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Systèmes linéaires

Formulation du problème

On appelle système linéaire d’ordre n (n entier positif), une expression de la forme

Ax = b,

où A = (aij) est une matrice de taille n × n donnée, b = (bj) est un vecteur
colonne également donné et x = (xj) est le vecteur des inconnues du système. La
relation précédente équivaut aux n équations

n∑
j=1

aijxj = bi , i = 1, . . . , n.

La matrice A est dite régulière (non singulière) si det(A) 6= 0. On a l’existence
et l’unicité de la solution x (pour n’importe quel vecteur b donné) si et seulement
si la matrice associée au système linéaire est régulière.
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Systèmes linéaires

Méthodes itératives

Résoudre un système linéaire Ax = b par une méthode itérative consiste à
construire une suite de vecteurs x(k), k ≥ 0, de Rn qui converge vers la solution
exacte x, c’est-à-dire :

lim
k→∞

x(k) = x

pour n’importe quelle donnée initiale x(0) ∈ Rn.
On peut considérer la relation de récurrence suivante :

x(k+1) = Bx(k) + g, k ≥ 0 (1)

où B est une matrice bien choisie (dépendante de A) et g est un vecteur
(dépendant de A et de b), qui vérifient la relation (de consistance)

x = Bx+ g. (2)
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Systèmes linéaires

Étant donné que x = A−1b, on obtient g = (I −B)A−1b ; la méthode itérative est
donc complètement définie par la matrice B qui est appellée matrice d’itération.
En définissant l’erreur à l’itération k comme

e(k) = x− x(k),

on obtient la relation de récurrence :

e(k+1) = Be(k) et donc e(k+1) = Bk+1e(0), k = 0, 1, . . . .
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Systèmes linéaires

On peut montrer que limk→∞ e(k) = 0 pour tout e(0) (et donc pour tout x(0)) si
et seulement si

ρ(B) < 1,

où ρ(B) est le rayon spectral de la matrice B , défini par

ρ(B) = max |λi(B)|

et λi(B) sont les valeurs propres de la matrice B .

Plus la valeur de ρ(B) est petite, moins il est nécessaire d’effectuer d’itérations
pour réduire l’erreur initiale d’un facteur donné. Plus précisement :

||e(k+1)|| ≤ ρ(B)||e(k)|| et donc ||e(k+1)|| ≤ ρ(B)k+1||e(0)||, k = 0, 1, . . . .
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Systèmes linéaires

Construction d’une méthode itérative

Une approche générale pour construire une méthode itérative est basée sur la
décomposition de la matrice A :

A = P − (P − A)

où P est une matrice inversible appelée préconditionneur de A.
Alors,

Ax = b ⇔ Px = (P − A)x+ b

qui est de la forme (2) en posant

B = P−1(P − A) = I − P−1A et g = P−1b.
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Systèmes linéaires

On peut définir la méthode itérative correspondante

P(x(k+1) − x(k)) = r(k) k ≥ 0

où r(k) désigne le résidu à l’itération k : r(k) = b− Ax(k)

On peut généraliser cette méthode de la manière suivante :

P(x(k+1) − x(k)) = αkr(k) k ≥ 0 (3)

où αk 6= 0 est un paramètre pour améliorer la convergence de la suite x(k).
La méthode (3) est appelée méthode de Richardson.

La matrice P doit être choisie de telle manière que le coût de la résolution de (3)
soit assez faible. Par exemple, une matrice P diagonale ou triangulaire vérifierait
ce critère.
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La méthode de Jacobi

Si les éléments diagonaux de A sont non nuls, on peut poser

P = D = diag(a11, a22, . . . , ann)

D étant la partie diagonale de A :

Dij =

{
0 si i 6= j

aij si i = j .

La méthode de Jacobi correspond à ce choix avec αk = 1 pout tout k .
On déduit alors :

Dx(k+1) = b− (A− D)x(k) k ≥ 0.
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Par composantes :

x
(k+1)
i =

1
aii

(
bi −

n∑
j=1,j 6=i

aijx
(k)
j

)
, i = 1, . . . , n. (4)

La méthode de Jacobi peut s’écrire sous la forme générale

x(k+1) = Bx(k) + g,

avec
B = BJ = D−1(D − A) = I − D−1A, g = gJ = D−1b.
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Systèmes linéaires

La méthode de Gauss-Seidel

Cette méthode est définie par la formule suivante :

x
(k+1)
i =

1
aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

)
, i = 1, . . . , n.

Cette méthode correspond à (1) avec αk = 1 (∀k ≥ 0) et PGS la matrice
triangulaire inférieure {

Pij = aij si i ≥ j

Pij = 0 si i < j

(partie triangulaire inférieure de A avec la diagonale).
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On peut écrire cette méthode sous la forme (3), avec la matrice d’itération
B = BGS donnée par

BGS = P−1GS (PGS − A)

et
gGS = P−1GS b.
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Systèmes linéaires

Critères de convergence

On a la relation suivante :
Si A est une matrice symétrique définie positive, alors

‖x(k) − x‖
‖x‖

≤ K (A)
‖r(k)‖
‖b‖

. (5)

L’erreur relative à la k-ième itération peut être majorée par le résidu relatif
multiplié par le conditionnement de A.
En particulier, si K (A) ≈ 1, une petite valeur de la norme du résidu correspond à
une petite valeur de la norme de l’erreur ; si K (A)� 1, cette relation peut être
fausse.
On a également une estimation (utilisée si P 6= I ) :

‖x(k) − x‖
‖x‖

≤ K (P−1A)
‖P−1r(k)‖
‖P−1b‖

.
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Convergence : conditions suffisantes

Condition nécessaire et suffisante : ρ(B) < 1.

Si A est une matrice à diagonale dominante stricte par ligne, c’est-à-dire

|aii | >
∑

j=1,...,n;j 6=i

|aij |, i = 1, . . . , n.

alors les méthodes de Jacobi et de Gauss-Seidel sont convergentes
Soit A régulière, tridiagonale et dont les coefficients diagonaux sont tous
non-nuls. Alors les méthodes de Jacobi et de Gauss-Seidel sont toutes les
deux soit divergentes soit convergentes. Dans le deuxième cas,
ρ(BGS) = ρ(BJ)

2

Si A est une matrice symétrique définie positive, alors la méthode de
Gauss-Seidel converge (la méthode de Jacobi pas forcément).
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La méthode de Richardson Préconditionnée

Considérons la méthode itérative générale :

P(x(k+1) − x(k)) = αkr(k), k ≥ 0. (6)

Cette méthode est appelée méthode de Richardson stationnaire préconditionnée si
αk = α (une constante donnée) ; autrement elle est dite méthode de Richardson
dynamique préconditionnée quand αk peut varier au cours des itérations.

La matrice inversible P est appelée préconditionneur de A.
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Richardson : choix de αk

Si A et P sont symétriques définies positives, alors on a deux critères optimaux
pour le choix de αk :
1. Cas stationnaire :

αk = αopt =
2

λmin(P−1A) + λmax(P−1A)
, k ≥ 0,

où λmin et λmax désignent respectivement la plus petite et la plus grande
valeur propre de la matrice P−1A.

2. Cas dynamique :

αk =
(z(k))T r(k)

(z(k))TAz(k)
, k ≥ 0,

où z(k) = P−1r(k) est le résidu préconditionné.
Cette méthode est aussi appelée méthode du gradient préconditionné.
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La méthode de Richardson non-préconditionnée

Si P = I et A est symétrique définie positive, on trouve les méthodes :
de Richardson stationnaire si on choisit :

αk = αopt =
2

λmin(A) + λmax(A)
. (7)

du gradient si :

αk =
(r(k))T r(k)

(r(k))TAr(k)
, k ≥ 0. (8)
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Algorithme du Gradient préconditionné

On peut réécrire plus efficacement la méthode du gradient préconditionné de la
manière suivante : soit x(0), poser r(0) = b− Ax(0), puis pour k ≥ 0,

Pz(k) = r(k)

αk =
(z(k))T r(k)

(z(k))TAz(k)

x(k+1) = x(k) + αkz(k)

r(k+1) = r(k) − αkAz(k).

On observe qu’on doit résoudre un système linéaire pour la matrice P à chaque
itération ; donc P doit être telle que la résolution du système associé soit facile
(c’est-à-dire avec un coût raisonnable). Par exemple, on pourra choisir P
diagonale (comme dans le cas du gradient ou de Richardson stationnaire) ou
triangulaire.
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Convergence de la méth. de Richardson

Considérons tout d’abord les méthodes de Richardson stationnaires ; on a le
résultat de convergence suivant :

Théorème (Cas stationnaire)

On suppose la matrice P inversible et les valeurs propres de P−1A strictement
positives et telles que λmax = λ1 ≥ λ2 ≥ . . . ≥ λn = λmin > 0. Alors la méthode
de Richardson stationnaire est convergente si et seulement si 0 < α < 2/λ1. De
plus, le rayon spectral de la matrice d’itération Rα est minimal si α = αopt

αopt =
2

λmin + λmax
,

avec
ρopt =

λmax − λmin

λmin + λmax
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Dans le cas dynamique, on a un résultat qui permet de choisir de façon optimale
le paramètre d’accélération à chaque étape, si la matrice A est symétrique définie
positive :

Théorème (Cas dynamique)

Si A est symétrique définie positive, le choix optimal de αk est donné par

αk =
(r(k), z(k))
(Az(k), z(k))

, k ≥ 0 (9)

où
z(k) = P−1r(k). (10)
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Si on choisit les coefficients α de manière optimale, pour les cas stationnaire et
dynamique, on peut démontrer que, si A et P sont symétriques définies positives,
la suite {x(k)} donnée par la méthode de Richardson (stationnaire et dynamique)
converge vers x lorsque k →∞, et

‖x(k) − x‖A ≤
(
K (P−1A)− 1
K (P−1A) + 1

)k

‖x(0) − x‖A, k ≥ 0, (11)

où ‖v‖A =
√
vTAv et K (P−1A) est le conditionnement de la matrice P−1A :

K (C ) =

√
λmax(CTC )

λmin(CTC )

S. Deparis, SCI-SB-SC–EPFL Systèmes linéaires 21 / 24



Systèmes linéaires

Remarque. Dans le cas de la méthode du gradient ou de Richardson
stationnaire (sans préconditionneur) l’estimation de l’erreur devient

‖x(k) − x‖A ≤
(
K (A)− 1
K (A) + 1

)k

‖x(0) − x‖A, k ≥ 0. (12)

Remarque. Si A et P sont symétriques définies positives, on a

K (P−1A) =
λmax(P

−1A)

λmin(P−1A)
.

S. Deparis, SCI-SB-SC–EPFL Systèmes linéaires 22 / 24



Systèmes linéaires

La méthode du gradient conjugué

Une méthode encore plus rapide dans le cas où P et A sont symétriques définies
positives est celle du gradient conjugué préconditionné qui s’exprime ainsi :
soit x(0) une donnée initiale ; on calcule r(0) = b− Ax(0), z(0) = P−1r(0),
p(0) = z(0), puis pour k ≥ 0,

αk =
p(k)T r(k)

p(k)TAp(k)
x(k+1) = x(k) + αkp(k)

r(k+1) = r(k) − αkAp(k)

Pz(k+1) = r(k+1)

βk =
(Ap(k))T z(k+1)

(Ap(k))Tp(k)
p(k+1) = z(k+1) − βkp(k) .
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Dans ce cas, l’estimation de l’erreur est donnée par

‖x(k) − x‖A ≤
2ck

1+ c2k
‖x(0) − x‖A , k ≥ 0 où c =

√
K2(P−1A)− 1√
K2(P−1A) + 1

. (13)
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