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CONVERGENCE

DEFINITION

Soit y(t) la solution du probleme de Cauchy (2) sur I'intervalle [0, T]; soit u,
une solution approchée au temps t, = nh trouvée par une méthode numérique
donnée, ot h = T /N;, (N, € N) est le pas de temps. La méthode est dite
convergente si

\V/I’IIO,...,N;,Z |Un_y(tn)|§C(h)

ou C(h) — 0 lorsque h — 0.

Si, en plus, il existe p > 0 tel que C(h) = KhP pour une constante K qui ne
dépend pas de h ni de n, on dit que la méthode est convergente d'ordre p.

Dans la suite du cours, on va analyser la convergence et |'ordre de la méthode
d'Euler progressive.
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CONVERGENCE D'EULER PROGRESSIF

THEOREME

Siy € C3([0, T]) et f satisfait —00 < —Apax < g—;(t,y) < 0 pour tout t € [0, T]
et pour tout y € R. alors la méthode d’Euler progressive est convergente et

1
Vn >0, |y(t)) — us <c(ta)h, ouc(t,) =t,= max |y"(t)], (21)

"2 te[to.tn]

En particulier, la méthode est convergente d'ordre p = 1, avec

C(h) = ¢c(T)h.

REMARQUE

Le méme type de résultat peut étre établi pour la méthode d'Euler rétrograde.

v
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DEMONSTRATION 1

On définit I'erreur de troncature locale de la méthode d'Euler progressive comme

7-n+1(h) _ y(thrl)h_ y(tn) o )//(tn)7 (22)

et |'erreur de troncature globale
7(h) = max|7,(h)|.

On sait (voir différences finies) que

1
7_n+1(h) =

== m
2 t€[tn tni1]

y"(£)lh.
Donc, on a |'estimation suivante pour |'erreur de troncature globale :

1
h) < = "(t)|h.
7( )_ztgfg;]ly()l
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DEMONSTRATION 1

On a les équations suivantes pour y(t) et u,.

h

et de I'équation (22) pour I'erreur de troncature locale

{y’(t):f(t,y(t)) Vtel {M:f(t,,,un) n=0,1,2...,N,

Tn+1(h) _ }/(tn+1)h_ }/(tn) . y/(tn) _ y(tn-l—l)h_ }/(tn) . f(tn7y(tn))7

P

on obtient pour e, = u, — y(t,)

h
e0:0.

050

{ w — f(tm un) — f(t,,,y(t,,)) - 7_n—i—l(h)a |

23) .
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F(tn, tn) — Ftn, y(tn)) = —2" (u

Donc il existe 7, tel qu'a partir de (23) on trouve

of(t, & h,
€nt1 = (1 + h%) €n — h§y (77n)

Sih< %, ona 1+h%f") € (—1,1) et donc
lenstl < lenl + hr(h) < (Jen-al + hr(h)) + hr(h) < |eo] + (n + 1)hr ().
Comme ¢y = 0, on en déduit
leal < nhr(h) = t,(h).

donc on trouve bien (21).
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METHODES DE RUNGE-KUTTA

Si on intégre I'équation y'(t) = f(t, y(t)) entre t, et t,.1, on obtient :

tht1
}/(tn-l—l)_)/(tn) = f(t7y(t))dt.
tn
REMARQUE
Méthodes d’intégration numérique
F(t,y(t)) F(t,y(t)
ln tnt1/2 tnt1 f:l fn.+1
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En utilisant la formule du trapéze, on trouve le schéma implicite suivant, appelé
schéma de Crank-Nicolson ou du trapéze :

h
Up = }/(to)y Upy1 — Uy = 5 [f(tna Un) + f(tn+1, Un+1)] , n= 0, ]., (25)

Ce schéma, qui est implicite, est inconditionnellement stable lorsqu'il est appliqué
au probléme modéle (9).

En modifiant le schéma (25) afin de le rendre explicite, on identifie la méthode
de Heun :

h
Upy1 — Uy = 5 [f(t,,, Un) + f(tn+17 Up + hf(tm un))] . (26)

Ces deux méthodes sont d'ordre 2 par rapport a h.
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Si on utilise dans (24) la méthode du point milieu, on trouve
Upp1 — Uy = hf(thr%, un+%).

Si maintenant, on approche u,1/> par

h
un+% — un + Ef(tn, Un),

on trouve la méthode d’Euler modifiée :

h
up = y(to), Upt1—Un=hf (t,,+;, Up + Ef(t”’ u,,)) n=0,1,..

Les méthodes de Heun et d'Euler modifiée sont des cas particuliers de la famille
des méthodes de Runge-Kutta d'ordre 2. Lorsqu'elles sont appliquées au
probléme modéle (9), on a dans les deux cas la condition de stabilité h < 2/|A|.
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Il existe d'autres méthodes plus compliquées, comme par exemple la méthode
de Runge-Kutta d’ordre 4 suivante, qui est obtenue en considérant la
méthode d'intégration de Simpson :

(

h
Uny1 = U + = (K1 + 2Ks 4 2K3 + Ky),

6
avec .
Kl - f(tnaun)v
u, — h h
K2 - f(tn + 57 up + §K1)a
h h
K3 — f(tn + 57 up + §K2)a

K4 = f(thrl; u, + hK3)
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Dans le tableau suivant, on résume les caractéristiques des méthodes qu'on a

introduites :
Méthode Explicite/Implicite Stabilité P.r.ah

Euler Progressive Explicite Conditionnellement 1
Euler Rétrograde Implicite Inconditionnellement 1
Crank—Nicolson Implicite Inconditionnellement 2
Heun Explicite Conditionnellement 2

Euler Modifiée Explicite Conditionnellement 2
Runge-Kutta Explicite Conditionnellement 4
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