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Convergence : conditions suffisantes
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La méthode de Richardson Préconditionnée
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Richardson : choix de ↵k
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La méthode de Richardson non-préconditionnée

Si P = I et A est symétrique définie positive, on trouve les méthodes :

de Richardson stationnaire si on choisit :

↵k = ↵opt =
2

�min(A) + �max(A)
. (3)

du gradient si :

↵k =
(r(k))T r

(k)

(r(k))TAr(k)
, k � 0. (4)
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Algorithme du Gradient préconditionné

On peut réécrire plus efficacement la méthode du gradient préconditionné de la

manière suivante : soit x
(0)

, poser r
(0) = b � Ax

(0)
, puis pour k � 0,

Pz
(k) = r

(k)

↵k =
(z(k))T r

(k)

(z(k))TAz(k)

x
(k+1) = x

(k) + ↵kz
(k)

r
(k+1) = r

(k) � ↵kAz
(k).
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Convergence de la méth. de Richardson

Considérons tout d’abord les méthodes de Richardson stationnaires ; on a le

résultat de convergence suivant :

Théorème (Cas stationnaire)

On suppose la matrice P inversible et les valeurs propres de P�1A strictement

positives et telles que �max = �1 � �2 � . . . � �n = �min > 0. Alors la méthode

de Richardson stationnaire est convergente si et seulement si 0 < ↵ < 2/�1. De

plus, le rayon spectral de la matrice d’itération R↵ est minimal si ↵ = ↵opt

↵opt =
2

�min + �max
,

avec

⇢opt =
�max � �min

�min + �max
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Dans le cas dynamique, on a un résultat qui permet de choisir de façon optimale

le paramètre d’accélération à chaque étape, si la matrice A est symétrique définie

positive :

Théorème (Cas dynamique)
Si A est symétrique définie positive, le choix optimal de ↵k est donné par

↵k =
(r(k), z(k))

(Az(k), z(k))
, k � 0 (5)

où

z
(k) = P�1

r
(k). (6)
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Pour le cas stationnaire et pour le cas dynamique on peut démontrer que, si A et

P sont symétriques définies positives, la suite {x(k)} donnée par la méthode de

Richardson (stationnaire et dynamique) converge vers x lorsque k ! 1, et

kx(k) � xkA 
✓
K (P�1A)� 1

K (P�1A) + 1

◆k

kx(0) � xkA, k � 0, (7)

où kvkA =
p

vTAv et K (P�1A) est le conditionnement de la matrice P�1A :

K (C ) =

s
�max(CTC )

�min(CTC )
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Remarque. Dans le cas de la méthode du gradient ou de Richardson

stationnaire l’estimation de l’erreur devient

kx(k) � xkA 
✓
K (A)� 1

K (A) + 1

◆k

kx(0) � xkA, k � 0. (8)

Remarque. Si A et P sont symétriques définies positives, on a

K (P�1A) =
�max(P�1A)

�min(P�1A)
.
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La méthode du gradient conjugué

Une méthode encore plus rapide dans le cas où P et A sont symétriques définies

positives est celle du gradient conjugué préconditionné qui s’exprime ainsi :

soit x
(0)

une donnée initiale ; on calcule r
(0) = b � Ax

(0)
, z

(0) = P�1
r
(0)

,

p
(0) = z

(0)
, puis pour k � 0,

↵k =
p
(k)T

r
(k)

p(k)TAp(k)

x
(k+1) = x

(k) + ↵kp
(k)

r
(k+1) = r

(k) � ↵kAp
(k)

Pz
(k+1) = r

(k+1)

�k =
(Ap

(k))
T
z
(k+1)

(Ap(k))Tp(k)

p
(k+1) = z

(k+1) � �kp
(k) .
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Dans ce cas, l’estimation de l’erreur est donnée par

kx(k) � xkA  2ck

1 + c2k
kx(0) � xkA , k � 0 où c =

p
K2(P�1A)� 1p
K2(P�1A) + 1

. (9)
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