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ODEs Stabilité Convergence Systemes d’ODEs

Démonstration I

On définit l’erreur de troncature locale de la méthode d’Euler progressive comme

⌧n+1(h) =
y(tn+1)� y(tn)

h
� y 0(tn), (14)

et l’erreur de troncature globale

⌧(h) = max
n

|⌧n(h)|.

On sait (voir différences finies) que

⌧n+1(h) =
1
2

max
t2[tn,tn+1]

|y 00(t)|h.

Donc, on a l’estimation suivante pour l’erreur de troncature globale :

⌧(h)  1
2

max
t2[0,T ]

|y 00(t)|h.
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Démonstration II
On a les équations suivantes pour y(t) et un.

⇢
y 0(t) = f (t, y(t)) 8t 2 I
y(t0) = y0

( un+1 � un
h

= f (tn, un) n = 0, 1, 2 . . . ,Nh

u0 = y0.
et de l’équation (14) pour l’erreur de troncature locale

⌧n+1(h) =
y(tn+1)� y(tn)

h
� y 0(tn) =

y(tn+1)� y(tn)

h
� f (tn, y(tn)),

on obtient pour en = un � y(tn)

( en+1 � en
h

= f (tn, un)� f (tn, y(tn))� ⌧n+1(h),

e0 = 0.
(15)
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Démonstration III
D’après le théorème de Lagrange, il existe ⇠n tel que

f (tn, un)� f (tn, y(tn)) =
@f (t, ⇠n)

@y
(un � y(tn)) =

@f (t, ⇠)

@y
en.

Donc il existe ⌘n tel qu’à partir de (15) on trouve

en+1 =

✓
1 + h

@f (t, ⇠n)

@y

◆
en � h

h

2
y 00(⌘n).

Si h < 2

�max
, on a 1 + h @f (t,⇠n)

@y 2 (�1, 1) et donc

|en+1|  |en|+ h⌧(h)  (|en�1|+ h⌧(h)) + h⌧(h)  |e0|+ (n + 1)h⌧(h).

Comme e0 = 0, on en déduit

|en|  nh⌧(h) = tn⌧(h),

donc on trouve bien l’estimation recherchée.
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Méthodes de Runge-Kutta

Si on intègre l’équation y 0(t) = f (t, y(t)) entre tn et tn+1, on obtient :

y(tn+1)� y(tn) =

Z tn+1

tn

f (t, y(t))dt. (16)

Remarque
Méthodes d’intégration numérique
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En utilisant la formule du trapèze, on trouve le schéma implicite suivant, appelé
schéma de Crank-Nicolson ou du trapèze :

u0 = y(t0), un+1 � un =
h

2
[f (tn, un) + f (tn+1, un+1)] , n = 0, 1, ... (17)

Ce schéma, qui est implicite, est inconditionnellement stable lorsqu’il est appliqué
au problème modèle (3).

En modifiant le schéma (17) afin de le rendre explicite, on identifie la méthode

de Heun :

un+1 � un =
h

2
[f (tn, un) + f (tn+1, un + hf (tn, un))] . (18)

Ces deux méthodes sont d’ordre 2 par rapport à h.
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Si on utilise dans (16) la méthode du point milieu, on trouve

un+1 � un = h f (tn+ 1
2
, un+ 1

2
).

Si maintenant, on approche un+1/2 par

un+ 1
2
= un +

h

2
f (tn, un),

on trouve la méthode d’Euler modifiée :

u0 = y(t0), un+1 � un = h f

✓
tn+ 1

2
, un +

h

2
f (tn, un)

◆
n = 0, 1, ...

Les méthodes de Heun et d’Euler modifiée sont des cas particuliers de la famille
des méthodes de Runge-Kutta d’ordre 2. Lorsqu’elles sont appliquées au
problème modèle (3), on a dans les deux cas la condition de stabilité h < 2/|�|.
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Il existe d’autres méthodes plus compliquées, comme par exemple la méthode

de Runge-Kutta d’ordre 4 suivante, qui est obtenue en considérant la
méthode d’intégration de Simpson :

un !

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

un+1 = un +
h

6
(K1 + 2K2 + 2K3 + K4),

avec :

K1 = f (tn, un),

K2 = f (tn +
h

2
, un +

h

2
K1),

K3 = f (tn +
h

2
, un +

h

2
K2),

K4 = f (tn+1, un + hK3).

S. Deparis, SCI-SB-SC–EPFL EDO 40 / 61



ODEs Stabilité Convergence Systemes d’ODEs

Dans le tableau suivant, on résume les caractéristiques des méthodes qu’on a
introduites :

Méthode Explicite/Implicite Stabilité P.r. à h
Euler Progressive Explicite Conditionnellement 1
Euler Rétrograde Implicite Inconditionnellement 1
Crank–Nicolson Implicite Inconditionnellement 2

Heun Explicite Conditionnellement 2
Euler Modifiée Explicite Conditionnellement 2
Runge–Kutta Explicite Conditionnellement 4
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