Probléme 1 — Equations Différentielles Ordinaires

On considére le probléme de Cauchy suivant :

{ y'(t) = —4y(t) + cos(y(t)m)e™t, B8,

a) Cocher les bonnes réponses parmi les choix proposés.
(Bonne réponse 0.2 points, mauvaise —0.2, pas de réponse 0.)

Méthode explicite | implicite || ordre 1 | ordre 2 | ordre 3 cond. incond.
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b) Ecrivez les schémas d’Euler progressif et rétrograde avec pas de temps h pour approximation numérique
de y(t).
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¢) Donnez une condition sur h afin que la méthde d’Euler progressive appliqué au probléme (1) soit stable

D D Réservé au correcteur

Do, 2 Biore, | Mwnw. J/Iat’;&mt Ky & L
afrebwﬂ:x: ¢ Aoz ¢ G0 /h,ﬂsa),uk QE;mM’”’M ;“'mj]

Daema Bty - f41E) ¢yl Mt
dow 2 .= LTl * A /13,77}
oy

Aonc o'na_ - - 1&3\< 2%_ \(‘W"[‘ (O
¥
ﬂ M/:a?/zmw»ta(r(lé—-) A ¢

a
44Te "3

d) Soit n fixé et u, la valeur de la solution numérique au temps t = t,, = nh; on applique la méthode
d’Euler retrograde et on veut trouver u,,;. Vérifiez que u,41 est la solution d’une équation de la
forme

F(un+1) =(); (2)

Donnez la formie de F (en fonction de z : F(z) = ...) et écrire la rélation récursive qui définit les
itérations z(*) de la méthode de Newton pour résoudre 1’équation non-linéaire (2), avec la donnée
initiale 2(®) = u,,. (Pas besoin de simplifier I'expression obtenue.)
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Probléme 2 — Equations Non-Linéaires

(a) Soit f :— R la fonction représentée dans le graphique suivant. On veut utiliser la méthode de bissection
pour calculer une approximation des zéros de f: a, (et .
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Indiguez pour quels sous-intervalles la méthode de bissection peut effectivement étre utilisée. Sur
chaque intervalle ou il est possible d’utiliser la méthode de bissection, estimez le nombre minimal
d’itérations nécessaires pour trouver un zéro avec une erreur inférieure & 107%. (Bonne réponse 0.4
points, mauvaise 0.)
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On considére maintenant la fonction ¢ : [4,12] —» R,z — g(z) = In(z 4+ 1) — 2. Cette fonction posséde un 5
seul zéro o dans [4,12].

b) Le zéro « est aussi un point fixe de p(z) =  — (In(z -+ 1) — 2). Ecrivez la méthode du point fixe par
rapport a la fonction ¢.
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¢) Est-ce que la méthode du point fixe converge vers o 7 Si oui, avec quel ordre ?
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d) Supposons que z(® soit choisi tel que |a — z(®] < 10~!. Trouvez le nombre d’itérations nécessaires
pour que la méthode du point fixe donne une erreur de 1079,
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Probléme 3 — Systémes Linéaires

On considére le systéme linéaire Ax = b, avec

1=(55) = »=()

a) Sans écrire les matrices d’itérations, que peut-on dire de la convergence des méthodes de Jacobi et de
Gauss-Seidel appliquées a ce systéme linéaire 7
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b} On considére la méthode dite du gradient stationnaire préconditionné:
(k+1) (k)Y — (k) = (3 40
P(x = %" = alb - Ax'Y) ola€Ret P= 0 3/

Vérifiez que la matrice preconditionnée P~1A est symétrique définie positive et calculez la valeur

optimale du paramétre a.
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c¢) Calculez une borne de 'errenr en norme liviix = +/{ Av.v) par rapport 4 Uerreur initiale.
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Probléme 4 — Interpolation et approximation numériques

On veut approximer la fonction
1
i 3 [0, ~} — R, z > sin(27x)

)=

par un polynéme de degré 2 qui interpole la fonction aux points 0, %, %.

a) Calculez la base de Lagrange associée aux points d’interpolation 0, %, %.
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b) Calculez le polynome d’interpolation de degré 2 associ¢ aux points 0, %, +.
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¢) Quelle est V'erreur d’interpolation ?
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On considére les mesures suivantes :
z |3|1] 2 |
fa) [ e [1]e?]

—ax

Des biologistes supposent que le procédé est réglé par une loi de type f(z) = Ce

d) Déterminez les valeurs des constantes C et a.
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Probléme 5 : Intégration numérique

a) Donnez la définition de formule de quadrature en expliquant les notations.
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b) Dounnez la définition de dégré d’exactitude d’une forinule de quadrature.
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¢) Démontrez le théoréme suivant en complétant ’encadré.

Théoréme (poids d’interpolation) Soit J une formule de quadrature avec M noeuds.

J est exacte de degré M — 1 & |w; = J_/l %(t\ d.bj =i PP
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Probléme 6 : Code en Python

Complétez le code de la fonction Newton qui implémente la méthode de Newton. Des points sont dédiés aux
commentaires.
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Probléme 1 — Equations Différentielles Ordinaires

On considére le probléme de Cauchy suivant :
y'(t) = —4y(t) + cos(y(t)m)e?, =8,
¥(3) =1,

a) Cocher les bonnes réponses parmi les choix proposés.
(Bonne réponse 0.2 points, mauvaise —0.2, pas de réponse 0.)

Méthode explicite | implicite || ordre 1 | ordre 2 | ordre 3 cond. incond.
stable stable

Heun X [ 0 X O X [
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b) Ecrivez les schémas d’Euler progressif et rétrograde avec pas de temps h pour Papproximation numeérique
de y(t).

D D D D Réservé au correcteur

‘ O 2
‘&Jﬁ/\. e(‘OOYLQNM.‘( d ul\'f" - Mn = _le + o8 ( _m)e a
- - : & ¢ w-?h “M

A20 fixé Mo =4

knz botnh

. 7 T ~tn
o ¥ masa s W { A-UR) + hepslummle v

Atadle ondibionndfommt

VMo:’\V

~bnga

Umda s m o b o cosl LT ) e

>0 fix-€
An= kot R Moz 1
'\-0,1:".-. ‘/

jllmvx('\ +UR)= HeonCumian) g ! M

sty condibionmal L
,- A | Ro = 4\/






¢) Donnez une condition sur h afin que la méthde d’Euler progressive appliqué au probléme (1) soit stable
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d) Soit n fixé et u, la valeur de la solution numérique au temps ¢ = ¢, = nh; on applique la méthode

d’Euler retrograde et on veut trouver u,4j. Vérifiez que u,41 est la solution d’une éguation de la
forme

F(’U,,H_l) =10) (2)

Donnez la forme de F (en fonction de = : F(z) = ...) et écrire la rélation récursive qui définit les
itérations 2(*) de la méthode de Newton pour résoudre 'équation non-linéaire (2), avec la donnée
initiale z(® = u,,. (Pas besoin de simplifier 'expression obtenue.)

D D Réservé au correcteur
&Q\V\ Achoopoda . Mard = um — W h tmt 1 + M o5 (umeaT) gt

0= Mmt - Mm o+ Uk Umaa - A o3 umea ) e’h‘M
O=F (Mmt'\) J

3

omec Fln)= 2 - tm +Lh X - J0\cc>s(1rfa,) g‘-*’“"
= A+UR) o -an - R os( )ttt v Fla) = A+4h 45T sm(me™
mebhoda de Nevton ; o™V L gt F(ad) . ok - (AR o un-hosTak)e ™
LAY oo, .. Anen domet FY(nt) A 44 { A T o) gtase
d.o,?i'(\ie o
A= M



Probléme 2 — Equations Non-Linéaires

(a) Soit f :— R la fonction représentée dans le graphique suivant. On veut utiliser la méthode de bissection
pour calculer une approximation des zéros de f: «, § et .

i ' | =)
101 y
Shi q |
L ]
S T N
5t |

Indiquez pour quels sous-intervalles la méthode de bissection peut effectivement étre utilisée. Sur
chaque intervalle ou il est possible d’utiliser la méthode de bissection, estimez le nombre minimal
d’itérations nécessaires pour trouver un zéro avec une erreur inférieure & 107 (Bonne réponse 0.4
points, mauvaise 0.)
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On considére maintenant la fonction ¢ : [4,12] — R,z +— g(z) = In(x + 1) — 2. Cette fonction posséde un
seul zéro a dans [4, 12].

b) Le zéro « est aussi un point fixe de p(z) = x — (In(z + 1) — 2). Ecrivez la méthode du point fixe par
rapport a la fonction .
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c¢) Est-ce que la méthode du point fixe converge vers a 7 Si oui, avec quel ordre 7
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d) Supposons que z(? soit choisi tel que ja z(®] < 107!, Trouvez le nombre d’itérations nécessaires
pour’que la méthode du point fixe donne une erreur de 1076.
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Probléme 3 — Systémes Linéaires

On consideére le systéme linéaire Ax = b, avec

A=l 5] * 2l

a) Sans écrire les matrices d’itérations, que peut-on dire de la convergence des méthodes de Jacobi et de
Gauss-Seidel appliquées & ce systéme linéaire 7
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b) On considére la méthode dite du gradient stationnaire préconditionné:

P(x®+D) _ x(B)y = (b — Ax*)) oiacRet P= (g g) ;
Vérifiez que la matrice precondiﬁonnée P7!A est symétrique définie positive et calculez la valeur
optimale du paramétre a.
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c) Calculez une borne de l'erreur en norme ||v|| 4 = /(Av, V) par rapport & l'erreur initiale.
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Probléme 4 — Interpolation et approximation numeériques

On veut approximer la fonction
1
i {O, ZJ - R,z sin(27rx)i

par un polynéme de degré 2 qui interpole la fonction aux points 0, f\é, %.

a) Calculez la base de Lagrange associée aux points d’interpolation 0, %, %.
D D E D D Réservé au correcteur
Xo =0 AA = 4. A = A
3 L
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]
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' b) Calculez le polynome d’interpolation de degré 2 associé aux points 0, % 59 4
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c) Quelle est Verreur d’interpolation ?
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"~ On considére les mesures suivantes :

M

z |3|1] 2 |
f@ e ]1]e?]

Des biologistes supposent que le procédé est réglé par une loi de type f(z) = Ce **.

d) Déterminez les valeurs des constantes C' et a.

00X OOXx OO

Mupposens C20
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- "Probléme 5 : Intégration numeérique re

a) Donnez la définition de formule de quadrature en expliquant les notations.
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¢) Démontrez le théoréme suivant en complétant ’encadré.

Théoréme (poids d’interpolation) Soit J une formule de quadrature avec M noeuds.

A
J est exacte de degré M — 1 & |w; = S \Pj(l-)dk = I e

A Y) pelynomas da n..lu o ‘a’o.yum?
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A

21 Probléme 6 : Code en Python

Complétez le code de la fonction Newton qui implémente la méthode de Newton. Des points sont dédiés aux
Réservé au correcteur

commentaires.
L]0 L1 L

/ng&. 2l o R owmedcires
def Newton( F, dF, x®, tol, nmax ) :
# _
FE meBuin, By My A, e
odwt fa solukion  dume equakion

# Mdhoder pourn appw
#MMM cd&n.j?ndxgr\, OM\A.OM % téo da Lo

gorv\dl.onF .{\mmproomdz«o & Yonde de  fa nnithode deNewton
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# eutpuls X AppAOXieMalion di o dF
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while (di%): Aol omd nL-—'nmax) :

# Newten
ddkox = () [/ dfF(x)

x = x ~dalkax
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op. abs ( Alkox )
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n=n+1 .
A nsdun b ecant et ce qua don  choache 0 0o
r=np.abs ( F(pt)) #10- F'Czé:o)(
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ly(tn) — un| < htn§ max |y"(t)]
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€[to,tn]

Up4+1 — Up = [f(tTM'U'TL) + f(tn+1>un+1)]

| >

= g— [f(tnaun) L f(tn-i-lvu‘n + hf(t"’u"))]

Systémes linéaires

B=P P A=I P4 , g=P'b
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2
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Equations non-linéaires
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