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Stabilité Convergence Systemes d’ODEs

Exemples et motivations

Exemple

(Biologie) Considérons une population composée de y animaux dans un milieu
ambiant où

au plus B animaux peuvent coexister,
initialement la population est de y0 ⌧ B ,
le facteur de croissance des animaux est égal à une constante C ,

L’évolution de la population au cours du temps peut s’exprimer à travers
l’équation

y 0(t) = Cy(t)

✓
1 � y(t)

B

◆
, t > 0, y(0) = y0.
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Stabilité Convergence Systemes d’ODEs

modèle de Lotka-Volterra

On considère maintenant deux populations composées de y1 et de y2 individus,
où y1 est le nombre de proies et y2 le nombre de prédateurs. L’évolution des deux
populations est alors décrite par le système d’équations différentielles

(
y 0
1
(t) = C1y1(t) [1 � b1y1(t)� d2y2(t)] ,

y 0
2
(t) = �C2y2(t) [1 � b2y2(t)� d1y1(t)] .

(1)

C1 et C2 sont les facteurs de croissance des deux populations,
d1 et d2 tiennent compte de l’intéraction entre les deux populations,
b1 et b2 sont liées à la nourriture disponible pour chaque population
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Stabilité Convergence Systemes d’ODEs

Introduction
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Stabilité Convergence Systemes d’ODEs

Exemples I

Un problème de Cauchy peut être linéaire, comme par exemple :
⇢

y 0(t) = 3y(t)� 3t si t > 0
y(0) = 1

pour lequel f (t, v) = 3v � 3t et dont la solution est
y(t) = (1 � 1/3)e3t + t + 1/3.
On peut aussi avoir des problèmes non-linéaires, comme :

⇢
y 0(t) = 3

p
y(t) si t > 0

y(0) = 0

avec f (t, v) = 3
p
v . Ce problème admet les trois solutions suivantes :

y(t) = 0, y(t) =
p

8t3/27, y(t) = �
p

8t3/27.
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Stabilité Convergence Systemes d’ODEs

Exemples II

Le problème suivant :
⇢

y 0(t) = 1 + y 2(t) si t > 0
y(0) = 0

admet comme solution la fonction y(t) = tan(t) avec 0 < t < ⇡
2
,

c’est-à-dire une solution locale.
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Stabilité Convergence Systemes d’ODEs

Exemples III

Même si un problème est linéaire, il peut être instable (numériquement mal
posé).

⇢
y 0(t) = 3y(t)� 3t si t > 0
y(0) = C

La solution analytique de ce problème est y(t) = (C � 1

3
)e3t + t + 1

3
.

Pour C1 = 1

3
, on a donc y1(t) = t + 1

3
.

Pour C2 = 1

3
+ ✏, on a y2(t) = ✏e3t + t + 1

3
.

Une erreur de ✏ sur la donnée initiale se propage exponentiellement dans le
temps. Par exemple, pour ✏ = 10�6 et t = 10, on a une erreur de l’ordre de
107.
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Stabilité Convergence Systemes d’ODEs

Théorème (de Cauchy-Lipschitz, proposition 7.1 du livre)
Si la fonction f (t, y) est
1. continue par rapport à ses deux variables ;
2. lipschitzienne par rapport à sa deuxième variable, c’est-à-dire qu’il existe une

constante positive L (appelée constante de Lipschitz) telle que

|f (t, y1)� f (t, y2)|  L|y1 � y2| 8y1, y2 2 R, 8t 2 I , (2)

Alors la solution y = y(t) du problème de Cauchy existe, est unique et appartient
à C 1(I ).

Si f est différentiable par rapport à y , on peut remplacer la deuxième condition
par

= sup
y2R,t2I

����
@f (t, y)

@y

���� < 1
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Stabilité Convergence Systemes d’ODEs

Exemple
On considère le problème (??) et on vérifie qu’il admet une solution unique et
globale.
Dans ce cas, f (t, v) = 3v � 3t et on a :

|f (t, y1)� f (t, y2)| = |3y1 � 3t � (3y2 � 3t)| = |3y1 � 3y2|  3|y1 � y2|

et donc

|f (t, y1)� f (t, y2)|  L|y1 � y2| 8y1, y2 2 R, 8t > 0, avec L = 3.

Ainsi, f satisfait les hypothèses du théorème 1 et on peut affirmer que le
problème (??) admet une solution globale et unique.
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Stabilité Convergence Systemes d’ODEs

Méthodes des différences finies pour

l’approximation du problème de Cauchy
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Stabilité Convergence Systemes d’ODEs
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ODEs Stabilité Convergence Systemes d’ODEs

La méthode de Heun :
8
<

:

un+1 � un
h

=
1
2

h
f (tn, un) + f

⇣
tn+1, un + hf (tn, un)

⌘i
pour n = 0, 1, 2 . . . ,Nh � 1

u0 = y0

Crank-Nicolson

8
<

:

un+1 � un
h

=
1
2

h
f (tn, un) + f (tn+1, un+1)

i
pour n = 0, 1, 2 . . . ,Nh � 1

u0 = y0
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ODEs Stabilité Convergence Systemes d’ODEs

Schéma du point milieu

8
>><

>>:

un+1 � un�1

2h
= f (tn, un) pour n = 1, 2 . . . ,Nh � 1

u0 = y0

u1 à déterminer

BDF 2

8
>><

>>:

3un+1 � 4un + un�1

2h
= f (tn+1, un+1) pour n = 1, 2 . . . ,Nh � 1

u0 = y0

u1 à déterminer
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Stabilité Convergence Systemes d’ODEs

Exemple

On considère l’équation différentielle suivante
(
y 0(t) = �ty 2(t), t > 0
y(0) = 2.

On veut résoudre cette équation avec les méthodes d’Euler progressive et Euler
rétrograde, dans l’intervalle [0, 4] avec Nh = 20 sous-intervalles, ce qui équivaut à
un pas de temps h = 0.2 et donc à approcher la solution exacte y(tn) aux
instants tn = nh, n = 0, 1, . . . 20 (donc tn = 0.2, 0.4, 0.6, . . .) par une solution
numérique un.

f = lambda t,x : −t∗x∗∗2
y0 = 2; tspan=[0, 4]

Nh = 20

t_EP, y_EP = forwardEuler(f, tspan, y0, Nh)

t_ER, y_ER = backwardEuler(f, tspan, y0, Nh)
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Stabilité Convergence Systemes d’ODEs

Comparaison entre la solution exacte et celles obtenues par les méthodes d’Euler
progressive et rétrograde.
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Stabilité Convergence Systemes d’ODEs

Explicite ou implicite

Remarque
Le schéma d’Euler progressif est un schéma explicite car il permet de
calculer un+1 en fonction de un explicitement :

(EP) un+1 = un + hf (tn, un).

Le schéma d’Euler rétrograde est un schéma implicite car un+1 est défini
implicitement en fonction de un :

(ER) un+1 = un + hf (tn+1, un+1).
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Stabilité Convergence Systemes d’ODEs

En général, pour le schéma d’Euler rétrograde, il faut résoudre une équation
non-linéaire à chaque pas de temps.
Méthode du point fixe : Notons que (ER) est équivalent à un problème de
point fixe avec

un+1 = �(un+1) = un + hf (tn+1, un+1)

On peut résoudre ce problème grâce aux itérations suivantes

uk+1

n+1
= �(uk

n+1
), k = 0, 1, 2, . . .

Méthode de Newton : À partir de l’équation :

F (un+1) ⌘ un+1 � �(un+1) = 0,

on utilise les itérations suivantes :

uk+1

n+1
= uk

n+1
�

F (uk
n+1

)

F 0(uk
n+1

)
= uk

n+1
�

F (uk
n+1

)

1 � �0(uk
n+1

)
, k = 0, 1, 2, . . .

Dans les deux cas, on a limk!1 uk
n+1

= un+1.
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Stabilité Convergence Systemes d’ODEs

Quelles méthodes sont implicites ?
A Euler Progressive un+1�un

h = f (tn, un)
B Euler Retrograde un+1�un

h = f (tn+1, un+1)

C Heun un+1�un
h = 1

2

h
f (tn, un) + f

⇣
tn+1, un + hf (tn, un)

⌘i

D Crank Nicolson un+1�un
h = 1

2

h
f (tn, un) + f (tn+1, un+1)

i

E Point milieu un+1�un�1
2h = f (tn, un)

F BDF 2 3f (xn+1)�4f (xn)+f (xn+1)
2h = f (tn+1, un+1)
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Stabilité Convergence Systemes d’ODEs

Conditions de stabilité

Le choix du pas de temps h n’est pas arbitraire. Pour la méthode d’Euler
progressive, on verra plus loin dans le cours que, si h n’est pas suffisamment
petit, des problèmes de stabilité peuvent surgir.

Par exemple, si l’on considère le problème
⇢

y 0(t) = �2y(t) pour t 2 R+

y(0) = 1, (3)

dont la solution est
y(t) = e�2t ,

on peut observer que les comportements par rapport à h des méthodes d’Euler
progressive et rétrograde sont très différents.
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Stabilité Convergence Systemes d’ODEs

Conditions de stabilité (EP)
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Stabilité Convergence Systemes d’ODEs

Conditions de stabilité (ER)
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Stabilité Convergence Systemes d’ODEs

La propriété de stabilité (absolue)
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Stabilité Convergence Systemes d’ODEs

La stab. abs. contrôle les perturbations
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Stabilité Convergence Systemes d’ODEs

Problème modèle généralisé

Considérons le problème modèle généralisé suivant :
(

y 0(t) = �(t)y(t) + r(t), t 2 (0,+1),

y(0) = 1,
(4)

avec � et r des fonctions continues et ��max  �(t)  ��min où
0 < �min  �max < +1. Dans ce cas, la solution exacte ne tend pas forcément
vers zéro lorsque t tend vers l’infini.
Par exemple, si r et � sont constants, on a

y(t) =
⇣
1 +

r

�

⌘
e�t � r

�

dont la limite, lorsque t tend vers l’infini, est �r/�. En général, il n’est pas
naturel de demander la stabilité absolue à une méthode numérique quand on
l’applique au problème (2).

Pour simplifier l’analyse, on restreindra notre étude au cas de la méthode d’Euler
progressive appliquée à (2).
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Ainsi, on a
(

un+1 = un + h(�nun + rn), n � 0,

u0 = 1
où �n = �(tn) et rn = r(tn).
On définit la méthode “perturbée” suivante :

(
zn+1 = zn + h(�nzn + rn + ⇢n+1), n � 0,

z0 = u0 + ⇢0,
(5)

avec ⇢0, ⇢1, . . . des perturbations données introduites à chaque pas de temps.

Ceci est un modèle simple dans lequel ⇢0 et ⇢n+1 représentent les erreurs de
troncatures ou de résolutions numériques.

Question : Est-ce que la différence zn � un est bornée pour tout n = 0, 1, ...
indépendamment de n et h ?
On va considérer deux cas de complexité croissante.
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Stabilité Convergence Systemes d’ODEs

(i) Soient �n = � et ⇢n = ⇢ des constantes. Nous pouvons écrire le schéma pour
l’erreur en = zn � un (

en+1 = en + h(�en + ⇢), n � 0,

e0 = ⇢.
(6)

dont la solution est

en = ⇢(1 + h�)n + h⇢
n�1X

k=0

(1 + h�)k = ⇢ (h,�), (7)

avec
 (h,�) =

✓
(1 + h�)n(1 +

1
�
)� 1

�

◆

et où on a utilisé
n�1X

k=0

ak =
1 � an

1 � a
. (8)
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Stabilité Convergence Systemes d’ODEs

Supposons que h < h0(�) = 2/|�|, c’est à dire que h assure la stabilité absolue
de la méthode d’Euler progressive appliquée au problème modèle (1).
Donc (1 + h�)n < 1 8n et on en déduit que l’erreur due aux perturbations vérifie

|en|  '(�)|⇢|, (9)

avec '(�) = 1 + |2/�| . De plus,

lim
n!1

|en| =
|⇢|
|�| .

Par conséquent, l’erreur des perturbations est bornée par |⇢| fois une constante
indépendante de n et h. Evidemment, si h > h0, les perturbations s’amplifient
quand n augmente car (1 + h�)n ! 1 pour n ! 1.
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(ii) Dans le cas général où � et r dépendent de t, on a que

zn � un = ⇢0

n�1Y

k=0

(1 + h�k) + h
n�1X

k=0

⇢k+1

n�1Y

j=k+1

(1 + h�j) (10)

On demande au pas de temps h de satisfaire la condition h < h0(�), avec
h0(�) = 2/�max . Ainsi, |1 + h�k |  max(|1 � h�min|, |1 � h�max |) < 1. Soient
⇢ = max |⇢n| et � tel que (1 + h�) = max(|1 � h�min|, |1 � h�max |).
Nous pouvons conclure, en constatant que :

|zn � un|  |⇢0|
n�1Y

k=0

|1 + h�k |+ h
n�1X

k=0

|⇢k+1|
n�1Y

j=k+1

|1 + h�j |

 ⇢
n�1Y

k=0

(1 + h�) + h
n�1X

k=0

⇢
n�1Y

j=k+1

(1 + h�) = ⇢ (h,�)

Ainsi, même dans ce cas, en = zn � un satisfait (7).
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Condition de stabilité du problème modèle

généralisé
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Condition de stabilité dans le cas général
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Convergence

Définition
Soit y(t) la solution du problème de Cauchy sur l’intervalle [0,T ] ; soit un une
solution approchée au temps tn = nh trouvée par une méthode numérique
donnée, où h = T/Nh (Nh 2 N) est le pas de temps. La méthode est dite
convergente si

8n = 0, . . . ,Nh : |un � y(tn)|  C (h)

où C (h) ! 0 lorsque h ! 0.

Si, en plus, il existe p > 0 tel que C (h) = Khp pour une constante K qui ne
dépend pas de h ni de n, on dit que la méthode est convergente d’ordre p.

Dans la suite du cours, on va analyser la convergence et l’ordre de la méthode
d’Euler progressive.
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Convergence d’Euler progressif

Théorème
Si y 2 C2([0,T ]) et f satisfait �1 < ��max  @f

@y (t, y)  0 pour tout t 2 [0,T ]
et pour tout y 2 R. alors la méthode d’Euler progressive est convergente et

8n � 0, |y(tn)� un|  c(tn)h, où c(tn) = tn
1
2

max
t2[t0,tn]

|y 00(t)| , (11)

En particulier, la méthode est convergente d’ordre p = 1, avec

C (h) = c(T )h.

Remarque
Le même type de résultat peut être établi pour la méthode d’Euler rétrograde.
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Stabilité Convergence Systemes d’ODEs

Démonstration I

On définit l’erreur de troncature locale de la méthode d’Euler progressive comme

⌧n+1(h) =
y(tn+1)� y(tn)

h
� y 0(tn), (12)

et l’erreur de troncature globale

⌧(h) = max
n

|⌧n(h)|.

On sait (voir différences finies) que

⌧n+1(h) =
1
2

max
t2[tn,tn+1]

|y 00(t)|h.

Donc, on a l’estimation suivante pour l’erreur de troncature globale :

⌧(h)  1
2

max
t2[0,T ]

|y 00(t)|h.
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Stabilité Convergence Systemes d’ODEs

Démonstration II

On a les équations suivantes pour y(t) et un.

⇢
y 0(t) = f (t, y(t)) 8t 2 I
y(t0) = y0

( un+1 � un
h

= f (tn, un) n = 0, 1, 2 . . . ,Nh

u0 = y0.
et de l’équation (10) pour l’erreur de troncature locale

⌧n+1(h) =
y(tn+1)� y(tn)

h
� y 0(tn) =

y(tn+1)� y(tn)

h
� f (tn, y(tn)),

on obtient pour en = un � y(tn)

( en+1 � en
h

= f (tn, un)� f (tn, y(tn))� ⌧n+1(h),

e0 = 0.
(13)

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

tn 

yn 

en 

un 
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Démonstration III

D’après le théorème de Lagrange, il existe ⇠n tel que

f (tn, un)� f (tn, y(tn)) =
@f (t, ⇠n)

@y
(un � y(tn)) =

@f (t, ⇠)

@y
en.

Donc il existe ⌘n tel qu’à partir de (11) on trouve

en+1 =

✓
1 + h

@f (t, ⇠n)

@y

◆
en � h

h

2
y 00(⌘n).

Si h < 2

�max
, on a 1 + h @f (t,⇠n)

@y 2 (�1, 1) et donc

|en+1|  |en|+ h⌧(h)  (|en�1|+ h⌧(h)) + h⌧(h)  |e0|+ (n + 1)h⌧(h).

Comme e0 = 0, on en déduit

|en|  nh⌧(h) = tn⌧(h),

donc on trouve bien (9).
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Méthodes de Runge-Kutta

Si on intègre l’équation y 0(t) = f (t, y(t)) entre tn et tn+1, on obtient :

y(tn+1)� y(tn) =

Z tn+1

tn

f (t, y(t))dt. (14)

Remarque
Méthodes d’intégration numérique
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Stabilité Convergence Systemes d’ODEs

En utilisant la formule du trapèze, on trouve le schéma implicite suivant, appelé
schéma de Crank-Nicolson ou du trapèze :

u0 = y(t0), un+1 � un =
h

2
[f (tn, un) + f (tn+1, un+1)] , n = 0, 1, ... (15)

Ce schéma, qui est implicite, est inconditionnellement stable lorsqu’il est appliqué
au problème modèle (1).

En modifiant le schéma (13) afin de le rendre explicite, on identifie la méthode

de Heun :

un+1 � un =
h

2
[f (tn, un) + f (tn+1, un + hf (tn, un))] . (16)

Ces deux méthodes sont d’ordre 2 par rapport à h.
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Stabilité Convergence Systemes d’ODEs

Si on utilise dans (12) la méthode du point milieu, on trouve

un+1 � un = h f (tn+ 1
2
, un+ 1

2
).

Si maintenant, on approche un+1/2 par

un+ 1
2
= un +

h

2
f (tn, un),

on trouve la méthode d’Euler modifiée :

u0 = y(t0), un+1 � un = h f

✓
tn+ 1

2
, un +

h

2
f (tn, un)

◆
n = 0, 1, ...

Les méthodes de Heun et d’Euler modifiée sont des cas particuliers de la famille
des méthodes de Runge-Kutta d’ordre 2. Lorsqu’elles sont appliquées au
problème modèle (1), on a dans les deux cas la condition de stabilité h < 2/|�|.
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Stabilité Convergence Systemes d’ODEs

Il existe d’autres méthodes plus compliquées, comme par exemple la méthode

de Runge-Kutta d’ordre 4 suivante, qui est obtenue en considérant la
méthode d’intégration de Simpson :

un !

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

un+1 = un +
h

6
(K1 + 2K2 + 2K3 + K4),

avec :

K1 = f (tn, un),

K2 = f (tn +
h

2
, un +

h

2
K1),

K3 = f (tn +
h

2
, un +

h

2
K2),

K4 = f (tn+1, un + hK3).
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Stabilité Convergence Systemes d’ODEs

Dans le tableau suivant, on résume les caractéristiques des méthodes qu’on a
introduites :

Méthode Explicite/Implicite Stabilité P.r. à h
Euler Progressive Explicite Conditionnellement 1
Euler Rétrograde Implicite Inconditionnellement 1
Crank–Nicolson Implicite Inconditionnellement 2

Heun Explicite Conditionnellement 2
Euler Modifiée Explicite Conditionnellement 2
Runge–Kutta Explicite Conditionnellement 4
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Stabilité Convergence Systemes d’ODEs

Système d’EDO

Considérons un système non homogène d’équations différentielles ordinaires
linéaires à coefficients constants :

(
y0(t) = Ay(t) + b(t) t > 0,
y(0) = y0,

(17)

avec A 2 Rp⇥p et b(t) 2 Rp, où l’on suppose que A possède p valeurs propres
distinctes �j , j = 1, . . . , p.
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Stabilité Convergence Systemes d’ODEs

Du point de vue numérique, les méthodes introduites dans le cas scalaire peuvent
être étendues aux systèmes d’équations différentielles. Par exemple, le schéma
d’Euler progressif devient :

( un+1 � un

h
= Aun + bn pour n = 0, 1, 2, . . . ,Nh � 1

u0 = y0 ,
(18)

tandis que la méthode d’Euler rétrograde (??) devient
( un+1 � un

h
= Aun+1 + bn+1 pour n = 0, 1, 2, . . . ,Nh � 1

u0 = y0 ,
(19)
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Stabilité Convergence Systemes d’ODEs

En ce qui concerne la stabilité, si b ⌘ 0 et les valeurs propres �j (j = 1, . . . , p) de
la matrice A sont strictement négatives : �j < 0, j = 1, . . . , p, alors y(t) ! 0
lorsque t ! +1, et la méthode d’Euler progressive est stable (c-à-d un ! 0 si
n ! +1) pourvu que

h <
2

maxj=1,...,p |�j |
=

2
⇢(A)

, (20)

où ⇢(A) est le rayon spectral de A, tandis que la méthode d’Euler rétrograde est
inconditionnellement stable.
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Stabilité Convergence Systemes d’ODEs

Exemple
Le système linéaire

⇢
y 0
1
(t) = �2y1(t) + y2(t) + e�t

y 0
2
(t) = 3y1(t)� 4y2(t)

(21)

avec les conditions initiales y1(0) = y10, y2(0) = y20, s’écrit sous la forme (15), où

y(t) =

y1(t)
y2(t)

�
, A =


�2 1
3 �4

�
, b(t) =


e�t

0

�
, y0 =


y10

y20

�
.

Soit h > 0 le pas de temps. Pour n 2 N, on pose tn = nh, bn = b(tn) et on
désigne par un une valeur approchée de la solution exacte y(tn) au temps tn.
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Stabilité Convergence Systemes d’ODEs

Les schémas d’Euler progressif, d’Euler rétrograde et de Crank-Nicolson pour
approcher la solution y(t) de (19) s’écrivent respectivement :

Euler progressif

(
un+1 = un + hAun + hbn = (I + hA)un + hbn

u0 = y0

Euler rétrograde

(
(I � hA)un+1 = un + hbn+1

u0 = y0

Crank-Nicolson

(
(I � h

2
A)un+1 = (I + h

2
A)un +

h
2
(bn + bn+1)

u0 = y0

n = 0, 1, ...,Nh � 1

Il faut remarquer qu’à chaque étape des méthodes de ER et CN, il faut résoudre
un système linéaire avec pour matrice I � hA et I � h

2
A respectivement (il s’agit

de méthodes implicites).
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Stabilité Convergence Systemes d’ODEs

La méthode d’Euler progressive est explicite (il n’y a pas de système linéaire à
résoudre), par contre elle est seulement conditionellement stable. Dans notre cas,
les valeurs propres de A sont �1 = �1 et �2 = �5 ; elles sont bien négatives,
donc la condition (18) sur h s’applique : comme ⇢(A) = 5, cette condition de
stabilité est

h < h̄ =
2
5
.
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Stabilité Convergence Systemes d’ODEs

Comportement du schéma d’Euler progressif pour le système (19) avec condition
initiale y0 = [1, 1]> et différentes valeurs du pas de temps h.
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Stabilité Convergence Systemes d’ODEs

On peut aussi considérer le cas d’un système non linéaire de la forme
(

y0(t) = F(t, y(t)) t 2 (t0,T ),

y(0) = y0,

(par exemple le système (??)). Si @F

@y
est une matrice à valeurs propres réelles et

négatives alors la méthode d’Euler rétrograde est inconditionnellement stable.

Si, pour tout t in [t0,T ], tout y 2 Rn, il vaut que

��max  � < �min < 0 pour toutes les valeurs propres � de
@F(t, y)
@y

alors le schéma d’Euler progressif est stable sous la condition

h <
2

�max
,
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Stabilité Convergence Systemes d’ODEs

Exemple
Le système non-linéaire

y 0
1
(t) = �2y1(t) + sin(y2(t)) + e�t sin(t),

y 0
2
(t) = cos(y1(t))� 4y2(t), (22)

avec les conditions initiales y1(0) = y10, y2(0) = y20, s’écrit sous la forme

y0(t) = F(t, y(t)),

où
F(t, y(t)) =


�2y1(t) + sin(y2(t)) + e�t sin(t)

cos(y1(t))� 4y2(t)

�
.

Soit h > 0 le pas de temps. Pour n 2 N, on pose tn = nh et on désigne par un

une valeur approchée de la solution exacte y(tn) au temps tn.
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Stabilité Convergence Systemes d’ODEs

Les schémas d’Euler progressif, rétrograde et de Crank-Nicolson pour approcher
la solution y(t) de (20) s’écrivent respectivement :

Euler progressif

(
un+1 = un + hF(tn, un),

u0 = y0,

Euler rétrograde

(
un+1 + hF(tn+1, un+1) = un,

u0 = y0,

Crank-Nicolson

(
un+1 � h

2
F(tn+1, un+1) = un +

h
2
F(tn, un),

u0 = y0.

n = 0, 1, ...,Nh � 1

Il faut remarquer qu’à chaque étape des méthodes d’Euler rétrograde et
Crank-Nicolson, il faut résoudre un système non-linéaire.
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Stabilité Convergence Systemes d’ODEs

La méthode d’Euler progressive est explicite (pas de système à résoudre) mais,
par contre, elle est seulement conditionellement stable. Dans notre cas, le
jacobien de F est donné par

J =
@F
@y

=


�2 cos y2

� sin y1 �4,

�

et ses valeurs propres sont �1,2 = �3 ±
p

1 � sin y1 cos y2; elles sont bien
négatives, en particulier �3 �

p
2 < �1,2 < �3 +

p
2 < 0, et ⇢(J) < 3 +

p
2. La

condition de stabilité est ainsi :

h < h̄ =
2

⇢(J)
, satisfaite par exemple si h <

2
3 +

p
2
' 0.453.
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Stabilité Convergence Systemes d’ODEs

Comportement du schéma d’Euler progressif pour le système (20) avec condition
initiale y0 = [1, 1]> : h = 0.1 (bleu) et h = 0.8h̄ (rouge). Si on prend h � h̄, on
peut observer l’instabilité de la méthode.
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Stabilité Convergence Systemes d’ODEs

Voici un resumé concernant la stabilité :

Problème Stabilité des méthodes explicites
Modèle y 0 = �y h < 2/|�|

Cauchy y 0 = f (t, y(t)) h < 2/max

����
@f

@y

����
Systèmes Eq. Linéaires y0 = Ay + b h < 2/⇢(A)
Systèmes Eq. Non-Linéaires y0 = F(t, y(t)) h < 2/⇢(J)

avec
⇢(A) = max

i
|�i(A)|, pour un système d’équations linéaires ;

⇢(J) = max
i

|�i(J)|, pour un système d’équations non-linéaires, où

J(t, y) =
@F
@y

, avec �i(J) < 0, 8i .
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