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Stabilité

Conditions de stabilité, Exemple

Le choix du pas de temps h n'est pas arbitraire. Pour la méthode d'Euler
progressive, on verra plus loin dans le cours que, si h n'est pas suffisamment
petit, des problémes de stabilité peuvent surgir.

Par exemple, si I'on considére le probléme

y'(t) = —2y(t our t e Ry
FEnt

dont la solution est
—2
y(t) = e,
on peut observer que les comportements par rapport 3 h des méthodes d'Euler
progressive et rétrograde sont trés différents.

Ecrivez les schémas d'EP et d'ER pour ce probléme.
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La propriété de stabilité (absolue) |
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SEE

On résout le probléme (1) pour A = —2 et yo = 1 dans l'intervalle [0, 10] avec les

méthodes d'Euler progressive et rétrograde et h = 0.9 et h = 1.1. Voila les
commandes Python pour le cas h = 0.9 :

1l = =2

lambda t,x : 1%x

y0 = 1; tspan=[0, 10]

h =1.1; Nh = int( np.ceil((tspan[1] — tspan[0])/h) )
t_EP, y_EP = forwardEuler(f, tspan, y®, Nh)

t_ER, y_ER backwardEuler (f, tspan, y®, Nh)

On remarque que, méme si f(t,y) ne dépend pas explicitement de ¢, il faut la
définir comme une fonction de (¢, y).

La figure suivante montre les solutions obtenues pour h = 0.9 (a gauche) et
h = 1.1 (a droite) ainsi que la solution exacte.
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Stabilité
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Comparaison entre les solutions obtenues par les méthodes d'Euler progressive et

y'(t) = -2y

- = sol-ex
—e— Euler prog.
—&— Euler retr

rétrograde pour h = 0.9 (a gauche, stable) et h~ = 1.1 (a droite, instable)
(condition de stabilité pour Euler progressif : |\| =2 = h < 2/|\| = 1).
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La stab. abs. contrdle les perturbations

Pour un probléme général, on se pose la question de sa stabilité, c’'est-a-dire de la
propriété selon laquelle des petites perturbations sur les données induisent des
“petites’ perturbations sur la solution.

On veut montrer la propriété suivante.

Une méthode numérique absolument stable par rapport au probléme modéle est
stable (au sens précédent) pour un probléme de Cauchy quelconque.
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Probleme modeéle généralisé

Considérons le probleme modeéle généralisé suivant :
{ y'(t) = At)y(t) +r(t), te(0,400),
y(0) =1,

avec \ et r des fonctions continues. Dans ce cas, la solution exacte ne tend pas
forcément vers zéro lorsque t tend vers I'infini.
Par exemple, si r et \ sont constants, on a

y(t) = (1—1—%) e —g

dont la limite, lorsque t tend vers I'infini, est —r/A. En général, il n'est pas
naturel de demander la stabilité absolue a une méthode numérique quand on
I'applique au probléme (2).

(2)
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Condition de stabilité du probléeme modéle généralisé
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Condition de stabilité dans le cas général
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Exemple

Considérons le probléme de Cauchy

Ecrivez les Schemas d'Euleur Progressif et Retrograde pour ce probleme de
Cauchy. Ensuite calculez

m \(?)
u )\mina)\max

m La condition de stabilité pour Euler Progressive et Retrograde
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Exemple |
At) = (=2 + sin(t))y(t)
B \(t) = (—2+ sin(t))
A(t) = e 3
B \(t) = (=2 + sin(t)y(t) + e 3
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Exemple Il

Amin = 1 et Apax = 3

B M\ = —3 et Apax = —1
Amin = 0 et Ajax = 00
B A\uin = —1et Apax = —3
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Exemple Il

La méthode d'Euler Progressive est stable si h > 0 et
h <
BhL<
h <
B h < oo (i.e. tout h > 0)

=N WIN Wl
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Exemple IV

On an que A(t) € [—3,—1], donc on peut choisir Ay, = 1 et Apax = 3. Ainsi, la
methode d'Euler progressive est stable si h < 2/3
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Exemple V

La méthode d'Euler Retrograde est stable si h > 0 et
h <
BhL<
h <
B h < oo (i.e. tout h > 0)

=N WIN Wl
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Exemple |
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Exemple I
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Convergence |

= slides 6.3
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Exercice 2 Série 12

On considére le probléme de Cauchy :

{ y'(t) = —e'y(t) te[0,1]
y(0) =2

Ecrivez la méthode d'Euler progressive pour approcher la solution y(#).

Soit h = %. Calculez la solution approchée au temps t; =ty + h (ol

to = 0) en utilisant la méthode d'Euler progressive.

Déterminez pour quelles valeurs de h la condition de stabilité pour la
méthode d'Euler progressive est satisfaite. Vérifiez que la méthode est stable
pour la valeur h = lio utilisée au point b).

Refaites les points a-c) pour la méthode d'Euler retrograde
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Exercice 2 Série 12, solution
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