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ODEs

Exemples et motivations

SEE

(Biologie) Considérons une population composée de y animaux dans un milieu
ambiant o0 au plus B animaux peuvent coexister. On suppose qu'initialement la
population soit de yy < B et que le facteur de croissance des animaux soit égal
a une constante C. Dans ce cas, |'évolution de la population au cours du temps
sera proportionnelle au nombre d'animaux existants, sans toutefois que ce
nombre ne dépasse la limite B. Cela peut s'exprimer a travers |'équation

/0 =cu) (1- %) £>0. O =

La résolution de cette équation permet de trouver |'évolution de la population au
cours du temps.
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ODEs

modéle de Lotka-Volterra

On considére maintenant deux populations composées de y; et de ys individus,
ol 1, est le nombre de proies et y5 le nombre de prédateurs. L'évolution des deux
populations est alors décrite par le systéme d'équations différentielles

(1)

yi(t) = Cin (t) [1 - blyl(t) - dng(t)] )
Ys(t) = —Caya(t) [1 — baya(t) — dayn(t)] -

m (4 et Cy sont les facteurs de croissance des deux populations,
m d; et d, tiennent compte de |'intéraction entre les deux populations,
m b, et by sont liées a la nourriture disponible pour chaque population

Lo\
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ODEs

Introduction

Soit I = (to,T) C R un intervalle, f: R x I — R, (t,x) — f(t,x) une fonction
continue et yo € R donné. On cherche une fonction ,

y + I —-R
t—y(t)

qui satisfait le probléme suivant, appelé probléme de Cauchy :

"(t) = f(t,y(t)) Vtel
{ o) =10 2)
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ODEs

Exemples |

m Un probléme de Cauchy peut étre linéaire, comme par exemple :
{ y'(t)=3y(t) =3t sit>0
y(0) =1
pour lequel f(t,z) = 3z — 3t et dont la solution est
y(t) = (1—-1/3)e¥ +t+1/3.
m On peut aussi avoir des problémes non-linéaires, comme :
{ y(t)=ylt) sit>0
y(0) =0
avec f(t,x) = /x. Ce probléme admet les trois solutions suivantes :

y(t) = 0, y(t) = /SBJ27, y(t) = —/363/27.
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ODEs

Exemples |l

m Le probléme suivant :

{ y(t)=1+y*t) sit>0
y(0) =0

admet comme solution la fonction y(t) = tan(t) avec 0 <t < 7, c’est-a-dire
une solution locale.
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ODEs

Exemples Il

m Mé&me si un probléme est linéaire, il peut étre instable (numériquement mal
posé).

{ y'(t)=3y(t) =3t sit>0
y(0) =C
La solution analytique de ce probleme est y(t) = (C' — )e* + ¢ + 3.
m Pour C; = £, onadonc y(t) =t + 3.
m Pour Cy :%—FE, on a ya(t) :ee?’t—l—t—l—%.
Une erreur de € sur la donnée initiale se propage exponentiellement dans le

temps. Par exemple, pour ¢ = 1076 et t = 10, on a une erreur de |'ordre de
107.
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Théoréeme de Cauchy-Lipschitz, simplifié

Théoreme (de Cauchy-Lipschitz, proposition 7.1 du livre)

Si la fonction f(t,x) est
1. Continue par rapport a ses deux variables ;

2. La dérivée partielle par rapport a x existe et est uniformément bornée,
c'est-a-dire qu'il existe une constante positive An.x telle que

of(t,x)

‘— <MmaxVZ ER,tE T
ox

Alors la solution y(t) du probléme de Cauchy existe, est unique et appartient a

LI,
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ODEs

EE

On considére le probleme (5) et on vérifie qu'il admet une solution unique et

globale :
Dans ce cas, f(t,x) = 3z — 3t. f est continue et la dérivée partielle en = est
o(t3) _,
or

Ici on peut poser \.x = 3. Ainsi, f satisfait les hypothéses du théoréme 1 et on
peut affirmer que le probléme (5) admet une solution globale et unique.
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ODEs

Perturbations |

Que se passe-t-il en cas de perturbations du probleme de Cauchy suivant,

{ y(t) = f(t,y(t)) sitel o { t) = f(t,2(t)) sitel
y(0) = yo 2(0)=yo+p

pour un p € R petit?
On consideére I'erreur e(t) = z(t) — y(t). Alors e(0) = p et, par Taylor, on obtient

é(t) = 7(t,20) ~ 7(t,(0) = LET o) — yay) = LG

Par exemple, si f(t,z) = Az + b(t), alors é(t) = Ae(t), dont la solution est
e(t) = pe.

S. Deparis, SCI-SB-SC-EPFL EDO 10 / 65



ODEs

Perturbations ||

Si A =0, I'erreur e(t) du a la perturbation p est constant.

Si A > 0, alors e(t) est croissant de maniére exponentielle.

Si A <0, alors e(t) est decroissant de maniére exponentielle. On dit que la
solution analytique du probléme de Cauchy est stable par rapport au
perturbations.

Nous sommes intéressé au cas ou la solution analytique est unique et stable par

rapport aux perturbations. Ceci est le cas s'ils existent A\ €t Amin positifs tels
que

of(t,x)

< —Apin <0 Vee RVtel
ox

- )\max =
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ODEs

Méthodes des différences finies pour |'approximation du
probléme de Cauchy

Soient tg < t; < ... <t, <t,y1 <...une suite de nombres réels équirépartis et
h =t,y1 —t, le pas de temps. On notera par :

un,  une approximation de  y(t,).
Dans le probléme de Cauchy (2), pour t =t,, on a

y/(tn) = f(tn, y(tn)).

On veut alors approcher la dérivée y/(t,,) au point ¢,. Cela se fait en utilisant des
schémas de dérivation numérique.
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ODEs

Schéma d'Euler explicite ou progressif

h
Up = Yo

{ T = f(tun)  pour n=0,1,2..., N, — 1

Schéma d’Euler implicite ou rétrograde

h

{ un+1_un:f(tn+lyun+l) pour n:O7172""Nh_1
Up = Yo
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ODEs

La méthode de Heun :

u?‘b+1 - un ]_

h = §[f(tn,un) +f(tn+1,un+hf(tn,un))] pour n=0,1,2..., N, -

Uo = Yo

Crank-Nicolson

n - Wn 1
U +1h Un _ 3 [f(tn,un) + f(tn+1,un+1)] pour n=0,1,2...,N, — 1

Uo = Yo
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ODEs

Schéma du point milieu

M:f@mun) pour n=1,2..., N, —1
2h
Uy = Yo

u; & déterminer

BDF 2

Sun—‘rl - 4un + Up—1

2h

= f(tni1, Uns1) pour n=12...,N,—1

Uy = Yo

u; & déterminer
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ODEs

SEE

On considére I'équation différentielle suivante
y'(t) = —ty*(t), t>0
y(0) =2.

On veut résoudre cette équation avec les méthodes d'Euler progressive et Euler
rétrograde, dans l'intervalle [0, 4] avec N}, = 20 sous-intervalles, ce qui équivaut

a un pas de temps h = 0.2 et donc a approcher la solution exacte y(t,,) aux
instants t,, = nh, n =0,1,...20 (donc ¢, = 0.2,0.4,0.6, .. .) par une solution
numeérique u,.

f = lambda t,x : —tkx k%2
y0 = 2; tspan=[0, 4]
Nh = 20

t_EP, y_EP = forwardEuler(f, tspan, y®, Nh)
t_ER, y_ER = backwardEuler(f, tspan, y0®, Nh)
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Comparaison entre la solution
progressive et rétrograde.

ODEs

exacte et celles obtenues par les méthodes d'Euler

y' (@

—ty?

0.61

0.4r

= = sol-ex
—e— Euler prog.
—&— Euler retr
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ODEs

Explicite ou implicite

Remarque

m Le schéma d’Euler progressif est un schéma explicite car il permet de
calculer u,, .1 en fonction de u,, explicitement :

(EP) U1 = Up + B f(tn, un).

m Le schéma d’Euler rétrograde est un schéma implicite car u, 1 est défini
implicitement en fonction de u,, :

(ER) Upt+1 = Up + hf(tn-l—lu un-‘,—l)-
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En général, pour le schéma d'Euler rétrograde, il faut résoudre une équation
non-linéaire & chaque pas de temps.
Méthode du point fixe : Notons que (ER) est équivalent a un probléme de
point fixe avec
Up4+1 = ¢(un+l) = Up + hf(thrla un+1>
On peut résoudre ce probléme grace aux itérations suivantes
k1 ok _

Upy = P(upyy), k=0,1,2,...
Méthode de Newton : A partir de I'équation :

F(tuny1) = tngr — O(Ung1) = 0,

on utilise les itérations suivantes :

S Y F(up ) _ .k _F(“—I;iﬂ) E=0.1.2
1”L+1 77«+1 F,(uf‘kl*l) 1”L+1 ]. - ¢,<u2+1)7 ’ ’ T

. koo
Dans les deux cas, on a limy_,oc Uy, | = Up1.
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Quelles méthodes sont implicites 7

Euler Progressive T = (L, uy)

@ Euler Retrograde St = (b, Unyr)

Heun tagtn — 4 (b, 1)+ f (bt to 1 f (tn, 0n))|
@ Crank Nicolson BotlTBn — %[f(tn,un) + f(tnﬂ,unﬂ)]

Point milieu mrt el = f(tn, un)

BDF 2 Mottt — f(tny1, Unia)
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