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CONDITIONS DE STABILITE

Le choix du pas de temps h n'est pas arbitraire. Pour la méthode d'Euler
progressive, on verra plus loin dans le cours que, si h n'est pas suffisamment
petit, des problémes de stabilité peuvent surgir.

Par exemple, si I'on considére le probléme

{ }}i’((ot))_:l—72y(t) pour t € Ry (5)

dont la solution est
2t

y(t)=e",
on peut observer que les comportements par rapport a h des méthodes d'Euler
progressive et rétrograde sont trés différents.
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CONDITIONS DE STABILITE (ER
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LA PROPRIETE DE STABILITE (ABSOLUE)

Pour X\ < 0 donné, on considére le probléme modéle suivant :

{ y'(t) = Ay(t) pour t € Ry

dont la solution est
y(t) = M. En particulier, lim y(t) =0.
t—00

Posons 0 =tg < t; <...<t, < thy1 <...tels que t, = nh, ou le pas de temps
h > 0 est donné.

Un schéma de résolution associé a ce probléme est appelé absolument stable si

lim u, =0.
n—oo

S. DEeparis, SCI-SB-SC-EPFL




STABILITE
0000®00000000

e Pour le schéma d'Euler progressif :
Unr1 = (1+ Ah)u,, dov u,=(1+XAh)", Vn>0. (7)

Si 1+ Ah < —1, alors |u,| — oo quand n — oo, donc le schéma d'Euler
progressif est instable.

Pour assurer la stabilité, on a besoin de [limiter le pas de temps h, en imposant
la condition de stabilité :

|14+ Ah| < 1dou h<2/|).

e Pour le schéma d'Euler rétrograde :

1 1 "
Uni1 (1—>\h) U, et donc  wu, (1—>\h) , Yn>0

Et comme lim,_,o u, = 0, on a la stabilité sans condition sur h.
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LA STAB. ABS. CONTROLE LES PERTURBATIONS

Pour un probléme général, on se pose la question de sa stabilité, c'est-a-dire de la
propriété selon laquelle des petites perturbations sur les données induisent des
“petites’ perturbations sur la solution.

On veut montrer la propriété suivante.

Une méthode numérique absolument stable par rapport au probléme modéle est
stable (au sens précédent) pour un probléme de Cauchy quelconque.
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Probléme modéle généralisé

Considérons le probléme modéle généralisé suivant :
y'(t) = Mt)y(t) + r(t), te€(0,+0),
y(0) =1,

avec \ et r des fonctions continues. Dans ce cas, la solution exacte ne tend pas
forcément vers zéro lorsque t tend vers 'infini.
Par exemple, si r et \ sont constants, on a

y(t):(1+§) e’“—&

dont la limite, lorsque t tend vers I'infini, est —r/A. En général, il n'est pas
naturel de demander la stabilité absolue a une méthode numérique quand on
I'applique au probléme (15).

(8)

Pour simplifier I'analyse, on restreindra notre étude au cas de la méthode d'Euler
progressive appliquée a (15).
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Ainsi, on a
Upny1 = Up + h(/\nun + rn)u n Z 07

Upg = 1
ou A\, = A(t,) et r, = r(t,).
On définit la méthode “perturbée” suivante :

Znt1 = Zp + h()\nzn + ry, + anrl)a n> 07

(9)

Zp = Up + po,
avec po, p1, - - - des perturbations données introduites a chaque pas de temps.

Ceci est un modéle simple dans lequel py et p,i1 représentent les erreurs de
troncatures ou de résolutions numériques.

Question : Est-ce que la différence z, — u, est bornée pour tout n =10,1, ...
indépendamment de net h?
On va considérer deux cas de complexité croissante.
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(1) Soient A\, = X et p, = p des constantes. Nous pouvons écrire le schéma pour

I'erreur e, = z, — u,
eni1 = €, + h(Ae, +p), n>0,
Lo
dont la solution est

n—1
en=p(1+hN)"+ hp > (14 hA)< = pio(h, ),

k=0

avec

Y(h,\) = ((1 +hA)"(1 + i) - ;)

et oll on a utilisé
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Supposons que h < ho(A) = 2/|\|, c'est a dire que h assure la stabilité absolue
de la méthode d’Euler progressive appliquée au probléme modeéle (6).
Donc (1 + h\)" < 1Vn et on en déduit que I'erreur due aux perturbations vérifie

lenl < @(A)lp], (13)

avec ¢(A) =1+ |2/A| . De plus,

el =y

Par conséquent, I'erreur des perturbations est bornée par |p| fois une constante
indépendante de n et h. Evidemment, si h > hg, les perturbations s’amplifient
quand n augmente car (1 + h\)” — oo pour n — 0.
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(ii) Dans le cas général ou \ et r dépendent de t, on a que

n—1
—poH (1+ h\e) +thk+1 IT @+ (14)
Jj=k+1
On demande au pas de temps h de satisfaire Ia condition h < ho(\), avec
ho(A) = 2/ Amax- Ainsi, |1+ hAe| < max(|1 — A\minl, |1 — AAmax|) < 1. Soient
p = max|p,| et A tel que (1 + hA) = max(|1 — hAminl, |1 — AAmax|)-

Nous pouvons conclure, en constatant que :

2 un|<\po|Hu+hAk|+hZ|pk+l| I 1+ my

j=k+1

<pH (1+ hN) +th H (1+ h\) = pih(h, \)

= j=k+1

Ainsi, méme dans ce cas, e, = z, — u, satisfait (13).
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CONDITION DE STABILITE DU PROBLEME MODELE

GENERALISE
REMARQUE
Reprenons le probléeme modéle généralisé

{/@ZA@HU+4¢ t € (to, +00),

y(to) = yo,

(15)

Dans la méthode d’Euler Progressive, on peut contréler les perturbations dans le
cas ol il existe Amin > 0 et Amay < 00 tels que

- )\max S )\(t) S _)\mIth Z to (16)

et si on choisit 0 < h < 2/Amax.

v

Dans la méthode d'Euler Progressive, on peut contréler les perturbations dans le
cas ol A\(t) < 0 pour tout t € (tp, +00).
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CONDITION DE STABILITE DANS LE CAS GENERAL

REMARQUE
On considére maintenant le probléeme de Cauchy général

{ y'(t) = f(t,y(t)) t>0

y(0) =y,

dans un intervalle non-borné.

Soit D, I'ensemble qui contient la trajectoire de y(t) ainsi que celle de u,.
Dans la méthode d'Euler Progressive, on peut étendre le contréle des
perturbations au probléme modéle généralisé (15), dans le cas od il existe
Amin > 0 et Amax < 00 tels que

— Amax < OFJOy(t,y) < —Amin, Vt > 0, ¥y € D, (17)

et si on choisit 0 < h < 2/\pax-
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