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ODEs Stabilité Convergence Systemes d’ODEs

Exemple
Le système linéaire

⇢
y 0
1
(t) = �2y1(t) + y2(t) + e�t

y 0
2
(t) = 3y1(t)� 4y2(t)

(16)

avec les conditions initiales y1(0) = y10, y2(0) = y20, s’écrit sous la forme (??), où

y(t) =


y1(t)
y2(t)

�
, A =


�2 1

3 �4

�
, b(t) =


e�t

0

�
, y0 =


y10

y20

�
.

Soit h > 0 le pas de temps. Pour n 2 N, on pose tn = nh, bn = b(tn) et on

désigne par un une valeur approchée de la solution exacte y(tn) au temps tn.
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ODEs Stabilité Convergence Systemes d’ODEs

Les schémas d’Euler progressif, d’Euler rétrograde et de Crank-Nicolson pour

approcher la solution y(t) de (16) s’écrivent respectivement :

Euler progressif

(
un+1 = un + hAun + hbn = (I + hA)un + hbn

u0 = y0

Euler rétrograde

(
(I � hA)un+1 = un + hbn+1

u0 = y0

Crank-Nicolson

(
(I � h

2
A)un+1 = (I + h

2
A)un +

h
2
(bn + bn+1)

u0 = y0

n = 0, 1, ...,Nh � 1

Il faut remarquer qu’à chaque étape des méthodes de ER et CN, il faut résoudre

un système linéaire avec pour matrice I � hA et I � h
2
A respectivement (il s’agit

de méthodes implicites).

S. Deparis, SCI-SB-SC–EPFL EDO 46 / 54

O
3S"%'*)" G K$%1*) &"f8

n"1
,%%*d"



ODEs Stabilité Convergence Systemes d’ODEs

La méthode d’Euler progressive est explicite (il n’y a pas de système linéaire à

résoudre), par contre elle est seulement conditionellement stable. Dans notre cas,

les valeurs propres de A sont �1 = �1 et �2 = �5 ; elles sont bien négatives,

donc la condition (??) sur h s’applique : comme ⇢(A) = 5, cette condition de

stabilité est

h < h̄ =
2

5
.
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ODEs Stabilité Convergence Systemes d’ODEs

Comportement du schéma d’Euler progressif pour le système (16) avec condition

initiale y0 = [1, 1]> et différentes valeurs du pas de temps h.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

un,1

u
n
,2

0.1h̄

h̄

0.9h̄

1

S. Deparis, SCI-SB-SC–EPFL EDO 48 / 54



ODEs Stabilité Convergence Systemes d’ODEs

On peut aussi considérer le cas d’un système non linéaire de la forme

(
y
0(t) = F(t, y(t)) t 2 (t0,T ),

y(0) = y0,

(par exemple le système (1)). Si
@F

@y
est une matrice à valeurs propres réelles et

négatives alors la méthode d’Euler rétrograde est inconditionnellement stable.

Si, pour tout t in [t0,T ], tout y 2 Rn
, il vaut que

��max  � < �min < 0 pour toutes les valeurs propres � de
@F(t, y)

@y

alors le schéma d’Euler progressif est stable sous la condition

h <
2

�max
,
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ODEs Stabilité Convergence Systemes d’ODEs

Exemple
Le système non-linéaire

y 0
1
(t) = �2y1(t) + sin(y2(t)) + e�t sin(t),

y 0
2
(t) = cos(y1(t))� 4y2(t), (17)

avec les conditions initiales y1(0) = y10, y2(0) = y20, s’écrit sous la forme

y
0(t) = F(t, y(t)),

où

F(t, y(t)) =


�2y1(t) + sin(y2(t)) + e�t sin(t)

cos(y1(t))� 4y2(t)

�
.

Soit h > 0 le pas de temps. Pour n 2 N, on pose tn = nh et on désigne par un

une valeur approchée de la solution exacte y(tn) au temps tn.
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ODEs Stabilité Convergence Systemes d’ODEs

Les schémas d’Euler progressif, rétrograde et de Crank-Nicolson pour approcher

la solution y(t) de (17) s’écrivent respectivement :

Euler progressif

(
un+1 = un + hF(tn, un),

u0 = y0,

Euler rétrograde

(
un+1 + hF(tn+1, un+1) = un,

u0 = y0,

Crank-Nicolson

(
un+1 � h

2
F(tn+1, un+1) = un +

h
2
F(tn, un),

u0 = y0.

n = 0, 1, ...,Nh � 1

Il faut remarquer qu’à chaque étape des méthodes d’Euler rétrograde et

Crank-Nicolson, il faut résoudre un système non-linéaire.
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ODEs Stabilité Convergence Systemes d’ODEs

La méthode d’Euler progressive est explicite (pas de système à résoudre) mais,

par contre, elle est seulement conditionellement stable. Dans notre cas, le

jacobien de F est donné par

J =
@F

@y
=


�2 cos y2

� sin y1 �4,

�

et ses valeurs propres sont �1,2 = �3 ±
p

1 � sin y1 cos y2; elles sont bien

négatives, en particulier �3 �
p

2 < �1,2 < �3 +
p

2 < 0, et ⇢(J) < 3 +
p

2. La

condition de stabilité est ainsi :

h < h̄ =
2

⇢(J)
, satisfaite par exemple si h <

2

3 +
p

2
' 0.453.
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ODEs Stabilité Convergence Systemes d’ODEs

Comportement du schéma d’Euler progressif pour le système (17) avec condition

initiale y0 = [1, 1]> : h = 0.1 (bleu) et h = 0.8h̄ (rouge). Si on prend h � h̄, on

peut observer l’instabilité de la méthode.
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Voici un resumé concernant la stabilité :

Problème Stabilité des méthodes explicites

Modèle y 0 = �y h < 2/|�|

Cauchy y 0 = f (t, y(t)) h < 2/max

����
@f

@y

����
Systèmes Eq. Linéaires y

0 = Ay + b h < 2/⇢(A)
Systèmes Eq. Non-Linéaires y

0 = F(t, y(t)) h < 2/⇢(J)

avec

⇢(A) = max
i

|�i(A)|, pour un système d’équations linéaires ;

⇢(J) = max
i

|�i(J)|, pour un système d’équations non-linéaires, où

J(t, y) =
@F

@y
, avec �i(J) < 0, 8i .
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