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Systèmes linéaires

Formulation du problème

On appelle système linéaire d’ordre n (n entier positif), une expression de la forme

Ax = b,

où A = (aij) est une matrice de taille n ⇥ n donnée, b = (bj) est un vecteur

colonne également donné et x = (xj) est le vecteur des inconnues du système. La

relation précédente équivaut aux n équations

nX

j=1

aijxj = bi , i = 1, . . . , n.

La matrice A est dite régulière (non singulière) si det(A) 6= 0. On a l’existence

et l’unicité de la solution x (pour n’importe quel vecteur b donné) si et seulement

si la matrice associée au système linéaire est régulière.
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Systèmes linéaires
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Systèmes linéaires

Méthodes itératives

Résoudre un système linéaire Ax = b par une méthode itérative consiste à

construire une suite de vecteurs x
(k)

, k � 0, de Rn
qui converge vers la solution

exacte x, c’est-à-dire :

lim
k!1

x
(k) = x

pour n’importe quelle donnée initiale x
(0) 2 Rn

.

On peut considérer la relation de récurrence suivante :

x
(k+1) = Bx

(k) + g, k � 0 (1)

où B est une matrice bien choisie (dépendante de A) et g est un vecteur

(dépendant de A et de b), qui vérifient la relation (de consistance)

x = Bx + g. (2)
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Systèmes linéaires

Construction d’une méthods itérative I
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Systèmes linéaires

Construction d’une méthods itérative II
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Systèmes linéaires

La méthode de Jacobi I
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La méthode de Jacobi II
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Systèmes linéaires

La méthode de Gauss-Seidel I
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Systèmes linéaires

Critères de convergence
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