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Programme

Ce matin au programme :
m Organisation date de Q&A,

m Exercices sur la convergence et la stabilité.
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Convergence

Définition

Soit y(t) la solution du probléme de Cauchy (?7?) sur l'intervalle [0, T7]; soit u,
une solution approchée au temps t,, = nh trouvée par une méthode numérique
donnée, ou h = T'/N}, (N, € N) est le pas de temps. La méthode est dite
convergente si

Vn=0,...,Np: ‘un_y(tn”gc(h)
ou C(h) — 0 lorsque h — 0.

Si, en plus, il existe p > 0 tel que C(h) = Kh? pour une constante K qui ne
dépend pas de h ni de n, on dit que la méthode est convergente d’ordre p.

Dans la suite du cours, on va analyser la convergence et |'ordre de la méthode
d'Euler progressive.
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Convergence d'Euler progressif

Théoréme

Siy € C*([0,T)) et f satisfait —00 < —Apaz < g—i(t, y) < 0 pour tout t € [0,T]
et pour tout y € R. alors la méthode d’Euler progressive est convergente et

1
Vn >0, |y(tn) —un| < c(tn)h, ot c(t,) =t,5 max [y"(t)], (1)
2 tefto,tn)

En particulier, la méthode est convergente d'ordre p = 1, avec

C(h) = c(T)h.

Remarque

Le méme type de résultat peut étre établi pour la méthode d’Euler rétrograde.
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Ordre de convergence
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Exemple

On considére le probleme de Cauchy

y'(t) = —y(0.1 — cos(t)), t>0
y(0) = 1.

On a résolu ce probléme par les méthodes d'Euler progressive et de Heun sur
I'intervalle [0, 12] avec un pas de temps h = 0.4.

()

f = lambda t,y : (np.cos(t) — 0.1)x*y

tspan = [0,12]; y0 = 1;
h = 0.4; Nh = np.ceil((tspan[1] — tspan[0])/h).astype(int)
Nh = np.ceil(12/h).astype(int)

t_EP, y_EP = forwardEuler(f, tspan, y®, Nh)
t_H, y_H = Heun(f, tspan, y0, Nh)
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|
La premiére des figures qui suivent montre les solutions obtenues par les deux
méthodes ainsi que la solution exacte y(t) = =% On remarque que la
solution obtenue par la méthode de Heun est beaucoup plus précise que celle
d'Euler progressive. Par ailleurs, on peut voir que si on réduit le pas de temps, la
solution obtenue par la méthode d'Euler progressive s'approche de la solution
exacte. La deuxiéme figure montre les solutions obtenues avec

h =0.4,0.2,0.1,0.05 par les commandes suivantes :

plt.plot(t_EP, y_EP,’0—")
plt.plot(t_H, y_H, o—")

y = lambda t : np.exp(—0.l*xt+np.sin(t))
t = np.linspace(tspan[0], tspan[1],100)
plt.plot(t, y(t),’—’)

# labels, title, legend
plt.xlabel (" $t$’); plt.ylabel(’$y$’)
plt.legend([’EP’, ’Heun’, $y(t)$’1)
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Comparaison entre les solutions obtenues par les méthodes d'Euler progressive et
de Heun pour h = 0.4.
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|
Solutions obtenues par la méthode d'Euler progressive pour différents pas de
temps.

25

Euler progressive
y' ()

=-y(01t-cos(t))

0.5

0
0
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On veut, maintenant, estimer |'ordre de convergence de ces deux méthodes. Pour
cela, on résout le probléme avec différents pas de temps et on compare les
résultats obtenus a l'instant ¢ = 6 avec la solution exacte.

NhRange = [30, 50, 100, 500]
tspan=[0,6];errE = [];errH = []
y6 = yt(tspan[1]) # y(T)

for Nh in NhRange

# Forward Euler

t,y=
backwardEuler (f, tspan,y®,Nh)

errE.append(np.abs(y6 —y[—1]))

# Heun

[t, y]=Heun(f, tspan, y0, Nh);

errH. append(np.abs(y6—y[—1]))

h
plt.
plt.

1./np.array(NhRange)
loglog(h,errE,’ o—b’)
loglog(h,errH, 'o—r’)
plt.loglogCh,h*(CerrE[0]/h[0]), "’
plt.loglog(h, Chx*2*x(errH[0]/h[0] *3
plt.xlabel (’$h$’);
plt.ylabel (" $|y(6)—u_{N_h}[$’)
plt.legend([’EP’, ’Heun’,’$h$’,’ $h
plt.title(’Decay of the error’)
plt.
plt.

grid(True)
show ()

La figure qui suit montre, en échelle logarithmique, les erreurs commises par les

deux méthodes en fonction de h.
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|
Erreurs en échelle logarithmique commises par les méthodes d'Euler progressive

et de Heun dans le calcul de y(6).

On voit bien que la méthode d'Euler progressive converge a I'ordre 1 tandis que
celle de Heun a I'ordre 2.

=2 gt — euler prog.
- - heun
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