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ODEs

Exemples et motivations

Exemple
(Biologie) Considérons une population composée de y animaux dans un milieu
ambiant ou

m au plus B animaux peuvent coexister,

m initialement la population est de yy < B,

m le facteur de croissance des animaux est égal a une constante C,

m
L'évolution de la population au cours du temps peut s'exprimer a travers
I'équation

v =cu) (1-52) 150, v =
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ODEs

modéle de Lotka-Volterra

On considére maintenant deux populations composées de y; et de ys individus,
ol 1, est le nombre de proies et y5 le nombre de prédateurs. L'évolution des deux
populations est alors décrite par le systéme d’'équations différentielles

{yi(t) = Cuyn () [1 = baya () — daya (1)) (1)

Yo(t) = —=Caya(t) [1 = bays(t) — dagn(1)].-

m (4 et Cy sont les facteurs de croissance des deux populations,
m d, et d, tiennent compte de |'intéraction entre les deux populations,
m b, et by sont liées a la nourriture disponible pour chaque population

G N
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Introduction
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ODEs

Exemples |

m Un probléme de Cauchy peut étre linéaire, comme par exemple :
y'(t)=3y(t)—3t sit>0
{ y(0) =1
pour lequel f(t,z) = 3z — 3t et dont la solution est
y(t)=(1—-1/3)e¥ +t+1/3.
m On peut aussi avoir des problémes non-linéaires, comme :

{ y(t)=ylt) sit>0
y(0) =0
avec f(t,x) = /. Ce probléme admet les trois solutions suivantes :

y(t) = 0, y(t) = \/SB/27, y(t) = —/363/27.
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ODEs

Exemples |l

m Le probléme suivant :

y(0) =0

admet comme solution la fonction y(t) = tan(t) avec 0 <t < 7, c’est-a-dire
une solution locale.

{ y(t)=1+9*t) sit>0
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ODEs

Exemples I

m Méme si un probléme est linéaire, il peut étre instable (numériquement mal
posé).

{ y'(t)=3y(t)—3t sit>0
y(0)=C
La solution analytique de ce probléme est y(t) = (C' — 3)e* +t + 3.
m Pour C; = %, onadoncy(t) =t+ 3.
m Pour Cy = 5 +¢ onays(t)=e® +t+ 1.
Une erreur de € sur la donnée initiale se propage exponentiellement dans le

temps. Par exemple, pour ¢ = 107% et £ = 10, on a une erreur de 'ordre de
107.
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ODEs

Théoréeme de Cauchy-Lipschitz, simplifié

Théoreme (de Cauchy-Lipschitz, proposition 7.1 du livre)

Si la fonction f(t,x) est
1. Continue par rapport a ses deux variables ;

2. La dérivée partielle par rapport 3 x existe et est uniformément bornée,
c'est-a-dire qu'il existe une constante positive \., telle que

’M <AmaxVZ ER,E €T
ox

Alors la solution y(t) du probléme de Cauchy existe, est unique et appartient a

CM(1).
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ODEs

Exemple

On considére le probleme (5) et on vérifie qu'il admet une solution unique et

globale :
Dans ce cas, f(t,x) = 3x — 3t. f est continue et la dérivée partielle en x est
or

Ici on peut poser A = 3. Ainsi, f satisfait les hypothéses du théoréme 1 et on
peut affirmer que le probléme (5) admet une solution globale et unique.

S. Deparis, SCI-SB-SC-EPFL Systémes linéaires 9 /22



ODEs

Perturbations |

Que se passe-t-il en cas de perturbations du probléme de Cauchy suivant,

{ y(t) = f(t,y(t)) sitel ot { 2t) = f(t,2(t)) sitel
y(0) = yo 2(0) =yo+ p

pour un p € R petit?
On consideére I'erreur e(t) = z(t) — y(t). Alors e(0) = p et, par Taylor, on obtient

o(t) = 1(t,2(0) — £(t,(0)) = LT gy ) = 2HEDD)

Par exemple, si f(t,2) = A\x + b(t), alors é(t) = Ae(t), dont la solution est
e(t) = pe.

S. Deparis, SCI-SB-SC-EPFL Systémes linéaires 10 / 22



ODEs

Perturbations |

Si A =0, l'erreur e(t) du a la perturbation p est constant.

Si A > 0, alors e(t) est croissant de maniére exponentielle.

Si A <0, alors e(t) est decroissant de maniére exponentielle. On dit que la
solution analytique du probléme de Cauchy est stable par rapport au
perturbations.

Nous sommes intéressé au cas ou la solution analytique est unique et stable par

rapport aux perturbations. Ceci est le cas s'ils existent Ay €t Anin positifs tels
que

_)\maxgwg_Amin<o Vee RVtel
X
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Méthodes des différences finies pour |'approximation du
probléme de Cauchy
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ODEs

La méthode de Heun :

n - Un 1
Untl = Un _ —[f(tn,un) +f<tn+17un+hf(tn,un))] pour n=0,1,2... Nj -

h 2
Uo = Yo
Crank-Nicolson

n - n 1
U —|—1h u = 5 |:f(tn7 un) + f(tn+17un+1)] pour n = 07 ]_7 2... , Nh -1

Uy = Yo
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ODEs

Schéma du point milieu

DL = fltaua)  pour n=1,2... Ny~ 1

Uo = Yo

u; & déterminer

BDF 2

3un+1 - 4un + Up—1
2h
Uo = Yo

= f(tni1, Uns1) pour n=1,2...,N, —1

u; & déterminer
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ODEs

Exemple

On considére I'équation différentielle suivante

y'(t) = —ty?(t), t>0

y(0) =2.
On veut résoudre cette équation avec les méthodes d'Euler progressive et Euler
rétrograde, dans l'intervalle [0, 4] avec N}, = 20 sous-intervalles, ce qui équivaut
a un pas de temps h = 0.2 et donc a approcher la solution exacte y(t,,) aux

instants t,, = nh, n =0,1,...20 (donc t,, = 0.2,0.4,0.6, .. .) par une solution
numeérique u,.

f = lambda t,x : —tkx k%2
y0 = 2; tspan=[0, 4]
Nh = 20

t_EP, y_EP = forwardEuler(f, tspan, y®, Nh)
t_ER, y_ER backwardEuler(f, tspan, y0®, Nh)
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ODEs

Comparaison entre la solution exacte et celles obtenues par les méthodes d'Euler

progressive et rétrograde.
vy = -ty

N
D

~ T T T

1.81 ° - - sol-ex
\ —e— Euler prog.
1.6- N —&— Euler retr

0.8

0.61

0.2r ==
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ODEs

Explicite ou implicite

Remarque

m Le schéma d’Euler progressif est un schéma explicite car il permet de
calculer u,. 1 en fonction de u,, explicitement :

(EP) Unt1 = Up + A f(tn, uy).

m Le schéma d’Euler rétrograde est un schéma implicite car u, | est défini
implicitement en fonction de u,, :

(ER) Up 1 = Up + hf(tn+17 un+1)~
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ODEs

En général, pour le schéma d'Euler rétrograde, il faut résoudre une équation
non-linéaire & chaque pas de temps.
Méthode du point fixe : Notons que (ER) est équivalent a un probléme de
point fixe avec

Upt1 = ¢(un+l) = Up + hf(thrla un+1>

On peut résoudre ce probléme grace aux itérations suivantes
ultl = ¢(ul_ ), k=0,1,2,...
Méthode de Newton : A partir de I'équation :
F(uni1) = tny1 — ¢(tny1) =0,
on utilise les itérations suivantes :

Bl _ Plg) e - ) gy

U n - — Yn - )
i Fl(“’ﬁ-i—l) i 1—¢’(u,’§+1)

. koo
Dans les deux cas, on a limy_,oc Uy, | = Up 1.
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ODEs

Quelles méthodes sont implicites ?

Euler Progressive wbtn = f(tn, un)

B Euler Retrograde Tt = f(tna1, Ung)

Heun it — L f(t,tn) + f (bt + hf b, ) )|
@ Crank Nicolson mebltn — %[f(tn,un) + f(tn+1,un+1)]

Point milieu atl el — f(t,, up)

BDF 2 3un+1fﬁé1;bn+unf1 = f(tn+17 unJrl)
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ODEs

Exercice 2, Série 11

On considére le probléme de Cauchy suivant :

{ y(t)=—ey’(t) tell,3]
y(1) =2

a) Ecrivez la méthode d'Euler rétrograde pour approcher la solution y(t).
b) Réécrivez la méthode d'Euler rétrograde sous la forme
Unp+1 = ¢(un+1; n, ha un)a
ou n, h, u, sont considérés de paramétres, et écrivez le schéma de Newton
pour résoudre cette équation non linéaire.
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Exercice 2, Série 11, solution
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ODEs

Exercice 3, Série 12

On considére la méthode de Crank—Nicolson
Upt1 — Uy 1
B [t ) + S (b)), =01,

Uy = Yo,

h étant le pas de temps, pour approcher la solution du probléme de Cauchy

y'(t) = f(t,y(t), te(0,T),
y(0) = yo.
Soit A < 0 un nombre réel négatif donné. On considére le probléme modéle

) = My(t), t>0,
{ ??j(o) = 17y (3)

dont la solution exacte est y(t) = .

Ecrivez le schéma de Crank—Nicolson pour |I'approximation numérique du
probléme de Cauchy (4).
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Exercice 3, Série 12, solution
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