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Exemple
Le système linéaire {

y ′1(t) = −2y1(t) + y2(t) + e−t

y ′2(t) = 3y1(t)− 4y2(t)
(16)

avec les conditions initiales y1(0) = y10, y2(0) = y20, s’écrit sous la forme (??), où

y(t) =

[
y1(t)
y2(t)

]
, A =

[
−2 1
3 −4

]
, b(t) =

[
e−t

0

]
, y0 =

[
y10
y20

]
.

Soit h > 0 le pas de temps. Pour n ∈ N, on pose tn = nh, bn = b(tn) et on
désigne par un une valeur approchée de la solution exacte y(tn) au temps tn.
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Les schémas d’Euler progressif, d’Euler rétrograde et de Crank-Nicolson pour
approcher la solution y(t) de (16) s’écrivent respectivement :

Euler progressif

{
un+1 = un + hAun + hbn = (I + hA)un + hbn
u0 = y0

Euler rétrograde

{
(I − hA)un+1 = un + hbn+1

u0 = y0

Crank-Nicolson

{
(I − h

2A)un+1 = (I + h
2A)un + h

2 (bn + bn+1)

u0 = y0
n = 0, 1, ...,Nh − 1

Il faut remarquer qu’à chaque étape des méthodes de ER et CN, il faut résoudre
un système linéaire avec pour matrice I − hA et I − h

2A respectivement (il s’agit
de méthodes implicites).
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La méthode d’Euler progressive est explicite (il n’y a pas de système linéaire à
résoudre), par contre elle est seulement conditionellement stable. Dans notre cas,
les valeurs propres de A sont λ1 = −1 et λ2 = −5 ; elles sont bien négatives,
donc la condition (??) sur h s’applique : comme ρ(A) = 5, cette condition de
stabilité est

h < h̄ =
2
5
.
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Comportement du schéma d’Euler progressif pour le système (16) avec condition
initiale y0 = [1, 1]> et différentes valeurs du pas de temps h.
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On peut aussi considérer le cas d’un système non linéaire de la forme{
y′(t) = F(t, y(t)) t ∈ (t0,T ),

y(0) = y0,

(par exemple le système (1)). Si ∂F
∂y est une matrice à valeurs propres réelles et

négatives alors la méthode d’Euler rétrograde est inconditionnellement stable.

Si, pour tout t in [t0,T ], tout y ∈ Rn, il vaut que

−λmax ≤ λ < λmin < 0 pour toutes les valeurs propres λ de
∂F(t, y)

∂y

alors le schéma d’Euler progressif est stable sous la condition

h <
2

λmax
,
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Exemple
Le système non-linéaire

y ′1(t) = −2y1(t) + sin(y2(t)) + e−t sin(t),

y ′2(t) = cos(y1(t))− 4y2(t), (17)

avec les conditions initiales y1(0) = y10, y2(0) = y20, s’écrit sous la forme

y′(t) = F(t, y(t)),

où

F(t, y(t)) =

[
−2y1(t) + sin(y2(t)) + e−t sin(t)

cos(y1(t))− 4y2(t)

]
.

Soit h > 0 le pas de temps. Pour n ∈ N, on pose tn = nh et on désigne par un
une valeur approchée de la solution exacte y(tn) au temps tn.
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Les schémas d’Euler progressif, rétrograde et de Crank-Nicolson pour approcher
la solution y(t) de (17) s’écrivent respectivement :

Euler progressif

{
un+1 = un + hF(tn, un),

u0 = y0,

Euler rétrograde

{
un+1 + hF(tn+1, un+1) = un,
u0 = y0,

Crank-Nicolson

{
un+1 − h

2F(tn+1, un+1) = un + h
2F(tn, un),

u0 = y0.

n = 0, 1, ...,Nh − 1

Il faut remarquer qu’à chaque étape des méthodes d’Euler rétrograde et
Crank-Nicolson, il faut résoudre un système non-linéaire.
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La méthode d’Euler progressive est explicite (pas de système à résoudre) mais,
par contre, elle est seulement conditionellement stable. Dans notre cas, le
jacobien de F est donné par

J =
∂F
∂y

=

[
−2 cos y2
− sin y1 −4,

]
et ses valeurs propres sont λ1,2 = −3±

√
1− sin y1 cos y2; elles sont bien

négatives, en particulier −3−
√
2 < λ1,2 < −3 +

√
2 < 0, et ρ(J) < 3 +

√
2. La

condition de stabilité est ainsi :

h < h̄ =
2

ρ(J)
, satisfaite par exemple si h <

2
3 +
√
2
' 0.453.
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Comportement du schéma d’Euler progressif pour le système (17) avec condition
initiale y0 = [1, 1]> : h = 0.1 (bleu) et h = 0.8h̄ (rouge). Si on prend h ≥ h̄, on
peut observer l’instabilité de la méthode.
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Voici un resumé concernant la stabilité :

Problème Stabilité des méthodes explicites
Modèle y ′ = λy h < 2/|λ|

Cauchy y ′ = f (t, y(t)) h < 2/max

∣∣∣∣∂f∂y
∣∣∣∣

Systèmes Eq. Linéaires y′ = Ay + b h < 2/ρ(A)
Systèmes Eq. Non-Linéaires y′ = F(t, y(t)) h < 2/ρ(J)

avec
ρ(A) = max

i
|λi(A)|, pour un système d’équations linéaires ;

ρ(J) = max
i
|λi(J)|, pour un système d’équations non-linéaires, où

J(t, y) =
∂F
∂y

, avec λi(J) < 0, ∀i .
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