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Programme

Ce matin au programme :
Organisation date de Q&A,
Exercices sur la convergence et la stabilité.
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Convergence

Définition
Soit y(t) la solution du problème de Cauchy (??) sur l’intervalle [0, T ] ; soit un

une solution approchée au temps tn = nh trouvée par une méthode numérique
donnée, où h = T/Nh (Nh ∈ N) est le pas de temps. La méthode est dite
convergente si

∀n = 0, . . . , Nh : |un − y(tn)| ≤ C(h)

où C(h) → 0 lorsque h → 0.

Si, en plus, il existe p > 0 tel que C(h) = Khp pour une constante K qui ne
dépend pas de h ni de n, on dit que la méthode est convergente d’ordre p.

Dans la suite du cours, on va analyser la convergence et l’ordre de la méthode
d’Euler progressive.
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Convergence d’Euler progressif

Théorème
Si y ∈ C2([0, T ]) et f satisfait −∞ < −λmax ≤ ∂f

∂y
(t, y) ≤ 0 pour tout t ∈ [0, T ]

et pour tout y ∈ R. alors la méthode d’Euler progressive est convergente et

∀n ≥ 0, |y(tn)− un| ≤ c(tn)h, où c(tn) = tn
1

2
max

t∈[t0,tn]
|y′′(t)| , (1)

En particulier, la méthode est convergente d’ordre p = 1, avec

C(h) = c(T )h.

Remarque

Le même type de résultat peut être établi pour la méthode d’Euler rétrograde.
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Ordre de convergence
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Exemple

On considère le problème de Cauchy{
y′(t) = −y(0.1− cos(t)), t > 0

y(0) = 1.
(2)

On a résolu ce problème par les méthodes d’Euler progressive et de Heun sur
l’intervalle [0, 12] avec un pas de temps h = 0.4.

f = lambda t,y : (np.cos(t) − 0.1)∗y

tspan = [0,12]; y0 = 1;

h = 0.4; Nh = np.ceil((tspan[1] − tspan[0])/h).astype(int)

Nh = np.ceil(12/h).astype(int)

t_EP, y_EP = forwardEuler(f, tspan, y0, Nh)

t_H, y_H = Heun(f, tspan, y0, Nh)
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La première des figures qui suivent montre les solutions obtenues par les deux
méthodes ainsi que la solution exacte y(t) = e−0.1t+sin(t). On remarque que la
solution obtenue par la méthode de Heun est beaucoup plus précise que celle
d’Euler progressive. Par ailleurs, on peut voir que si on réduit le pas de temps, la
solution obtenue par la méthode d’Euler progressive s’approche de la solution
exacte. La deuxième figure montre les solutions obtenues avec
h = 0.4, 0.2, 0.1, 0.05 par les commandes suivantes :

plt.plot(t_EP, y_EP,’o−’)
plt.plot(t_H, y_H,’o−’)

y = lambda t : np.exp(−0.1∗t+np.sin(t))
t = np.linspace(tspan[0],tspan[1],100)

plt.plot(t, y(t),’−’)
# labe l s , t i t l e , legend
plt.xlabel(’$t$’); plt.ylabel(’$y$’)

plt.legend([’EP’,’Heun’,’$y(t)$’])
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Comparaison entre les solutions obtenues par les méthodes d’Euler progressive et
de Heun pour h = 0.4.
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Solutions obtenues par la méthode d’Euler progressive pour différents pas de
temps.
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On veut, maintenant, estimer l’ordre de convergence de ces deux méthodes. Pour
cela, on résout le problème avec différents pas de temps et on compare les
résultats obtenus à l’instant t = 6 avec la solution exacte.

NhRange = [30, 50, 100, 500]

tspan=[0,6];errE = [];errH = []

y6 = yt(tspan[1]) # y(T)
for Nh in NhRange :

# Forward Euler
t,y=

backwardEuler(f,tspan,y0,Nh)

errE.append(np.abs(y6 −y[−1]))
# Heun
[t, y]=Heun(f, tspan, y0, Nh);

errH.append(np.abs(y6−y[−1]))

h = 1./np.array(NhRange)

plt.loglog(h,errE,’o−b’)
plt.loglog(h,errH,’o−r’)
plt.loglog(h,h∗(errE[0]/h[0]),’:’,
plt.loglog(h,(h∗∗2∗(errH[0]/h[0]∗∗2)),’:’)
plt.xlabel(’$h$’);

plt.ylabel(’$|y(6)−u_{N_h}|$’)
plt.legend([’EP’,’Heun’,’$h$’,’$h^2$’])

plt.title(’Decay of the error’)

plt.grid(True)

plt.show()

La figure qui suit montre, en échelle logarithmique, les erreurs commises par les
deux méthodes en fonction de h.
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Erreurs en échelle logarithmique commises par les méthodes d’Euler progressive
et de Heun dans le calcul de y(6).
On voit bien que la méthode d’Euler progressive converge à l’ordre 1 tandis que
celle de Heun à l’ordre 2.
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