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Graphiquement
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Erreur de troncature
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Erreur de troncature, (Dy)P

Si f 2 C 2(R), pour x0, x 2 R, alors il existe un ⇠ entre x0 et x tel qu’on a le développement de
Taylor

f (x) = f (x0) + f 0(x0)(x � x0) +
f 00(⇠)

2
(x � x0)

2. (1)

Pour x = x0 + h dans (1), on obtient

f (x0 + h)� f (x0) = f 0(x0)h +
f 00(⇠)

2
h2,

donc la différence finie progressive est donnée par

(Dy)Pn =
f (x0 + h)� f (x0)

h
= f 0(x0) +

h

2
f 00(⇠).

En particulier,
|f 0(x0)� (Dy)Pn |  Ch, où C =

1
2

max
x2[x0,x0+h]

|f 00(x)|.
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Pour x = x0 � h dans (1), on obtient

f (x0 � h)� f (x0) = f 0(x0)(�h) +
f 00(⇠)

2
(�h)2,

donc la différence finie rétrograde est donnée par

(Dy)R =
f (x0)� f (x0 � h)

h
= f 0(x0)�

h

2
f 00(⇠).

En particulier,
|f 0(x0)� (Dy)R |  Ch,

où C = 1

2
maxx2[x0�h,x0] |f 00(x)|.
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