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FORMULATION DU PROBLEME

On appelle systeme linéaire d'ordre n (n entier positif), une expression de la forme

ot A = (a;) est une matrice de taille n x n donnée, b = (b;) est un vecteur
colonne également donné et x = (x;) est le vecteur des inconnues du systéme. La
relation précédente équivaut aux n équations

n
g ajxj =bj, i=1,...,n.
=1

La matrice A est dite réguliére (non singuliére) si  det(A) # 0. On a I'existence
et l'unicité de la solution x (pour n'importe quel vecteur b donné) si et seulement
si la matrice associée au systéme linéaire est réguliére.
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METHODES ITERATIVES

Résoudre un systéme linéaire Ax = b par une méthode itérative consiste a
construire une suite de vecteurs x), k > 0, de R" qui converge vers la solution

exacte x, c'est-a-dire :
lim x(¥)
k—00

=X

pour n'importe quelle donnée initiale x(©) € R".
On peut considérer la relation de récurrence suivante :

xD) = Bx g k>0 (1)

ol B est une matrice bien choisie (dépendante de A) et g est un vecteur
(dépendant de A et de b), qui vérifient la relation (de consistance)

x = Bx+g. (2)
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CONSTRUCTION D'UNE METHODS ITERATIVE I
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CONSTRUCTION D'UNE METHODS ITERATIVE II
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LA METHODE DE JACOBI |
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LA METHODE DE JACOBI II
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LA METHODE DE (GAUSS-SEIDEL I
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CRITERES DE CONVERGENCE
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