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Conditions de stabilité

Le choix du pas de temps h n’est pas arbitraire. Pour la méthode d’Euler
progressive, on verra plus loin dans le cours que, si h n’est pas suffisamment
petit, des problèmes de stabilité peuvent surgir.

Par exemple, si l’on considère le problème{
y ′(t) = −2y(t) pour t ∈ R+

y(0) = 1, (5)

dont la solution est
y(t) = e−2t ,

on peut observer que les comportements par rapport à h des méthodes d’Euler
progressive et rétrograde sont très différents.
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Conditions de stabilité (EP)
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Conditions de stabilité (ER)
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La propriété de stabilité (absolue)

Pour λ < 0 donné, on considère le problème modèle suivant :{
y ′(t) = λy(t) pour t ∈ R+

y(0) = 1 (6)

dont la solution est

y(t) = eλt . En particulier, lim
t→∞

y(t) = 0.

Posons 0 = t0 < t1 < . . . < tn < tn+1 < . . . tels que tn = nh, où le pas de temps
h > 0 est donné.

Un schéma de résolution associé à ce problème est appelé absolument stable si

lim
n→∞

un = 0.
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• Pour le schéma d’Euler progressif :

un+1 = (1+ λh)un, d’où un = (1+ λh)n, ∀n ≥ 0. (7)

Si 1+ λh < −1, alors |un| → ∞ quand n→∞, donc le schéma d’Euler
progressif est instable.
Pour assurer la stabilité, on a besoin de limiter le pas de temps h, en imposant
la condition de stabilité :

|1+ λh| < 1 d’où h < 2/|λ|.

• Pour le schéma d’Euler rétrograde :

un+1 =

(
1

1− λh

)
un et donc un =

(
1

1− λh

)n

, ∀n ≥ 0.

Et comme limn→∞ un = 0, on a la stabilité sans condition sur h.
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La stab. abs. contrôle les perturbations

Pour un problème général, on se pose la question de sa stabilité, c’est-à-dire de la
propriété selon laquelle des petites perturbations sur les données induisent des
“petites” perturbations sur la solution.

On veut montrer la propriété suivante.

Une méthode numérique absolument stable par rapport au problème modèle est
stable (au sens précédent) pour un problème de Cauchy quelconque.
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Problème modèle généralisé

Considérons le problème modèle généralisé suivant :{
y ′(t) = λ(t)y(t) + r(t), t ∈ (0,+∞),

y(0) = 1,
(8)

avec λ et r des fonctions continues. Dans ce cas, la solution exacte ne tend pas
forcément vers zéro lorsque t tend vers l’infini.
Par exemple, si r et λ sont constants, on a

y(t) =
(
1+

r

λ

)
eλt − r

λ

dont la limite, lorsque t tend vers l’infini, est −r/λ. En général, il n’est pas
naturel de demander la stabilité absolue à une méthode numérique quand on
l’applique au problème (15).

Pour simplifier l’analyse, on restreindra notre étude au cas de la méthode d’Euler
progressive appliquée à (15).
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Ainsi, on a {
un+1 = un + h(λnun + rn), n ≥ 0,

u0 = 1
où λn = λ(tn) et rn = r(tn).
On définit la méthode “perturbée” suivante :{

zn+1 = zn + h(λnzn + rn + ρn+1), n ≥ 0,

z0 = u0 + ρ0,
(9)

avec ρ0, ρ1, . . . des perturbations données introduites à chaque pas de temps.

Ceci est un modèle simple dans lequel ρ0 et ρn+1 représentent les erreurs de
troncatures ou de résolutions numériques.

Question : Est-ce que la différence zn − un est bornée pour tout n = 0, 1, ...
indépendamment de n et h ?
On va considérer deux cas de complexité croissante.
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(i) Soient λn = λ et ρn = ρ des constantes. Nous pouvons écrire le schéma pour
l’erreur en = zn − un {

en+1 = en + h(λen + ρ), n ≥ 0,

e0 = ρ.
(10)

dont la solution est

en = ρ(1+ hλ)n + hρ
n−1∑
k=0

(1+ hλ)k = ρψ(h, λ), (11)

avec
ψ(h, λ) =

(
(1+ hλ)n(1+

1
λ
)− 1

λ

)
et où on a utilisé

n−1∑
k=0

ak =
1− an

1− a
. (12)
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Supposons que h < h0(λ) = 2/|λ|, c’est à dire que h assure la stabilité absolue
de la méthode d’Euler progressive appliquée au problème modèle (6).
Donc (1+ hλ)n < 1 ∀n et on en déduit que l’erreur due aux perturbations vérifie

|en| ≤ ϕ(λ)|ρ|, (13)

avec ϕ(λ) = 1+ |2/λ| . De plus,

lim
n→∞
|en| =

|ρ|
|λ|
.

Par conséquent, l’erreur des perturbations est bornée par |ρ| fois une constante
indépendante de n et h. Evidemment, si h > h0, les perturbations s’amplifient
quand n augmente car (1+ hλ)n →∞ pour n→∞.
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(ii) Dans le cas général où λ et r dépendent de t, on a que

zn − un = ρ0

n−1∏
k=0

(1+ hλk) + h
n−1∑
k=0

ρk+1

n−1∏
j=k+1

(1+ hλj) (14)

On demande au pas de temps h de satisfaire la condition h < h0(λ), avec
h0(λ) = 2/λmax . Ainsi, |1+ hλk | ≤ max(|1− hλmin|, |1− hλmax |) < 1. Soient
ρ = max |ρn| et λ tel que (1+ hλ) = max(|1− hλmin|, |1− hλmax |).

Nous pouvons conclure, en constatant que :

|zn − un| ≤ |ρ0|
n−1∏
k=0

|1+ hλk |+ h
n−1∑
k=0

|ρk+1|
n−1∏

j=k+1

|1+ hλj |

≤ ρ
n−1∏
k=0

(1+ hλ) + h
n−1∑
k=0

ρ
n−1∏

j=k+1

(1+ hλ) = ρψ(h, λ)

Ainsi, même dans ce cas, en = zn − un satisfait (13).
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Condition de stabilité du problème modèle
généralisé

Remarque
Reprenons le problème modèle généralisé{

y ′(t) = λ(t)y(t) + r(t), t ∈ (t0,+∞),

y(t0) = y0,
(15)

Dans la méthode d’Euler Progressive, on peut contrôler les perturbations dans le
cas où il existe λmin > 0 et λmax <∞ tels que

− λmax ≤ λ(t) ≤ −λmin,∀t ≥ t0 (16)

et si on choisit 0 < h < 2/λmax .

Dans la méthode d’Euler Progressive, on peut contrôler les perturbations dans le
cas où λ(t) < 0 pour tout t ∈ (t0,+∞).
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Condition de stabilité dans le cas général
Remarque
On considère maintenant le problème de Cauchy général{

y ′(t) = f (t, y(t)) t > 0
y(0) = y0 ,

dans un intervalle non-borné.
Soit Dy l’ensemble qui contient la trajectoire de y(t) ainsi que celle de un.
Dans la méthode d’Euler Progressive, on peut étendre le contrôle des
perturbations au problème modèle généralisé (15), dans le cas où il existe
λmin > 0 et λmax <∞ tels que

− λmax ≤ ∂f /∂y(t, y) ≤ −λmin,∀t ≥ 0, ∀y ∈ Dy , (17)

et si on choisit 0 < h < 2/λmax .

S. Deparis, SCI-SB-SC–EPFL EDO 31 / 61


	Eq. Diff. Ordinaires
	Stabilité
	Convergence
	Systèmes d'ODEs

