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EXEMPLE [0) = %

Le systéme linéaire

{() () () et TE@D
)
G, o)

o(t 3y1(t) — 4ys(t)

‘3
avec les conditions initiales y1(0) = 4
-2 1 et _ | Yo

l) I

(t)
t) = ,
V() L’z(t)] Y20
Soit h > 0 le pas de temps. Pour n € N, on pose t, = nh, b, = b(t,) et on
désigne par u, une valeur approchée de la solution exacte y(t,) au temps t,

y2(0) = yzp, s'écrit sous la forme &), ol

0000000000

Tlh= AGH BN Ve (0,09
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(16)

S. DEPARIS

, SCI-SB-SC-EPFL




SysTEMEs D’ODEs

0O000@00000000

Les schémas d'Euler progressif, d'Euler rétrograde et de Crank-Nicolson pour
approcher la solution y(t) de (16) s'écrivent respectivement :

Upt1 = U, + hAu, + hb, = (I + hA)u, + hb,

Euler progressif
Uo = Yo

I — hA)upy1 = u, + hb,
Euler rétrograde {( B Junia =+ Abiia v do G X
Up = Yo > E)Qk’h"‘ ?avw‘.w&

Crank-Nicolson (1= gA)u"H =(I+ gA)Un + 3 (bn +bpy1) J

Il faut remarquer qu'a chaque étape des méthodes de ER et CN, il faut résoudre
un systéme linéaire avec pour matrice | — hA et | — gA respectivement (il s'agit
de méthodes implicites).
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La méthode d'Euler progressive est explicite (il n'y a pas de systéme linéaire a
résoudre), par contre elle est seulement conditionellement stable. Dans notre cas,
les valeurs propres de A sont \; = —1 et \, = —5; elles sont bien négatives,
donc la condition (??) sur h s’applique : comme p(A) = 5, cette condition de

stabilité est 5 .
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Comportement du schéma d'Euler progressif pour le systéme (16) avec condition
initiale yo = [1,1]" et différentes valeurs du pas de temps h.
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On peut aussi considérer le cas d’un systéme non linéaire de la forme

£)
YO -FeT) e, O éR{ R°
S, o D]

@ 2) — (K>

(par exemple le systéme (1)). Siest une matrice a valeurs propres réelles et
négatives alors la méthode d'Euler rétrograde est inconditionnellement stable.

Si, pour tout t in [ty, T], tout y € R”", il vaut que

de"‘re(gﬂ
OF(t,y)
6—yy \&‘:_ G

—Amax < A K Amin < 0 pour toutes les valeurs propres A de

onec %W@r o Y, AW\'\ B o
alors le schéma d'Euler progressif est stable sous la condition
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g’cﬁ =F(NGW)  feloo
Qo =4,

yi(t) = —2n(t) +sin(ya(t)) + e "sin(t),

ya(t) = cos(y(t)) — 4ya(t), (17)

avec les conditions initiales y;(0) = y10, ¥2(0) = y20, s'écrit sous la forme

y'(t) = F(t,y(1)),

EXEMPLE
Le systéme non-linéaire

ou
_ . s
F(t.y@)) — [ 2y1(% + sm(ygé)zl—i— e tsin(t)
cos(n) — 4y7g)
Soit h > 0 le pas de temps. Pour n € N, on pose t, = nh et on désigne par u,
une valeur approchée de la solution exacte y(t,) au temps t,.
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Les schémas d'Euler progressif, rétrograde et de Crank-Nicolson pour approcher
la solution y(t) de (17) s'écrivent respectivement :

Upt1 = U, + hF(t,, up),

Uo = Yo,

Euler progressif

Euler rétrograde Un+1 W@ AF (tp11, Uns1) = up,

Up = Yo,
h h
i Unt1 — 3F(tns1,u =u, + 7F(t,,u
Crank-Nicolson mtl T2 (tn41, Unt1) nT 3 (tn, Un),
Up = Yo-

n=0,1,... Ny—1

Il faut remarquer qu'a chaque étape des méthodes d'Euler rétrograde et
Crank-Nicolson, il faut résoudre un systéme non-linéaire.
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La méthode d'Euler progressive est explicite (pas de systéme a résoudre) mais,

par contre, elle est seulement conditionellement stable. Dans notre cas, le
jacobien de F est donné par

—2 COS y»
@C —siny; —4,
et ses valeurs propres sont \; o = —3 £ /1 — sin y; cos y»; elles sont bien
négatives, en particulier @ Mo < —34V2<0, et p(J) @ La
condition de stabilité est ainsi : Do = Z_@/ M= 2.

2 2
h < h=——, satisfaite par exemple si h < ~ 0.453.
p(J) a+vV2)
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Comportement du schéma d'Euler progressif pour le systéme (17) avec condition
initiale yo = [1,1]" : h = 0.1 (bleu) et h = 0.8h (rouge). Si on prend h > h, on
peut observer l'instabilité de la méthode.
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Voici un resumé concernant la stabilité : EA‘MG}‘/ »Ow;»l
ovee Kuer O, A >0
Probléme | Stabilité des méthodes explicites
Modéle y' =Ry h <2/|Al
of
Cauchy y' :@(t,y h<2/max‘a—‘
y
Systemes Eq. Linéaires y = h <2/p(A)
Systémes Eq. Non-Linéaires y' = h <2/p(J)

avec ?UL/ Qau)Yth\f (‘,,l/l 1 ‘eﬂ\@ [SV¢ /\AN_, \TQQ %w,, -
e p(A) = max|)\;(A)|, pour un systéme d’'équations linéaires ;

e p(J) = max |Ai(J)|, pour un systéme d'équations non-linéaires, ot

J(t,y) = =, avec \;(J) <0, Vi.
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