson U1 = Uy + 5 (F(tn, un) + Ftng1, Uptn))
Uo = Yo

n=0,1,..N,—1

Il faut remarquer qu’a chaque étape des méthodes de ER et CN, il faut résoudre un systéme non-
linéaire (il s’agit de méthodes implicites).

La méthode d’Euler progressive est explicite (il n’y a pas de systéme linéaire a résoudre), par contre

elle est seulement conditionellement stable. Dans notre cas, les valeurs propres de A sont Ay = —1 et
A2 = —5; elles sont bien négatives, donc la condition de stabilité sur h s’applique: comme p(A) = 5,
cette condition de stabilité est
heh=2
£

2.2 Approximer la solution en utilisant forwardEulerSystem
from ODESystemLib import forwardEulerSystem

(Regardez dans ODESystemLib comment appeler ces fonctions)

importing libraries used in this book
import numpy as np

import matplotlib.pyplot as plt

In my case, the OrdinaryDifferenttalEquationslib ts wn the parent directory,
therfore have have to add the aprent directory to path :

import sys

sys.path.append('..")

from ODESystemLib import forwardEulerSystem, backwardEulerSystem,,
—CrankNicolsonSystem

[12]: yO = np.array([1,1])
hb = 2/(3+np.sqrt(2));
t0 = 0; T = 8; tsp = [t0, T];

f = lambda t,x : np.array([-2*x[0] + np.sin(x[1]) + np.exp(-t)*np.sin(t) ,
np.cos(x[0]) - 4*x[1] 1)

prop = 0.1
Nh = int(T/(prop+*hb));
t01, u0l1 = forwardEulerSystem(f, tsp, yO, Nh);

prop 1.2
Nh = int(T/(prop+*hb));
t12, ul2 = forwardEulerSystem(f, tsp, yO, Nh);

prop = 0.9
Nh = int(T/(prop*hb)) ;
t09, u09 = forwardEulerSystem(f, tsp, yO, Nh);

Pour tracer le graphe de la solution numérique en fonction du temps, il faut se rappeller que u,, est
la valeur approchée.

On peut aussi déssiner le comportement des deux variables

[13]: plt.plot(t01,u01[0,:]1,"'o-")
plt.plot(t01,u01[1,:]1,"'o-")

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'1)
plt.grid(True)

plt.show()

10

T
1.0 ——)
—— L7
0.8
0.6
=
0.4
0.2
T T T T T
0 1 2 3 4 5 6 7 8

[14]: plt.plot(t09,u09([0,:]1,"'o-")
plt.plot(t09,u09[1,:], '0-")

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'1)
plt.grid(True)

plt.show()

11

1.0 —— ;1‘
—— L7
0.8 1\
MaLll
0.4
s 0.2 \J
I\/ ﬁ.—ﬂi—ﬂLP*.P*.F-CF-lP“OP-IP—x
0.0 ’ '
—0.2
0.4
0 1 2 3 4 5 6 7 8
t

[15]: plt.plot(t12,ul12[0,:],'o-")
plt.plot(t12,ul2[1,:1,"'o-")

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_13', '$u_2%'1)
plt.grid(True)

plt.show()

12

—
3 3
_
=] o
M

Einanaaa

3 Dynamique de population

On considére une population de y individus dans un environnement ot au plus B = 1000 individus
peuvent coexister. On suppose qu’initialement le nombre d’individus est yg = 100 et que le facteur
de croissance est égal & une constante C'. Le modéle de ’évolution de la population considérée sur
100 années est le suivant:

v =y (1- 1) e 0100, 50 =

oil t est mesuré en années, et C = 2/15 an~!.

Soit u,, 'approximation de y(t,), ou t, =nh,n =0,1,2,..., Ny, h = 100/N}, étant le pas de temps,
Nj, étant le nombre de pas temporels. Plus IV, est grand, plus le pas de temps est petit et plus
I’approximation sera précise.

1. Ecrire les schémas d’Euler progressif (explicite) et rétrograde (implicite) pour calculer une
approximation u, de y(t,) (donner les équations de récurrence définissant la suite u,, dans les
deux cas).

2. On prend h = 1/12 an; donner la valeur u; qui approche le nombre d’individus y(¢1) au temps
t1 (donc aprés 1 mois), obtenue i) par la méthode d’Euler progressive, puis i) par la méthode
d’Euler rétrograde. Suggestion: resoudre a la main 1’équation pour trouver la nouvelle valeur
Uj4-1-

3. En utilisant la méthode d’Euler progressif (copier et modifier la fonction forwardEuler.m créé
précédemment), calculer les valeurs approchées u,, n = 0,1, ..., N} en Python, pour N}, = 20.

4. Tracer un graphe de la solution numérique trouvée en fonction du temps.

5. Faire & nouveau le calcul précédent, mais en prenant N = 1000; tracer la nouvelle solution
numérique.

6. D’aprés les résultats trouvés, combien d’années sont nécessaires pour que la population at-

teigne le nombre de 900 individus? Suggestion: utiliser la commande find.

Partie 1 En général, un schéma numérique pour le calcul des approximations wu, des valeurs
y(tn), s'écrit sous la forme d’une équation de récurrence définissant u,4+1 en fonction de la valeur
Uy trouvée au pas précedent. Dans notre cas, le schéma d’FEuler progressif est donné par

u

Up+1 = Un + hCuy, (1 — E”) ,
ug = 100,

tandis que celui d’Euler rétrograde s’écrit

(7
Unt1 = Up + hCun+1 (1 - gl) y
ug = 100.

Partie 2 Avec les valeurs données, aprés un mois la valeur approchée du nombre d’individus que
I’on calcule par la méthode d’Euler progressive est

12 100
=1 — 1 1—-—— | =101.
Uy 00 + 515 00< 1000> 0

14

Pour calculer 'approximation selon le schéma d’Euler rétrograde, il faut résoudre une équation avec
w1 comme inconnue:

1
hCEU% + (1 = hC)uy —up = 0.

Dans ce cas, la solution n’est pas unique. On a deux racines:

B

RYNG:

[—(1 — hC) + \/(1 — hC)? + 4h01ﬂ .

Néanmoins, seule la solution positive est acceptable (on rappelle que 'on cherche a calculer un
nombre d’individus). Celle-ci est donc

1 1* 2
— 100045 |— (1— — 1— —) +-=| =101.008958.
" < 90) + \/(90) 150

Partie 3 On sait que le schéma d’Euler progressif pour le probléme considéré est

Up+1 = Un + hCuy, (1 — %) ,
ug = 100.

En Python, ceci s’écrit

[16]: # <mporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

In my case, the OrdinaryDifferentialEquationsLib is in the parent directory,
therfore have have to add the aprent directory to path :

import sys

sys.path.append('..")

from OrdinaryDifferentialEquationsLib import forwardEuler, backwardEuler

[17]: C = 2/15; B=1000; # valeurs des paramtres C et B
y0 = 100
Nh = 20; # valeur de Nh
t0 = 0; T = 100.; tsp = [t0, T]
h = (T-t0)/Nh; # pas de temps

f = lambda t,x : (C * x * (1-x/B))
t, u = forwardEuler(f, tsp, yO, Nh);

ol on a suivi la suggestion de I’énoncé.

Partie 4 Pour tracer le graphe de la solution numérique en fonction du temps, il faut se rappeller
que u,, est la valeur approchée au temps t,, = nh. Donc on peut taper

15

[18]: plt.plot(t,u,'o-")

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend('EP')

plt.grid(True)

plt.show()

1000 + —— E

800

600 T

L

400

200

T
0 20 40 60 80 100

pour obtenir le graphe cherché.

Partie 5 On utilise les mémes commandes qu’au point a), mais on change la valeur de Nh:

[19]:|C = 2/15; B=1000; # valeurs des paramtres C et B
yO = 100
Nh = 1000; # valeur de Nh
t0 = 0; T = 100.; tsp = [t0, T]
h = (T-t0)/Nh; # pas de temps
f = lambda t,x : (C * x * (1-x/B))

tl, ul = forwardEuler(f, tsp, yO, Nh);

Ensuite on trace le nouveau graphe avec

16

[20]:

plt.plot(t,u,'o-")
plt.plot(til,ul,'-")

labels, title, legend

plt.xlabel('t'); plt.ylabel('u_n')

plt.legend(['Nh=20"', 'Nh=1000"'])

plt.grid(True)

plt.title("Solutions de 1'équation différentielle pour diverses valeurs de N_h.

(_}n)
plt.plot([t0,T], [900,900], 'g-',linewidth=0.2)

plt.savefig("EX020_fig.pdf", dpi=150)
plt.show()

Solutions de I'éguation différentielle pour diverses valeurs de M.

1000 4 —e— Nh=20 e—0—0—8 S S 9
Nh=1000
800 +
600 1
5
400 1
200

T
0 20 40 60 80 100

On s’attend & ce que la solution correspondant & Ny = 1000 soit la plus précise, donc la plus proche
de I'évolution exacte de la population.

Partie 6 On peut répondre soit en analysant le graphe de la solution numérique la plus précise
(N, = 1000), en tracent la droite correspondent & u=900 (avec la commande plt.plot([t0,T],
[900,900], 'g-',linewidth=0.2)), soit en utilisant la commande np.where de numpy. On donne

17

ici un exemple de comment utiliser cette fonction (Remarque: si u est un vecteur, alors (u>=900)
est aussi un vecteur, dont la composante i-éme est égale a 1 si u(i) > 900, zéro autrement. La
commande where retourne alors le vecteur des indices non-nuls de (u>=900); finalement, le premier
élément du vecteur résultant nous donne le plus petit de ces indices) :

[21]: index = np.where(ul >= 900)

i = index[0] [0]; # le plus petit des indices 1%
tels que u(t)> =900

T = h*i

print (T)

33.0

Donc la population atteint le nombre de 900 individus aprés T' = 33 ans.

[]:
[]:

18

[22]:

4 Proie-prédateur

Le systéme non-linéaire

Y1 (t) = 0.08y1(t) — 0.004y: (t)ya(t),
yh(t) = —0.06 y2(t) + 0.002 y1 (t)ya(t).
avec les conditions initiales y;(0) = 40, y2(0) = 20,

s’écrit sous la forme
y'(t) =F(t,y(1)),
ou
1 0.0821 —0.004 z122

F{t.%) =1 00625 + 0.002 2129

Soit h > 0 le pas de temps. Pour n € N, on pose t,, = nh, b, = b(t,) et on désigne par u,, une
valeur approchée de la solution exacte y(t,) au temps t,.

4.1 Ecrire les Schémas d’Euler progressive, retrograde et Crank-Nicolson pour
ce probléme.

Les schémas d’Euler progressif, d’Euler rétrograde et de Crank-Nicolson pour approcher la solution
y(t) de s’écrivent respectivement:

= hFE(t
Euler progressif {U”H u, + hF(tn,)

Uo = Yo
= hF(t
Euler rétrograde Unt1 = Up + W (tnt1, Unga)
Uo = Yo
h
= 3 (F(t F(t
Crank-Nicolson Upt1 = Up + 5 (F(tn,un) + F(tng1, Upg1))
Uo = Yo

n:O,l,...,Nh—l

Il faut remarquer qu’a chaque étape des méthodes de ER et CN, il faut résoudre un systéme non-
linéaire (il s’agit de méthodes implicites).

4.2 Approximez la solution en utilisant forwardEulerSystem

from ODESystemLib import forwardEulerSystem

(Regardez dans ODESystemLib comment appeler ces fonctions)

amporting libraries used in this book
import numpy as np
import matplotlib.pyplot as plt

In my case, the UOrdinaryDifferentialEquationsLib 1s in the parent directory,
therfore have have to add the aprent directory to path :

import sys

sys.path.append('..")

19

from ODESystemLib import forwardEulerSystem, backwardEulerSystem,,
—>CrankNicolsonSystem

[23]: # scipy.linalg.etig : eigenvalues of a matriz
from scipy.linalg import eig
scipy.linalg.lu : LU decomposition
from scipy.linalg import lu
scipy.linalg.cholesky : Cholesky decomposition
from scipy.linalg import cholesky
scipy.linalg.hilbert : Hilbert matriz
from scipy.linalg import hilbert

np.set_printoptions(precision=4, suppress=True, linewidth=120)

[24]: yO = np.array([40,20])
hb 2/10.0; # Ict mous n'avons pas d'idée sur la valeur de lambda_maz, om,
—1nvente en on prend lambda_maxz = 5
t0 = 0; T = 1200; tsp = [t0, TJ;

I

f = lambda t,x : np.array([0.08*x[0] - 0.004*x[0]=*x[1],
-0.06*x[1] + 0.002*x[0]*x[1] 1)

4.3 Stabilité d’Euler progressive

La Jacobienne de F' est la suivante

8—F(t X) = 0.08 — 0.004 z- —0.004 z1
oxr T 0.002 z2 —0.06 + 0.002 z1

On peut dessiner le countour des valeurs propres dependemment de (z1,x2).

[25]: df = lambda t,x : np.array([[0.08- 0.004*x[1], - 0.004*x[0]] ,
[0.002%x[1],-0.06 + 0.002*x[0]] 1)

4.4 Stabilité d’Euler progressive

La méthode d’Euler progressive est explicite (il n’y a pas de systéme linéaire a résoudre), par contre
elle est seulement conditionellement stable.

Il faudrait a chaque pas de temps calculer les valeurs propres et choisir h en conséquence. Nous
allons le faire méme si cela n’est pas réaliste.

De plus, comme 'on verra plus bas, le systéme physique alterne entre moment stables et enstables.

[26]: prop = 0.1
Nh = int(T/(prop*hb));
t01, u0l = forwardEulerSystem(f, tsp, yO, Nh);

20

[27]: prop = 0.9
Nh = int(T/(prop*hb));
t09, u09 = forwardEulerSystem(f, tsp, yO, Nh);

[28]: prop = 1.2
Nh = int(T/(prop+*hb));
t12, ul2 = forwardEulerSystem(f, tsp, yO, Nh);

Pour tracer le graphe de la solution numérique en fonction du temps, il faut se rappeller que u,, est
la valeur approchée.

On peut aussi déssiner le comportement des deux variables

[29]: plt.plot(t01,u01[0,:1,"'.-")
plt.plot(t01,u01[1,:1,"'.-")

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'1)
plt.grid(True)

plt.show()

40

35

30

L

25

20+

15

T T T
0 200 400 600 800 1000 1200
t

21

[30]:

[31]:

plt.plot(t09,u09[0,:1,".-")
plt.plot(t09,u09(1,:1,"'.-")

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'1)
plt.grid(True)

plt.show()

45

40

35

30

L

25 7

20+

15

T T
0 200 400 600 800

plt.plot(t12,u12[0,:1,"'.-")
plt.plot(t12,ul2[1,:1,"'.-")

labels, title, legend
plt.xlabel('t'); plt.ylabel('u_n')
plt.legend(['u_1', 'u_2'1)
plt.grid(True)

plt.show()

22

T
1000

1200

[32]:

[33]:

0 200 400 600 800 1000 1200

4.5 Stabilité de la solution

Dans le cas général (pas vu en cours), le systéme est stable quand la partie réelle des valeurs propres
de 0, F est négative, autrement le systéme est instable.

On peut calculer 0, F le long de la solution numérique et identifier des moments ot la configuration
est stable ou pas.

On peut le voir en dessinant la trajectoire (u1,uz, avec une élevation z égale au max des valeurs
propres de A\ (0, F).

4.6 Calcul numérique des valeurs propres de 0, F

lam, v = eig(df(0,u01[:,0]))

4.7 Calcul analytique des valeurs propres de 0, F

Dans ce cas particulier, on peut aussi calculer des valeurs propres de maniére analytique :

def lamil(u):
x = ul0,:]
y = ult,:]

23

[34]:

[35]:

return np.real(x - 2 *y - np.sqrt(x**2 - 4ky*x - 140%x + 4xy**2 - 280%y +
4900, dtype=complex) + 10)/1000

def lam2(u):
x = ulo0, :]
y = ull,:]

return np.real(x - 2 *y + np.sqrt(x**2 - 4xy*x - 140%x + 4*xy**2 - 280*y +
—4900, dtype=complex) + 10)/1000

With eig fonction

Nh = u01[1,:].shape[0] -1

1k01 = np.zeros(Nh+1)

for k in range(0,Nh+1)
1kk, v = eig(df(0,u01[:,k]))
1k01[k] = np.real(1kk[1])

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Line3DCollection

def plotLambda(u,lk)

Assume u01 s shape (2, N) and lk ts shape (N,)
np.ravel(u[0, :])

np.ravel(ull, :])

= np.ravel (1k)

N < X %
o

Check they have the same length
assert x.shape == y.shape == z.shape, "x, y, z must be 1D arrays of the same
—length"

Stack into (N, 3) array of points
points = np.vstack([x, y, z]).T # shape (N, 3)

Build line segments between each consecutive point
segments = np.array([points[i:i+2] for i in range(len(points)-1)])

Use average lk value per segment for coloring (length = len(segments))
lk_segment = (z[:-1] + z[1:]1) / 2

Create line collection

lc = Line3DCollection(segments, cmap='viridis', norm=plt.
—Normalize(lk_segment.min(), lk_segment.max()))

lc.set_array(lk_segment)

Plot

fig = plt.figure()
ax = fig.add_subplot(projection="'3d")

24

ax.add_collection3d(1lc)

Set axis limits
ax.set_xlim(x.min(), x.max())
ax.set_ylim(y.min(), y.max())

ax.set_zlim(z.min(), z.max())

ax.view_init(elev=20., azim=-35, roll=0)
plt.colorbar(lc, ax=ax, label='lk value')

plt.show()

[36]: plotLambda(u01l,lam2(u01))
plotLambda(u09,lam2 (u09))
plotLambda(ul2,lam2(ul2))

0.010

0.005

0.000

—0.005

—0.010

25

Ik value

45 15.0

26

0.02

0.01

0.00

Ik value

—-0.01

—0.02

0.02

0.01

0.00

—-0.01

—0.02

Ik value

[1:

[]:

27

	Exemple Système ODE
	Ecrire les Schémas d'Euler progressive, retrograde et Crank-Nicolson pour ce problème.
	Setup
	Stabilité d'Euler Progressive
	Approximez la solution en utilisant ODESystemLib

	Exemple Système ODE
	Ecrire les Schémas d'Euler progressive, retrograde et Crank-Nicolson pour ce problème.
	Approximer la solution en utilisant forwardEulerSystem

	Dynamique de population
	Proie-prédateur
	Ecrire les Schémas d'Euler progressive, retrograde et Crank-Nicolson pour ce problème.
	Approximez la solution en utilisant forwardEulerSystem
	Stabilité d'Euler progressive
	Stabilité d'Euler progressive
	Stabilité de la solution
	Calcul numérique des valeurs propres de \partial_x F
	Calcul analytique des valeurs propres de \partial_x F

