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EXEMPLES ET MOTIVATIONS

EXEMPLE

(Biologie) Considérons une population composée de y animaux dans un milieu
ambiant ou au plus B animaux peuvent coexister. On suppose qu'initialement la
population soit de yy < B et que le facteur de croissance des animaux soit égal a
une constante C. Dans ce cas, |'évolution de la population au cours du temps
sera proportionnelle au nombre d'animaux existants, sans toutefois que ce
nombre ne dépasse la limite B. Cela peut s'exprimer a travers |'équation

O =60 (1-2). t>0. 0 -n

La résolution de cette équation permet de trouver |'évolution de la population au
cours du temps.
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MODELE DE LOTKA-VOLTERRA

On considére maintenant deux populations composées de y; et de y, individus,
ol y; est le nombre de proies et y» le nombre de prédateurs. L'évolution des deux
populations est alors décrite par le systéme d'équations différentielles

/(1) — ’ (1)
y2(t) = = Goya(t) [1 = bays(t) — chya(2)].-

o (; et G, sont les facteurs de croissance des deux populations,
e d, et d, tiennent compte de |'intéraction entre les deux populations,
@ by et b, sont liées a la nourriture disponible pour chaque population

{)’{(t) = Guy(t) [1 — buyi(t) — daya(t)]
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INTRODUCTION

Soit | = (tp, T) C R, un intervalle, f : Ry x | — R une fonction continue et
yo € R donné. On cherche une fonction y,

y + =R
t > y(t)

qui satisfait le probléme suivant, appelé probléme de Cauchy :

(g =rlere) e )

y(to) = Yo
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EXEMPLES I

@ Un probléme de Cauchy peut étre linéaire, comme par exemple :
{ y'(t)=3y(t)—3t sit>0
y(0) =1
pour lequel f(t,v) = 3v — 3t et dont la solution est
y(t)=(1-1/3)e¥ +t+1/3.
@ On peut aussi avoir des problémes non-linéaires, comme :
{ y'(t) = Yy(t) sit>0
y(0) =0

= \/_ Ce probléeme admet les trois solutions suivantes :

8t3/27, y(t) = —\/863/27.

S. DEeparis, SCI-SB-SC-EPFL



ODEs
0000®e00000000000

EXEMPLES II

@ Le probléme suivant :
{ y(t)=1+y?(t) sit>0
y(0)=0

admet comme solution la fonction y(t) = tan(t) avec 0 < t < 7,
c'est-a-dire une solution locale.
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EXEMPLES II1

@ Méme si un probléme est linéaire, il peut étre instable (numériquement mal

posé).
{ y'(t)=3y(t)—3t sit>0 3)
y(0)=C
La solution analytique de ce probleme est y(t) = (C — 3)e¥ +t + 3.
e Pour C; = % on a donc yy(t) =t + 3.

1 1
o Pour G =3 +¢ onay(t)=ce* +t+3.
Une erreur de ¢ sur la donnée initiale se propage exponentiellement dans le

temps. Par exemple, pour ¢ = 107% et t = 10, on a une erreur de I'ordre de
10°.
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THEOREME (DE CAUCHY-LIPSCHITZ, PROPOSITION 7.1 DU LIVRE)
Si la fonction f(t,y) est
1. continue par rapport a ses deux variables;

2. lipschitzienne par rapport a sa deuxiéme variable, c'est-a-dire qu'il existe une
constante positive L (appelée constante de Lipschitz) telle que

1f(t,y1) — f(t,y2)| < Lly1 —yo| Yy, 2 €R, Vtel, (4)

Alors la solution y = y(t) du probléme de Cauchy (2) existe, est unique et
appartient 3 C(1).

Si f est différentiable par rapport & y, on peut remplacer la deuxiéme condition

par
of (t
= sup ( ,y)‘ < 00

yeR,tel

dy
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EXEMPLE

On considére le probleme (5) et on vérifie qu'il admet une solution unique et
globale.
Dans ce cas, f(t,v) =3v —3tetona:

1£(t,y1) — f(t,y2)] = [3y1 — 3t — (3y2 — 3t)| = [3y1 — 3y| < 3|y1 — yo
et donc
|f(t>}’1)_f(ta)/2)| SL|y1_y2’ vy1>y2€]R7 \V/t>07 avec L:3

Ainsi, f satisfait les hypothéses du théoréme 1 et on peut affirmer que le
probléme (5) admet une solution globale et unique.
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METHODES DES DIFFERENCES FINIES POUR

L’APPROXIMATION DU PROBLEME DE CAUCHY

Soient 0 =ty < t; <...<t, < thy1 < ... une suite de nombres réels
équirépartis et h = t,,1 — t, le pas de temps. On notera par :

u, une approximation de  y(t,).
Dans le probléme de Cauchy (2), pour t = t,, on a
Y (ta) = f(tn, y(tn))-

On veut alors approcher la dérivée y'(t,) au point t,. Cela se fait en utilisant des
schémas de dérivation numérique.
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Schéma d'Euler explicite ou progressif

Up = Yo

Schéma d’Euler implicite ou rétrograde

Upt1 — Up
h
o = Yo

= f(tpr1, Unt1) pour n=0,1,2...,N,—1
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La méthode de Heun :

n — Up 1
u+1h u :E[f(tn,un)—I—f(tn+1,u,,+hf(t,,,u,,)>] pour n=20,1,2..., N, —1

Up = Yo
Crank-Nicolson

n — Yn 1
—LI +1h u = 5 |:f(tn7 Un) + f(tn+17 Un+1):| pour n = 07 172 o Nh -1

Up = Yo
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Schéma du point milieu

o = Yo
u; 4 déterminer
BDF 2

3UnJrl - 4U,, + Up1
2h

= f(tps1, Unt1) pour n=1,2...,N,—1

o = Yo

u; & déterminer
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EXEMPLE
On considére I'équation différentielle suivante

y'(t)=—ty*(t), t>0

y(0) =2
On veut résoudre cette équation avec les méthodes d'Euler progressive et Euler
rétrograde, dans I'intervalle [0, 4] avec N}, = 20 sous-intervalles, ce qui équivaut a
un pas de temps h = 0.2 et donc a approcher la solution exacte y(t,) aux

instants t, = nh, n=0,1,...20 (donc t, = 0.2,0.4,0.6,...) par une solution
numérique up,.

f = lambda t,x : —tkxk*2
y0 = 2; tspan=[0, 4]
Nh = 20

t_EP, y_EP = forwardEuler(f, tspan, y®, Nh)
t_ER, y_ER = backwardEuler(f, tspan, y®, Nh)
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Comparaison entre la solution exacte et celles obtenues par les méthodes d'Euler
progressive et rétrograde.
y (M) = -ty

o K9 T T T

1.81 \ - - sol-ex B
\ —e— Euler prog.
1.6[ N —=— Euler retr |

0.8- b

0.41 b
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EXPLICITE OU IMPLICITE

REMARQUE

o Le schéma d’'Euler progressif est un schéma explicite car il permet de
calculer u, 1 en fonction de u, explicitement :

(EP) Upy1 = Uy + hf(tn, up).

o Le schéma d’Euler rétrograde est un schéma implicite car u, est défini
implicitement en fonction de u, :

(ER) Un+1 = Up -+ hf(tn+17 U,H,]_).
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En général, pour le schéma d'Euler rétrograde, il faut résoudre une équation
non-linéaire & chaque pas de temps.
Méthode du point fixe : Notons que (ER) est équivalent a un probléme de
point fixe avec

Upy1 = ¢(un+1) = Up + hf(thrla un+1)

On peut résoudre ce probléme grace aux itérations suivantes
uptl = o(uky), k=0,1,2,...
Méthode de Newton : A partir de I'équation :
F(Un+1) = Upty1 — ¢(Un+1) =0,

on utilise les itérations suivantes :

F(uk.,)) F(uk.))
k+1 __  k n+1) _  k n+1 o
Up{y = Upyq — Fi(uk ) = Up1 — T(Ukﬂ)? k=0,1,2,...

- ko
Dans les deux cas, on a lim_oc Uy = Upy1.
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Quelles méthodes sont implicites ?

@ Euler Progressive
@ Euler Retrograde

@ Heun

@ Crank Nicolson

@ Point milieu

@ BDF 2

—un+1h_un == f(tr” Un)

5= = f(ts1, Una)

un+—1h__“n — % [f(tm Un) + f(tn+17 u, + hf(tn, Un))}
ettt — £ (tr,tun) + F(tns1, Uni)|

bt f(1, )

3f n —4f n JFf n
(xnt1) 2(/7X JHF(ni1) f(tot1, Uns1)
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