
Stabilité

Analyse Numérique SV

Équations différentielles ordinaires
Stabilité de schémas numériques

Simone Deparis

EPFL Lausanne – MATH

Printemps 2025

Copyright © 2000-2024 A. Quarteroni, Simone Deparis, EPFL

S. Deparis, SCI-SB-SC–EPFL EDO 1 / 25



Stabilité

Conditions de stabilité, Exemple

Le choix du pas de temps h n’est pas arbitraire. Pour la méthode d’Euler
progressive, on verra plus loin dans le cours que, si h n’est pas suffisamment
petit, des problèmes de stabilité peuvent surgir.

Par exemple, si l’on considère le problème{
y′(t) = −2y(t) pour t ∈ R+

y(0) = 1,
(1)

dont la solution est
y(t) = e−2t,

on peut observer que les comportements par rapport à h des méthodes d’Euler
progressive et rétrograde sont très différents.

Écrivez les schémas d’EP et d’ER pour ce problème.
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La propriété de stabilité (absolue) I
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La propriété de stabilité (absolue) II

S. Deparis, SCI-SB-SC–EPFL EDO 4 / 25



Stabilité

La propriété de stabilité (absolue) III
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Exemple

On résout le problème (1) pour λ = −2 et y0 = 1 dans l’intervalle [0, 10] avec les
méthodes d’Euler progressive et rétrograde et h = 0.9 et h = 1.1. Voilà les
commandes Python pour le cas h = 0.9 :

l = −2
f = lambda t,x : l∗x
y0 = 1; tspan=[0, 10]

h = 1.1; Nh = int( np.ceil((tspan[1] − tspan[0])/h) )

t_EP, y_EP = forwardEuler(f, tspan, y0, Nh)

t_ER, y_ER = backwardEuler(f, tspan, y0, Nh)

On remarque que, même si f(t, y) ne dépend pas explicitement de t, il faut la
définir comme une fonction de (t, y).
La figure suivante montre les solutions obtenues pour h = 0.9 (à gauche) et
h = 1.1 (à droite) ainsi que la solution exacte.
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Comparaison entre les solutions obtenues par les méthodes d’Euler progressive et
rétrograde pour h = 0.9 (à gauche, stable) et h = 1.1 (à droite, instable)
(condition de stabilité pour Euler progressif : |λ| = 2 ⇒ h < 2/|λ| = 1).
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La propriété de stabilité (absolue) I
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La propriété de stabilité (absolue) II
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La propriété de stabilité (absolue) III
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La stab. abs. contrôle les perturbations

Pour un problème général, on se pose la question de sa stabilité, c’est-à-dire de la
propriété selon laquelle des petites perturbations sur les données induisent des
“petites” perturbations sur la solution.

On veut montrer la propriété suivante.

Une méthode numérique absolument stable par rapport au problème modèle est
stable (au sens précédent) pour un problème de Cauchy quelconque.
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Problème modèle généralisé

Considérons le problème modèle généralisé suivant :{
y′(t) = λ(t)y(t) + r(t), t ∈ (0,+∞),

y(0) = 1,
(2)

avec λ et r des fonctions continues. Dans ce cas, la solution exacte ne tend pas
forcément vers zéro lorsque t tend vers l’infini.
Par exemple, si r et λ sont constants, on a

y(t) =
(
1 +

r

λ

)
eλt − r

λ

dont la limite, lorsque t tend vers l’infini, est −r/λ. En général, il n’est pas
naturel de demander la stabilité absolue à une méthode numérique quand on
l’applique au problème (2).
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Condition de stabilité du problème modèle généralisé
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Condition de stabilité dans le cas général
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Exemple

Exemple

Considérons le problème de Cauchy{
y′(t) = (−2 + sin(t))y(t) + e−3t, t ∈ (0,+∞),

y(1) = 3.

Ecrivez les Schemas d’Euleur Progressif et Retrograde pour ce problème de
Cauchy. Ensuite calculez

λ(t)

λmin, λmax

La condition de stabilité pour Euler Progressive et Retrograde
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Exemple I

A λ(t) = (−2 + sin(t))y(t)

B λ(t) = (−2 + sin(t))

C λ(t) = e−3t

D λ(t) = (−2 + sin(t))y(t) + e−3t
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Exemple II

A λmin = 1 et λmax = 3

B λmin = −3 et λmax = −1

C λmin = 0 et λmax = ∞
D λmin = −1 et λmax = −3
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Exemple III

La méthode d’Euler Progressive est stable si h > 0 et

A h < 1
3

B h < 2
3

C h < 2
1

D h < ∞ (i.e. tout h > 0)
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Exemple IV

On an que λ(t) ∈ [−3,−1], donc on peut choisir λmin = 1 et λmax = 3. Ainsi, la
methode d’Euler progressive est stable si h < 2/3
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Exemple V

La méthode d’Euler Retrograde est stable si h > 0 et

A h < 1
3

B h < 2
3

C h < 2
1

D h < ∞ (i.e. tout h > 0)
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Exemple I
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Exemple II
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Convergence I

⇒ slides 6.3
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Exercice 2 Série 12
On considère le problème de Cauchy :{

y′(t) = −ety(t) t ∈ [0, 1]
y(0) = 2

a) Écrivez la méthode d’Euler progressive pour approcher la solution y(t).
b) Soit h = 1

10
. Calculez la solution approchée au temps t1 = t0 + h (où

t0 = 0) en utilisant la méthode d’Euler progressive.
c) Déterminez pour quelles valeurs de h la condition de stabilité pour la

méthode d’Euler progressive est satisfaite. Vérifiez que la méthode est stable
pour la valeur h = 1

10
utilisée au point b).

d) Refaites les points a-c) pour la méthode d’Euler retrograde
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Exercice 2 Série 12, solution
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