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STABILITE

EXEMPLES ET MOTIVATIONS

EXEMPLE

(Biologie) Considérons une population composée de y animaux dans un milieu
ambiant ou

@ au plus B animaux peuvent coexister,

@ initialement la population est de yy < B,

o le facteur de croissance des animaux est égal a une constante C,
°

L'évolution de la population au cours du temps peut s'exprimer a travers
I'équation

yO=o0(1-7) . >0 s -n
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STABILITE

MODELE DE LOTKA-VOLTERRA

On considére maintenant deux populations composées de y; et de y, individus,
ol y; est le nombre de proies et y» le nombre de prédateurs. L'évolution des deux
populations est alors décrite par le systéme d'équations différentielles

/(1) — ’ (1)
y2(t) = = Goya(t) [1 = bays(t) — chya(2)].

o (; et G, sont les facteurs de croissance des deux populations,
e d; et d, tiennent compte de |'intéraction entre les deux populations,
@ by et b, sont liées a la nourriture disponible pour chaque population

{)’{(t) = Guy(t) [1 — buyi(t) — daya(t)]
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STABILITE

INTRODUCTION
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STABILITE

EXEMPLES I

@ Un probléme de Cauchy peut étre linéaire, comme par exemple :
{ y'(t)=3y(t)—3t sit>0
y(0) =1
pour lequel f(t,x) = 3x — 3t et dont la solution est
y(t)=(1-1/3)e¥ +t+1/3.
@ On peut aussi avoir des problémes non-linéaires, comme :
{ V() =@  sit>0 I-(00e0)
y(0) =0

= \/_ Ce probléeme admet les trois solutions suivantes :

8t3/27, y(t) = —\/863/27.
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STABILITE

EXEMPLES II

g(f%\ A"

@ Le probléme suivant :

{ y(t)=1+y*(t) sit>0
y(0) =0

admet comme solution la fonction y(t) = tan(t) avec 0 < t < 7,
c'est-a-dire une solution locale.
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STABILITE

EXEMPLES II1

@ Méme si un probléme est linéaire, il peut étre instable (numériquement mal

posé).
{ y'(t)=3y(t)—3t sit>0
y(0)=C
La solution analytique de ce probleme est y(t) = (C — 3)e¥ +t + 3.
e Pour C; = % on a donc yy(t) =t + 3.

1 1
o Pour G; =3 +¢ onay(t)=ce* +t+3.
Une erreur de ¢ sur la donnée initiale se propage exponentiellement dans le

temps. Par exemple, pour ¢ = 107% et t = 10, on a une erreur de I'ordre de
10°.
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STABILITE

THEOREME (DE CAUCHY-LIPSCHITZ, PROPOSITION 7.1 DU LIVRE)
Si la fonction f(t,y) est
1. continue par rapport a ses deux variables;

2. lipschitzienne par rapport a sa deuxiéme variable, c'est-a-dire qu'il existe une
constante positive L (appelée constante de Lipschitz) telle que

1f(t,y1) — f(t,y2)| < Lly1 —yo| Yy, 2 €R, Vtel, (2)

Alors la solution y = y(t) du probléme de Cauchy existe, est unique et appartient
a Ci(I).

Si f est différentiable par rapport a y, on peut remplacer la deuxiéme condition

par
of (t
Z#  sup ( ,y)‘ < 00

yeR,tel

dy
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STABILITE

EXEMPLE

On considére le probleme (2 ) et on vérifie qu'il admet une solution unique et
globale.
Dans ce cas, f(t,v) =3v —3tetona:

1f(t, 1) — f(t,y2)] = 13y1 — 3t — (3y2 — 3t)| = [3y1 — 3y2| < 3|y1 — ya|

et donc

If(t,y1) — F(t,y2)| < Llys — ol ‘v’yl,ygeR,@ avec L =3.

Ainsi, f satisfait les hypothéses du théoréme 1 et on peut affirmer que le
probléme (4%) admet une solution globale et unique.

.
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STABILITE

METHODES DES DIFFERENCES FINIES POUR

L’APPROXIMATION DU PROBLEME DE CAUCHY
o PNROHPAWANG

N4 "\\h \ <. (“v““ o T pu oo\ _ik, Sf}U‘l
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( w(l
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STABILITE
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ODEs
0000000000e000000

Dwan—lar - gt\\u,U\u\
"N
Waan = 1V -\r\"\% “\M’w"\

La méthode de Heun :

n — Up 1
u+1h u :E[f(tn,un)—I—f(tn+1,u,,+hf(t,,,u,,)>] pour n=20,1,2..., N, —1

Up = Yo
Crank-Nicolson

n — Yn 1
—LI +1h u = 5 |:f(tn7 Un) + f(tn+17 Un+1):| pour n = 07 172 o Nh -1

Up = Yo
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ODEs
00000000000800000

Schéma du point milieu

o = Yo
u; 4 déterminer
BDF 2

3UnJrl - 4U,, + Up1
2h

= f(tps1, Unt1) pour n=1,2...,N,—1

o = Yo

u; & déterminer
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STABILITE

EXEMPLE
On considére I'équation différentielle suivante

Y'(t)=—ty*(t), t>0

y(0) =2
On veut résoudre cette équation avec les méthodes d'Euler progressive et Euler
rétrograde, dans I'intervalle [0, 4] avec N}, = 20 sous-intervalles, ce qui équivaut a
un pas de temps h = 0.2 et donc a approcher la solution exacte y(t,) aux

instants t, = nh, n=0,1,...20 (donc t, = 0.2,0.4,0.6,...) par une solution
numérique up,.

f = lambda t,x : —tkxkk2
y0 = 2; tspan=[0, 4]
Nh = 20

t_EP, y_EP = forwardEuler(f, tspan, y®, Nh)
t_ER, y_ER = backwardEuler(f, tspan, y®, Nh)
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STABILITE

Comparaison entre la solution exacte et celles obtenues par les méthodes d'Euler
progressive et rétrograde.
y (M) = -ty

o K9 T T T

1.81 \ - - sol-ex B
\ —e— Euler prog.
1.6[ N —=— Euler retr |

0.8r b

0.41 b
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STABILITE

EXPLICITE OU IMPLICITE

REMARQUE

o Le schéma d’'Euler progressif est un schéma explicite car il permet de
calculer u, 1 en fonction de u, explicitement :
W =4Y%o
(EP) Upy1 = Uy + hf(t,, up).

o Le schéma d’Euler rétrograde est un schéma implicite car u,1 est défini
implicitement en fonction de u, :

U = Yo
(ER) Un+1 = Up -+ hf(tn+17 U,H,]_).
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STABILITE

En général, pour le schéma d'Euler rétrograde, il faut résoudre une équation

non-linéaire & chaque pas de temps.

Méthode du point fixe : Notons que (ER) est équivalent a un probléme de

point fixe avec (P(X\? U -\—\I\}(tm/)(\
Unt1 = @(Unt1) = up + hf (tos1, Ups1) Xo= Up _)F\A‘EU’M,U\V\

On peut résoudre ce probléme grace aux itérations suivantes
My..\,. = UV\*\/‘ “\V/\A"\\

uptl = o(uky), k=0,1,2,...
, e A\ T

Méthode de Newton : A partir de |'équation : o= ﬁg —Wn \A‘K " 3
F(unt1) = Upy1 — ¢(tng1) = 0,

on utilise les itérations suivantes : X, 2 U\ma\"j (%‘/ ““\
F(uk.,) F(uk.))

bl gk ikl =0,1,2, ...
Un+1 Un+1 F/(U,I;Jrl) n+1 1_¢,(u,;:+1)7 )y Ly &y

- ko
Dans les deux cas, on a limy_oc Uy = Upy1.
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STABILITE

Quelles méthodes sont implicites ?

@ Euler Progressive
@ Euler Retrograde

@ Heun

@ Crank Nicolson

@ Point milieu
Q@ BDF 2

it — f(t,, up)
uan:un = f(tn+17 Un+1)

ossn _ %[f(tn, un) + f(t,,+1, Uy + hf(tn, u,,)ﬂ
Un+:;7—un — % |:f-(tn7 Un) —'I_ f(tn+1/ Un+1):|

g = f(tn, un)

3f n —A4f n +f n
(Xn+1) 2(hX )Hf(ne1) f(tni1s Unt1)

S. DEeparis, SCI-SB-SC-EPFL



CONVERGENCE
©000000000

CONDITIONS DE STABILITE

Le choix du pas de temps h n'est pas arbitraire. Pour la méthode d'Euler
progressive, on verra plus loin dans le cours que, si h n'est pas suffisamment
petit, des problémes de stabilité peuvent surgir.

Par exemple, si I'on considére le probléme

{ }}i’((ot))_:l—72y(t) pour t € Ry (3)

dont la solution est
2t

y(t)=e",
on peut observer que les comportements par rapport a h des méthodes d'Euler
progressive et rétrograde sont trés différents.
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ONVERGENCE
0O@00000000

CONDITIONS DE STABILITE (EP

—0 [
3L |——EP,h=1.1 . [ 4




— )
——ER,h=1.1
——ER, h=0.9|

-0.5-
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LA PROPRIETE DE STABILITE (ABSOLUE)
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CONVERGENCE
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LA STAB. ABS. CONTROLE LES PERTURBATIONS
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CONVERGENCE

0O0000000e0

Probléme modéle généralisé

Considérons le probleme modeéle généralisé suivant :
y'(t) = At)y(t) +r(t), t € (0,+00),
y(0) =1,

avec A et r des fonctions continues et — A < A(t) < —Apin OU

0 < Amin < Amax < +00. Dans ce cas, la solution exacte ne tend pas forcément
vers zéro lorsque t tend vers I'infini.

Par exemple, si r et \ sont constants, on a

y(t) = <1+§> e’“—&

dont la limite, lorsque t tend vers I'infini, est —r/\. En général, il n'est pas
naturel de demander la stabilité absolue a une méthode numérique quand on
I'applique au probléme (2).

(4)

Pour simplifier I'analyse, on restreindra notre étude au cas de la méthode d'Euler
progressive appliquée a (2).
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CONVERGENCE

0O0000000e0

Ainsi, on a
Uny1 = Uy + h(/\nun + rn)u n Z 07

Ug = 1
ou A\, = A(t,) et r, = r(t,).
On définit la méthode “perturbée” suivante :

Znt1 = Zp + h()\nzn + ry, + anrl)a n> 07

(5)

Zp = Up + po,
avec po, p1, - - - des perturbations données introduites a chaque pas de temps.

Ceci est un modéle simple dans lequel py et p,y1 représentent les erreurs de
troncatures ou de résolutions numériques.

Question : Est-ce que la différence z, — u, est bornée pour tout n =10,1, ...
indépendamment de net h?
On va considérer deux cas de complexité croissante.
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CONVERGENCE

0O0000000e0

(1) Soient A\, = X et p, = p des constantes. Nous pouvons écrire le schéma pour
I'erreur e, = z, — u,

(6)

eni1 = €, + h(Ae, +p), n>0,
€ = p-

dont la solution est

n—1

en=p(1+hN)"+ hp > (14 hA)< = pio(h, ), (7)

k=0

avec 1 1

(h,\) = ((1 (14 ) - X)

et oll on a utilisé
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CONVERGENCE

0O0000000e0

Supposons que h < ho(A) = 2/|\|, c'est a dire que h assure la stabilité absolue
de la méthode d’Euler progressive appliquée au probléme modeéle (1).
Donc (1 + h\)" < 1Vn et on en déduit que I'erreur due aux perturbations vérifie

lenl < @(A)lp], (9)

avec ¢(A) =14 |2/A| . De plus,

el =y

Par conséquent, |'erreur des perturbations est bornée par |p| fois une constante
indépendante de n et h. Evidemment, si h > hg, les perturbations s’amplifient
quand n augmente car (1 + hA)"” — oo pour n — oo.
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CONVERGENCE

0O0000000e0

(ii) Dans le cas général ou \ et r dépendent de t, on a que

n—1 n—1 n—1
Z, —un—pOH L+ hN)+h> pe [T @+ 0y (10)
= k=0 j=k+1

On demande au pas de temps h de satisfaire la condition h < ho(\), avec
ho(A\) = 2/ Amax- Ainsi, |1+ hAx] < max(|1 — hAminl, |1 — AAmax|) < 1. Soient
p = max|p,| et A tel que (1 + hA) = max(|1 — hAminl, |1 — hAmax])-

Nous pouvons conclure, en constatant que :

2 —un|<\po|Hrl+hAk|+hZ|pk+l| I 1+ my

j=k+1

<pH (1+ hN) +th H (1+ h\) = pih(h, \)

= Jj=k+1

Ainsi, méme dans ce cas, e, = z, — u, satisfait (7).
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CONDITION DE STABILITE DU PROBLEME MODELE

GENERALISE
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CONDITION DE STABILITE DANS LE CAS GENERAL
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CONVERGENCE

— DEFINITION -

~ Soit y(t) la solution du probléme de Cauchy sur I'intervalle [0, T]; soit u, une
solution approchée au temps t, = nh trouvée par une méthode numérique
donnée, ot h = T /N, (N, € N) est le pas de temps. La méthode est dite
.~ convergente si 1

— VYn=0,...,Ny: |u,—y(t,)| < C(h) i

—— ou C(h) — 0 lorsque h — 0. E-

.\
=
I
X
O
O

|||<’ il existe p 0 tel que une constante K aui ne

D
d
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CONVERGENCE D’'EULER PROGRESSIF

. THEOREME

— Siy € C%([0, T]) et f satisfait —00 < —Apax < g—;(t,y) <0 pourtoutte [0, T]|
et pour tout y € R. alors la méthode d’Euler progressive est convergente et

1
Vn >0, |y(t)) — us <c(ta)h, ouc(t,) =t,= max |y"(t)], (11)

"2 te[to.tn]

~ En particulier, la méthode est convergente d’ordre p = 1, avec T

7‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
. REMARQUE

~ Le méme type de résultat peut étre établi pour la méthode d’Euler rétrograde.
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DEMONSTRATION 1

"erreur




0O0@0000000000

T2 F(t, y(ta)),

— Y(tat1)
(h)

o
3

_

—

+

<
3
N—

\(1‘\\—7’

Up—Yy tn

u-) — f(t

v
f.

s suivantes pour y(t) et u,.
)’\‘-r+1}' J\tn) )//(tn)

J
£
SCI-S
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\

< J
et de I'équation (10) pour |'erreur de troncature locale

On a les équation
{ €h+1 — €n

on obtient pour e,

DEMONSTRATION 1
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DEMONSTRATION 111
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METHODES DE RUNGE-KUTTA

- REMARQUE
Méthodes d’intégration numérique

It y(1)
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Considérons un systéeme non homogéne d’équations différentielles ordinaires
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Du point de vue numérique, les méthodes introduites dans le cas scalaire peuvent
étre étendues aux systémes d'équations différentielles. Par exemple, le schéma
d'Euler progressif devient :
Uotp 7Y Au, + b, pour n=0,1,2,..., N, — 1
i h AT (18)
Uo = Yo ,
tandis que la méthode d'Euler rétrograde (?7) devient
Upyls —
o © = Aupy +boyy pour n=0,1,2, | = .
h (19)
L Uo = Yo,
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. EXEMPLE
_ Le systeme linéaire

L yi(t) = —2yn(t) +ya(t) +e* |
{yé(t) = 3yi(t) — 4ys(t) @y}

~ avec les conditions initiales y1(0) = y10, ¥2(0) = y20, s'écrit sous la forme (15), ou |

| yi(t) -2 1 et Y10 ——
t = s A = s b t = 5 == .
=Pl A= ] e[ e T
— Soit h > 0 le pas de temps. Pour n € N, on pose t, = nh, b, = b(t,) et on —
— désigne par u, une valeur approchée de la solution exacte y(t,) au temps t,. -
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T T e T e e T e T e e e T T
 Les schémas d'Euler progressif, d'Euler rétrograde et de Crank-Nicolson pour o
— approcher la solution y(t) de (19) s'écrivent respectivement : -

- Euler progressif Upt1 = Uy + hAu, + hb, = (I + hA)u, + hb, I
: Up = Yo ::
* I~ hA)u,.1 = u, + hb, 1
- Euler rétrograde ( JUnt1 = Un + hbpig I
— Uo = Yo 1
- Crank-Nicolson {(I — 5AUn1 = (I + 3A)un + 5 (b + biya) il
— Uo = Yo 1

| nZO,l,...,Nh—l B

Il faut remarquer qu'a chaque étape des méthodes de ER et CN, il faut résoudre
" un systéme linéaire avec pour matrice | — hA et | — gA respectivement (il s'agit
~de méthodes implicites).
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— La méthode d'Euler progressive est explicite (il n'y a pas de systéme linéaire a —
~ résoudre), par contre elle est seulement conditionellement stable. Dans notre cas, |
~ les valeurs propres de A sont A\; = —1 et A\, = —5; elles sont bien négatives,
~ donc la condition (18) sur h s'applique : comme p(A) = 5, cette condition de
- stabilité est

L h< h=-. N
5
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— Comportement du schéma d'Euler progressif pour le systéme (19) avec condition |
~initiale yo = [1,1]" et différentes valeurs du pas de temps h.

1.2

7 0.8

0.6

Un,2

0.4

I 0.2

-0.2
-0.2
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 EXEMPLE
 Le systéme non-linéaire

- n(t) = =2(t) +sin(y2(t)) + e “sin(t), 1
— ya(t) = cos(y(t)) — 4ya(t), 22)|

— avec les conditions initiales y1(0) = y10, y2(0) = y»0, s'écrit sous la forme ——

— y'(t) = F(t,y(1)), T

- ou o
— —2y1(t) + sin(y»(t)) + e *sin(t ——
F(t,y(t)) — yl( ) (}/2(_))4 ( ) ) |

cos(y1(t)) — 4y2(t)
~ Soit h > 0 le pas de temps. Pour n € N, on pose t, = nh et on désigne par u,
~ une valeur approchée de la solution exacte y(t,) au temps t,. 1
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~ Les schémas d'Euler progressif, rétrograde et de Crank-Nicolson pour approcher
~ la solution y(t) de (20) s'écrivent respectivement :

. Un :un+hF thyUn),
Euler progressif i ( )
— Uo = Yo, ——

Euler rétrograde Ups1 + AF(tni1, Ung1) = Up, 1B

| Uo = Yo, 1

| h h N

I i Unt1 — 3F(tns1,u =u, + 7F(t,,u A
Crank-Nicolson mtl T2 (tn41, Unt1) nT 3 (tn, Un),

B Up = Yo- ol

n=0,1,... Ny—1

Il faut remarquer qu'a chaque étape des méthodes d'Euler rétrograde et
 Crank-Nicolson, il faut résoudre un systéme non-linéaire. S
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~ La méthode d'Euler progressive est explicite (pas de systéme a résoudre) mais,
 par contre, elle est seulement conditionellement stable. Dans notre cas, le
 jacobien de F est donné par

| J oF | =2 cosy S
| CQy  |—sinyr —4,

- et ses valeurs propres sont A\;, = —3 £ /1 — sin y; cos y»; elles sont bien -
~ négatives, en particulier —3 —v2 < Ao < -3+v2<0,etp(J)<3+v2. La|
— condition de stabilité est ainsi : ——

~ 0.453. |

2
I h < h= ——, satisfaite par exemplesi h< ———
p p 3 \/5 |
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~ Comportement du schéma d’Euler progressif pour le systéme (20) avec condition
~ initiale yo = [1,1]" : h=0.1 (bleu) et h = 0.8h (rouge). Si on prend h > h, on

 peut observer I'instabilité de la méthode.
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