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Dans le tableau suivant, on résume les caractéristiques des méthodes qu’on a
introduites :

Méthode Explicite/Implicite Stabilité P.r. à h
Euler Progressive Explicite Conditionnellement 1
Euler Rétrograde Implicite Inconditionnellement 1
Crank–Nicolson Implicite Inconditionnellement 2

Heun Explicite Conditionnellement 2
Euler Modifiée Explicite Conditionnellement 2
Runge–Kutta Explicite Conditionnellement 4
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Système d’EDO
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Exemple

Le système linéaire {
y′1(t) = −2y1(t) + y2(t) + e−t

y′2(t) = 3y1(t)− 4y2(t)
(1)

avec les conditions initiales y1(0) = y10, y2(0) = y20, s’écrit sous la forme (??),
où

y(t) =

[
y1(t)
y2(t)

]
, A =

[
−2 1
3 −4

]
, b(t) =

[
e−t

0

]
, y0 =

[
y10
y20

]
.

Soit h > 0 le pas de temps. Pour n ∈ N, on pose tn = nh, bn = b(tn) et on
désigne par un une valeur approchée de la solution exacte y(tn) au temps tn.
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Les schémas d’Euler progressif, d’Euler rétrograde et de Crank-Nicolson pour
approcher la solution y(t) de (1) s’écrivent respectivement :

Euler progressif

{
un+1 = un + hAun + hbn = (I + hA)un + hbn

u0 = y0

Euler rétrograde

{
(I − hA)un+1 = un + hbn+1

u0 = y0

Crank-Nicolson

{
(I − h

2
A)un+1 = (I + h

2
A)un +

h
2
(bn + bn+1)

u0 = y0

n = 0, 1, ..., Nh − 1

Il faut remarquer qu’à chaque étape des méthodes de ER et CN, il faut résoudre
un système linéaire avec pour matrice I − hA et I − h

2
A respectivement (il s’agit

de méthodes implicites).
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La méthode d’Euler progressive est explicite (il n’y a pas de système linéaire à
résoudre), par contre elle est seulement conditionellement stable. Dans notre cas,
les valeurs propres de A sont λ1 = −1 et λ2 = −5 ; elles sont bien négatives,
donc la condition (??) sur h s’applique : comme ρ(A) = 5, cette condition de
stabilité est

h < h̄ =
2

5
.
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Comportement du schéma d’Euler progressif pour le système (1) avec condition
initiale y0 = [1, 1]⊤ et différentes valeurs du pas de temps h.
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On peut aussi considérer le cas d’un système non linéaire de la forme{
y′(t) = F(t,y(t)) t ∈ (t0, T ),

y(0) = y0,

(par exemple le système (??)). Si ∂F
∂y

est une matrice à valeurs propres réelles et
négatives alors la méthode d’Euler rétrograde est inconditionnellement stable.

Si, pour tout t in [t0, T ], tout y ∈ Rn, il vaut que

−λmax ≤ λ < λmin < 0 pour toutes les valeurs propres λ de
∂F(t,y)

∂y

alors le schéma d’Euler progressif est stable sous la condition

h <
2

λmax

,
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Exemple

Le système non-linéaire

y′1(t) = −2y1(t) + sin(y2(t)) + e−t sin(t),

y′2(t) = cos(y1(t))− 4y2(t), (2)

avec les conditions initiales y1(0) = y10, y2(0) = y20, s’écrit sous la forme

y′(t) = F(t,y(t)),

où

F(t,y(t)) =

[
−2y1(t) + sin(y2(t)) + e−t sin(t)

cos(y1(t))− 4y2(t)

]
.

Soit h > 0 le pas de temps. Pour n ∈ N, on pose tn = nh et on désigne par un

une valeur approchée de la solution exacte y(tn) au temps tn.
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Les schémas d’Euler progressif, rétrograde et de Crank-Nicolson pour approcher
la solution y(t) de (2) s’écrivent respectivement :

Euler progressif

{
un+1 = un + hF(tn,un),

u0 = y0,

Euler rétrograde

{
un+1 + hF(tn+1,un+1) = un,

u0 = y0,

Crank-Nicolson

{
un+1 − h

2
F(tn+1,un+1) = un +

h
2
F(tn,un),

u0 = y0.

n = 0, 1, ..., Nh − 1

Il faut remarquer qu’à chaque étape des méthodes d’Euler rétrograde et
Crank-Nicolson, il faut résoudre un système non-linéaire.
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La méthode d’Euler progressive est explicite (pas de système à résoudre) mais,
par contre, elle est seulement conditionellement stable. Dans notre cas, le
jacobien de F est donné par

J =
∂F

∂y
=

[
−2 cos y2

− sin y1 −4,

]
et ses valeurs propres sont λ1,2 = −3±

√
1− sin y1 cos y2; elles sont bien

négatives, en particulier −3−
√
2 < λ1,2 < −3 +

√
2 < 0, et ρ(J) < 3 +

√
2. La

condition de stabilité est ainsi :

h < h̄ =
2

ρ(J)
, satisfaite par exemple si h <

2

3 +
√
2
≃ 0.453.
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Comportement du schéma d’Euler progressif pour le système (2) avec condition
initiale y0 = [1, 1]⊤ : h = 0.1 (bleu) et h = 0.8h̄ (rouge). Si on prend h ≥ h̄, on
peut observer l’instabilité de la méthode.
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Voici un resumé concernant la stabilité :

Problème Stabilité des méthodes explicites
Modèle y′ = λy h < 2/|λ|

Cauchy y′ = f(t, y(t)) h < 2/max

∣∣∣∣∂f∂y
∣∣∣∣

Systèmes Eq. Linéaires y′ = Ay + b h < 2/ρ(A)
Systèmes Eq. Non-Linéaires y′ = F(t,y(t)) h < 2/ρ(J)

avec
ρ(A) = max

i
|λi(A)|, pour un système d’équations linéaires ;

ρ(J) = max
i

|λi(J)|, pour un système d’équations non-linéaires, où

J(t,y) =
∂F

∂y
, avec λi(J) < 0, ∀i.
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Applications

On revient à l’exemple proposé au début du chapitre.
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Exemple

?? (suite) On considère d’abord l’équation scalaire (??), qu’on rappelle ici :

y′(t) = Cy(t)

(
1− y(t)

B

)
, t > 0, y(0) = y0.

Prenons une population initiale de 40 lapins dont le facteur de croissance est
C = 0.08 (l’unité de temps est 1 mois) et la population maximale de B = 70
lapins. On résout l’équation par la méthode de Heun avec h = 1 mois sur une
période de trois ans :

>> f=@(t,y) 0.08∗y.∗(1−(y/70));
>> tspan = [0 36]; y0=40; h = 1; Nh = 36/h;

>> [t, y] = heun(f,tspan,y0,Nh); plot(t,y)
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Évolution de la population de lapins sur 36 mois.
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On considère, maintenant, le système (??). Prenons une population initiale y1(0)
de 40 lapins, une population y2(0) de 20 renards et le système de Lotka-Volterra{

y′1(t) = 0.08 y1(t)− 0.004 y1(t)y2(t),

y′2(t) = −0.06 y2(t) + 0.002 y1(t)y2(t).
(3)

On souhaite étudier l’évolution des deux populations sur une période de 10 ans.
Si on introduit les vecteurs

y(t) =

[
y1(t)
y2(t)

]
, F(t,x) =

[
0.08x1 − 0.004x1x2

−0.06x2 + 0.002x1x2

]
,

on peut écrire le système (3) sous la forme générale :

y′(t) = F(t,y), t > 0, y(0) = [y1(0), y2(0)]
T . (4)
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Toutes les méthodes que nous avons vues jusqu’à maintenant sont applicables au
système (4). Par exemple, la méthode d’Euler progressive s’écrit

u0 = y0
un+1 − un

h
= F(tn,un), n = 0, 1, ...

ce qui équivaut au schéma
un+1,1 − un,1

h
= 0.08un,1 − 0.004un,1un,2,

un+1,2 − un,2

h
= −0.06un,2 + 0.002un,1un,2, n = 0, 1, ...

u0,1 = y1(0), u0,2 = y2(0).
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La commande heun permet de résoudre aussi des systèmes d’équations
différentielles. Il faut d’abord écrire une fonction qui définisse le système :

>> fun2 = @(t,y) [ 0.08∗y(1) − 0.004∗y(1)∗y(2);
−0.06∗y(2) + 0.002∗y(1)∗y(2) ]

Ensuite, on peut résoudre le système :

>> y0=[40 20]; tspan=[0 120]; Nh=40;

>> [t,y] = heun(fun2, tspan, y0, Nh);

>> plot(t,y(:,1),’b’, t,y(:,2),’r’)

La première colonne de y contient la solution y1 tandis que la deuxième colonne
contient y2. La figure suivante montre l’évolution des deux populations.
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Evolution des populations de lapins et de renards sur 10 ans.
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