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Exemples et motivations

Exemple

(Biologie) Considérons une population composée de y animaux dans un milieu
ambiant où

au plus B animaux peuvent coexister,
initialement la population est de y0 ≪ B,
le facteur de croissance des animaux est égal à une constante C,

L’évolution de la population au cours du temps peut s’exprimer à travers
l’équation

y′(t) = Cy(t)

(
1− y(t)

B

)
, t > 0, y(0) = y0.
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modèle de Lotka-Volterra
On considère maintenant deux populations composées de y1 et de y2 individus,
où y1 est le nombre de proies et y2 le nombre de prédateurs. L’évolution des deux
populations est alors décrite par le système d’équations différentielles{

y′1(t) = C1y1(t) [1− b1y1(t)− d2y2(t)] ,

y′2(t) = −C2y2(t) [1− b2y2(t)− d1y1(t)] .
(1)

C1 et C2 sont les facteurs de croissance des deux populations,
d1 et d2 tiennent compte de l’intéraction entre les deux populations,
b1 et b2 sont liées à la nourriture disponible pour chaque population
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Introduction
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Exemples I

Un problème de Cauchy peut être linéaire, comme par exemple :{
y′(t) = 3y(t)− 3t si t > 0
y(0) = 1

pour lequel f(t, x) = 3x− 3t et dont la solution est
y(t) = (1− 1/3)e3t + t+ 1/3.
On peut aussi avoir des problèmes non-linéaires, comme :{

y′(t) = 3
√

y(t) si t > 0
y(0) = 0

avec f(t, x) = 3
√
x. Ce problème admet les trois solutions suivantes :

y(t) = 0, y(t) =
√

8t3/27, y(t) = −
√

8t3/27.
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Exemples II

Le problème suivant :{
y′(t) = 1 + y2(t) si t > 0
y(0) = 0

admet comme solution la fonction y(t) = tan(t) avec 0 < t < π
2
, c’est-à-dire

une solution locale.
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Exemples III

Même si un problème est linéaire, il peut être instable (numériquement mal
posé). {

y′(t) = 3y(t)− 3t si t > 0
y(0) = C

La solution analytique de ce problème est y(t) = (C − 1
3
)e3t + t+ 1

3
.

Pour C1 =
1
3 , on a donc y1(t) = t+ 1

3 .
Pour C2 =

1
3 + ϵ, on a y2(t) = ϵe3t + t+ 1

3 .
Une erreur de ϵ sur la donnée initiale se propage exponentiellement dans le
temps. Par exemple, pour ϵ = 10−6 et t = 10, on a une erreur de l’ordre de
107.

S. Deparis, SCI-SB-SC–EPFL Systèmes linéaires 7 / 22



Systèmes linéaires
ODEs

Théorème de Cauchy-Lipschitz, simplifié

Théorème (de Cauchy-Lipschitz, proposition 7.1 du livre)

Si la fonction f(t, x) est
1. Continue par rapport à ses deux variables ;
2. La dérivée partielle par rapport à x existe et est uniformément bornée,

c’est-à-dire qu’il existe une constante positive λmax telle que∣∣∣∣∂f(t, x)∂x

∣∣∣∣ < λmax ∀x ∈ R, t ∈ I

Alors la solution y(t) du problème de Cauchy existe, est unique et appartient à
C1(I).
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Exemple

On considère le problème (5) et on vérifie qu’il admet une solution unique et
globale :
Dans ce cas, f(t, x) = 3x− 3t. f est continue et la dérivée partielle en x est

∂f(t, x)

∂x
= 3

Ici on peut poser λmax = 3. Ainsi, f satisfait les hypothèses du théorème 1 et on
peut affirmer que le problème (5) admet une solution globale et unique.
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Perturbations I

Que se passe-t-il en cas de perturbations du problème de Cauchy suivant,{
ẏ(t) = f(t, y(t)) si t ∈ I
y(0) = y0

et

{
ż(t) = f(t, z(t)) si t ∈ I
z(0) = y0 + ρ

pour un ρ ∈ R petit ?
On considère l’erreur e(t) = z(t)− y(t). Alors e(0) = ρ et, par Taylor, on obtient

ė(t) = f(t, z(t))− f(t, y(t)) =
∂f(t, η(t))

∂x
(z(t)− y(t)) =

∂f(t, η(t))

∂x
e(t)

Par exemple, si f(t, x) = λx+ b(t), alors ė(t) = λe(t), dont la solution est
e(t) = ρeλt.
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Perturbations II

Si λ = 0, l’erreur e(t) du à la perturbation ρ est constant.
Si λ > 0, alors e(t) est croissant de manière exponentielle.
Si λ < 0, alors e(t) est decroissant de manière exponentielle. On dit que la
solution analytique du problème de Cauchy est stable par rapport au
perturbations.

Nous sommes intéressé au cas où la solution analytique est unique et stable par
rapport aux perturbations. Ceci est le cas s’ils existent λmax et λmin positifs tels
que

−λmax ≤
∂f(t, x)

∂x
≤ −λmin < 0 ∀x ∈ R ∀t ∈ I

S. Deparis, SCI-SB-SC–EPFL Systèmes linéaires 11 / 22



Systèmes linéaires
ODEs

Méthodes des différences finies pour l’approximation du
problème de Cauchy
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La méthode de Heun :
un+1 − un

h
=

1

2

[
f(tn, un) + f

(
tn+1, un + hf(tn, un)

)]
pour n = 0, 1, 2 . . . , Nh − 1

u0 = y0

Crank-Nicolson
un+1 − un

h
=

1

2

[
f(tn, un) + f(tn+1, un+1)

]
pour n = 0, 1, 2 . . . , Nh − 1

u0 = y0
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Schéma du point milieu
un+1 − un−1

2h
= f(tn, un) pour n = 1, 2 . . . , Nh − 1

u0 = y0

u1 à déterminer

BDF 2
3un+1 − 4un + un−1

2h
= f(tn+1, un+1) pour n = 1, 2 . . . , Nh − 1

u0 = y0

u1 à déterminer
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Exemple

On considère l’équation différentielle suivante{
y′(t) = −ty2(t), t > 0

y(0) = 2.

On veut résoudre cette équation avec les méthodes d’Euler progressive et Euler
rétrograde, dans l’intervalle [0, 4] avec Nh = 20 sous-intervalles, ce qui équivaut
à un pas de temps h = 0.2 et donc à approcher la solution exacte y(tn) aux
instants tn = nh, n = 0, 1, . . . 20 (donc tn = 0.2, 0.4, 0.6, . . .) par une solution
numérique un.

f = lambda t,x : −t∗x∗∗2
y0 = 2; tspan=[0, 4]

Nh = 20

t_EP, y_EP = forwardEuler(f, tspan, y0, Nh)

t_ER, y_ER = backwardEuler(f, tspan, y0, Nh)
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Comparaison entre la solution exacte et celles obtenues par les méthodes d’Euler
progressive et rétrograde.
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Explicite ou implicite

Remarque

Le schéma d’Euler progressif est un schéma explicite car il permet de
calculer un+1 en fonction de un explicitement :

(EP) un+1 = un + hf(tn, un).

Le schéma d’Euler rétrograde est un schéma implicite car un+1 est défini
implicitement en fonction de un :

(ER) un+1 = un + hf(tn+1, un+1).
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En général, pour le schéma d’Euler rétrograde, il faut résoudre une équation
non-linéaire à chaque pas de temps.
Méthode du point fixe : Notons que (ER) est équivalent à un problème de
point fixe avec

un+1 = ϕ(un+1) = un + hf(tn+1, un+1)

On peut résoudre ce problème grâce aux itérations suivantes

uk+1
n+1 = ϕ(uk

n+1), k = 0, 1, 2, . . .

Méthode de Newton : À partir de l’équation :

F (un+1) ≡ un+1 − ϕ(un+1) = 0,

on utilise les itérations suivantes :

uk+1
n+1 = uk

n+1 −
F (uk

n+1)

F ′(uk
n+1)

= uk
n+1 −

F (uk
n+1)

1− ϕ′(uk
n+1)

, k = 0, 1, 2, . . .

Dans les deux cas, on a limk→∞ uk
n+1 = un+1.
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Quelles méthodes sont implicites ?
A Euler Progressive un+1−un

h
= f(tn, un)

B Euler Retrograde un+1−un

h
= f(tn+1, un+1)

C Heun un+1−un

h
= 1

2

[
f(tn, un) + f

(
tn+1, un + hf(tn, un)

)]
D Crank Nicolson un+1−un

h
= 1

2

[
f(tn, un) + f(tn+1, un+1)

]
E Point milieu un+1−un−1

2h
= f(tn, un)

F BDF 2 3un+1−4un+un−1

2h
= f(tn+1, un+1)
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Exercice 2, Série 11
On considère le problème de Cauchy suivant :{

y′(t) = −ety2(t) t ∈ [1, 3]
y(1) = 2

a) Ecrivez la méthode d’Euler rétrograde pour approcher la solution y(t).
b) Réécrivez la méthode d’Euler rétrograde sous la forme

un+1 = ϕ(un+1;n, h, un),

où n, h, un sont considérés de paramètres, et écrivez le schéma de Newton
pour résoudre cette équation non linéaire.
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Exercice 2, Série 11, solution
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Exercice 3, Série 12
On considère la méthode de Crank–Nicolson

un+1 − un

h
=

1

2
[f(tn, un) + f(tn+1, un+1)], n = 0, 1, . . .

u0 = y0,
(2)

h étant le pas de temps, pour approcher la solution du problème de Cauchy{
y′(t) = f(t, y(t)), t ∈ (0, T ),

y(0) = y0.

Soit λ < 0 un nombre réel négatif donné. On considère le problème modèle{
y′(t) = λy(t), t > 0,
y(0) = 1,

(3)

dont la solution exacte est y(t) = eλt.
1 Écrivez le schéma de Crank–Nicolson pour l’approximation numérique du

problème de Cauchy (4).
2 Résolvez cette équation et donnez une expression explicite de un en fonction

de h, λ et n.
3 Trouvez en fonction de λ les valeurs de h pour lesquelles la méthode de

Crank–Nicolson appliqué à ce problème est telle que un → 0. On dira que la
méthode de Crank–Nicolson est absolument stable pour ces valeurs de h et
λ.
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Exercice 3, Série 12, solution
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