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CONVERGENCE : CONDITIONS SUFFISANTES
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LA METHODE DE RICHARDSON PRECONDITIONNEE
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RICHARDSON : CHOIX DE ay
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LA METHODE DE RICHARDSON NON-PRECONDITIONNEE

Si P =1 et A est symétrique définie positive, on trouve les méthodes :

@ de Richardson stationnaire si on choisit :

2
= Qopt = ) 3
Ak “ Pt )\min(A) + )\max(A) ( )
o du gradient si :
(r(0) T (k)
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ALGORITHME DU GRADIENT PRECONDITIONNE

On peut réécrire plus efficacement la méthode du gradient préconditionné de la
maniére suivante : soit x(9), poser r(® = b — Ax(©), puis pour k > 0,

k) _ (k)
(20) (6

ak = -
(z(k))TAz(k)

kD) — () _ o AZ(K).
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CONVERGENCE DE LA METH. DE RICHARDSON

Considérons tout d'abord les méthodes de Richardson stationnaires; on a le
résultat de convergence suivant :

THEOREME (CAS STATIONNAIRE)

On suppose la matrice P inversible et les valeurs propres de P~1A strictement
positives et telles que Xppax = A1 > Mo > ... > N\, = A\pin > 0. Alors la méthode
de Richardson stationnaire est convergente si et seulement si 0 < av < 2/\;. De
plus, le rayon spectral de la matrice d’itération R, est minimal si & = copt

B 2
Slopt = )\min + )\max7
avec
o )\max - /\min
Port )\min + >\max
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Dans le cas dynamique, on a un résultat qui permet de choisir de facon optimale
le paramétre d'accélération a chaque étape, si la matrice A est symétrique définie
positive :

THEOREME (CAS DYNAMIQUE)

Si A est symétrique définie positive, le choix optimal de a est donné par

(r9), 2(4)

(AZ(k),Z(k)), k 2 0 (5)

Qi =

ou

2K = p=1¢(0), (6)
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Pour le cas stationnaire et pour le cas dynamique on peut démontrer que, si A et
P sont symétriques définies positives, la suite {x(¥)} donnée par la méthode de
Richardson (stationnaire et dynamique) converge vers x lorsque k — oo, et

K(PA) — 1

(k) _ < (2 7YV =
I = xlla < (K(P—lA)+1

k
)|M“—wm k>0, (7)

ot ||v|la = VvTAv et K(P~1A) est le conditionnement de la matrice P~1A :

o )\max(CTC)
K(C) B v )\min(CTC)
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Remarque. Dans le cas de la méthode du gradient ou de Richardson
stationnaire |'estimation de |'erreur devient

K(A) —1\*
X — x4 < (W) X —x[la, k>0 (8)

Remarque. Si A et P sont symétriques définies positives, on a

Amax(P71A)

KA = S ay
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LA METHODE DU GRADIENT CONJUGUE

Une méthode encore plus rapide dans le cas ou P et A sont symétriques définies
positives est celle du gradient conjugué préconditionné qui s'exprime ainsi :
soit x(©) une donnée initiale ; on calcule r(® = b — Ax(®), z(0) = p~1£(0),

p(® =z puis pour k > 0,

W T (k)

= ——F——
p(k) Ap(k)

X(k+1) — X(k) _|_ akp(k)

1) — ) — g, Ap(K)

(Apt) T ZUe+D)

e (Apt4) "p0
plitl) — S(k+1) = g (k)
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Dans ce cas, |'estimation de |'erreur est donnée par

k —1 _
X — x4 < 25 [ —xlla, k20 |ob|c= YAPZAZL T,
1+C \/KQ(PflA)—F].
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