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FORMULATION DU PROBLEME

On appelle systeme linéaire d'ordre n (n entier positif), une expression de la forme

ot A = (a;) est une matrice de taille n x n donnée, b = (b;) est un vecteur
colonne également donné et x = (x;) est le vecteur des inconnues du systéme. La
relation précédente équivaut aux n équations

n
g ajxj =bj, i=1,...,n.
=1

La matrice A est dite réguliére (non singuliére) si  det(A) # 0. On a I'existence
et l'unicité de la solution x (pour n'importe quel vecteur b donné) si et seulement
si la matrice associée au systéme linéaire est réguliére.
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METHODES ITERATIVES

Résoudre un systéme linéaire Ax = b par une méthode itérative consiste a
construire une suite de vecteurs x¥), k > 0, de R" qui converge vers la solution

exacte x, c'est-a-dire :
lim x(¥)
k—00

=X

pour n'importe quelle donnée initiale x(©) € R".
On peut considérer la relation de récurrence suivante :

xD = Bx g k>0 (1)

ou B est une matrice bien choisie (dépendante de A) et g est un vecteur
(dépendant de A et de b), qui vérifient la relation (de consistance)

x = Bx+g. (2)
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Etant donné que x = A~!b, on obtient g = (I — B)A7'b; la méthode itérative est
donc complétement définie par la matrice B qui est appellée matrice d'itération.
En définissant |'erreur a I'itération k comme

k) — x — x(h).

on obtient la relation de récurrence :

ekt — Be(k) et donc ekt = BF1e®)  k=0,1,....
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On peut montrer que lim,_,., %) = 0 pour tout e(® (et donc pour tout x() si
et seulement si

p(B) <1,

ou p(B) est le rayon spectral de la matrice B, défini par

p(B) = max|\i(B)]

et \;j(B) sont les valeurs propres de la matrice B.

Plus la valeur de p(B) est petite, moins il est nécessaire d'effectuer d'itérations
pour réduire |'erreur initiale d'un facteur donné. Plus précisement :

[ V]| < p(B)[|e!)]| et donc [l V|| < p(B)*[|eV]], k=0,1,....
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CONSTRUCTION D'UNE METHODE ITERATIVE

Une approche générale pour construire une méthode itérative est basée sur la
décomposition de la matrice A :

A=P—(P—A)

oll P est une matrice inversible appelée préconditionneur de A.

Alors,
Ax=b <& Px=(P—-Ax+b

qui est de la forme (2) en posant

B=P ! P-—A)=I—P'A et g=P'b
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On peut définir la méthode itérative correspondante

POHD xRy = () >0

oir r%) désigne le résidu a I'itération k : ‘r(k) =b — Ax(¥)
On peut généraliser cette méthode de la maniére suivante :

P(x D — 50y = q, 0 k>0 (3)

oll ay # 0 est un paramétre pour améliorer la convergence de la suite x(¥).
La méthode (3) est appelée méthode de Richardson.

La matrice P doit étre choisie de telle maniére que le coit de la résolution de (3)
soit assez faible. Par exemple, une matrice P diagonale ou triangulaire vérifierait
ce critere.
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LA METHODE DE JACOBI

Si les éléments diagonaux de A sont non nuls, on peut poser
P=D= diag(all, az, ..., a,,,,)

D étant la partie diagonale de A :

DU:{O si i ]

a;  sii=j.

La méthode de Jacobi correspond a ce choix avec oy = 1 pout tout k.
On déduit alors :

Dx) =p — (A—D)xW Kk >0.
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Par composantes :

1 n
V== h= Y ax) . i=1....n (4)

ajj L=
J=1j#

La méthode de Jacobi peut s'écrire sous la forme générale
xk+D) — By g

avec

B=B,=DYD—-A)=I-D"'A| g=g,=D"b.
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LA METHODE DE (GAUSS-SEIDEL

Cette méthode est définie par la formule suivante :

1 i—1 n
(k+1) _ (k+1) (k) .
X; = b,-—E a;jx; — E ajjX; , I=1,...,n
" j=1 Jj=i+1

Cette méthode correspond a (1) avec oy = 1 (Vk > 0) et Pgs la matrice
triangulaire inférieure

P,--:a,-j SIIZ_]
P; =0 sij<j

(partie triangulaire inférieure de A avec la diagonale).
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On peut écrire cette méthode sous la forme (3), avec la matrice d'itération
B = Bgs donnée par

Bgs = Pgg(Pgs — A)

et
ges = Pzob.
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CRITERES DE CONVERGENCE

On a la relation suivante :
Si A est une matrice symétrique définie positive, alors

I — x|

Il

Ir]

< KA1

L'erreur relative a la k-iéme itération peut étre majorée par le résidu relatif
multiplié par le conditionnement de A.

En particulier, si K(A) ~ 1, une petite valeur de la norme du résidu correspond a
une petite valeur de la norme de I'erreur; si K(A) > 1, cette relation peut étre
fausse.

On a également une estimation (utilisée si P # /) :

X — x|

1]

1P~

< K(P—lA)—”P_1b|| .
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CONVERGENCE : CONDITIONS SUFFISANTES

e Condition nécessaire et suffisante : p(B) < 1.

@ Si A est une matrice a diagonale dominante stricte par ligne, c'est-a-dire

|aii| > Z lajl, i=1,...,n.

J=Lenij#i

alors les méthodes de Jacobi et de Gauss-Seidel sont convergentes

@ Soit A réguliere, tridiagonale et dont les coefficients diagonaux sont tous
non-nuls. Alors les méthodes de Jacobi et de Gauss-Seidel sont toutes les
deux soit divergentes soit convergentes. Dans le deuxiéme cas,
p(Bes) = p(By)?

@ Si A est une matrice symétrique définie positive, alors la méthode de
Gauss-Seidel converge (la méthode de Jacobi pas forcément).
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LA METHODE DE RICHARDSON PRECONDITIONNEE

Considérons la méthode itérative générale :

PO XKy = q, /0 k>0, (6)

Cette méthode est appelée méthode de Richardson stationnaire préconditionnée si
ay = « (une constante donnée) ; autrement elle est dite méthode de Richardson
dynamique préconditionnée quand «y peut varier au cours des itérations.

La matrice inversible P est appelée préconditionneur de A.
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RICHARDSON : CHOIX DE ay

Si A et P sont symétriques définies positives, alors on a deux critéres optimaux
pour le choix de ay :

1. Cas stationnaire :

2
A = aopt - )\min(P_lA) + )\max(P_lA),

k>0,

ol Amin €t Amax désignent respectivement la plus petite et la plus grande
valeur propre de la matrice P71A.

2. Cas dynamique :

()T (k)
(z9) K> 0

U= )T Az =5

ot (K = P~1¢(k) est le résidu préconditionné.
Cette méthode est aussi appelée méthode du gradient préconditionné.
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LA METHODE DE RICHARDSON NON-PRECONDITIONNEE

Si P =1 et A est symétrique définie positive, on trouve les méthodes :

@ de Richardson stationnaire si on choisit :

: ™
Q) = Qgpr = )
g Pt )\min(A) + )\max(A)
e du gradient si :
(r(0) T (k)
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ALGORITHME DU GRADIENT PRECONDITIONNE

On peut réécrire plus efficacement la méthode du gradient préconditionné de la
maniére suivante : soit x(%), poser r(®) = b — Ax(®) puis pour k > 0,

Pk — 0
(2(R)T ¥

Ok = e
(200) T Az

kD) — () _ o AZ(K),

On observe qu'on doit résoudre un systéme linéaire pour la matrice P a chaque
itération ; donc P doit &tre telle que la résolution du systéme associé soit facile
(c'est-a-dire avec un coit raisonnable). Par exemple, on pourra choisir P
diagonale (comme dans le cas du gradient ou de Richardson stationnaire) ou
triangulaire.
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CONVERGENCE DE LA METH. DE RICHARDSON

Considérons tout d'abord les méthodes de Richardson stationnaires; on a le
résultat de convergence suivant :

THEOREME (CAS STATIONNAIRE)

On suppose la matrice P inversible et les valeurs propres de P~1A strictement
positives et telles que Xppax = A1 > Xo > ... > N\, = A\pin > 0. Alors la méthode
de Richardson stationnaire est convergente si et seulement si 0 < av < 2/\;. De
plus, le rayon spectral de la matrice d'itération R, est minimal si & = copt

B 2
Clopt = )\min + )\max7
avec
o )\max - /\min
Port )\min + >\max
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Dans le cas dynamique, on a un résultat qui permet de choisir de facon optimale
le paramétre d'accélération a chaque étape, si la matrice A est symétrique définie
positive :

THEOREME (CAS DYNAMIQUE)

Si A est symétrique définie positive, le choix optimal de a est donné par

(r9), 2(4)

(AZ(k),Z(k)), k 2 0 (9)

Qi =

ou

2 = p1p(k), (10)
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Si on choisit les coefficients ov de maniére optimale, pour les cas stationnaire et
dynamique, on peut démontrer que, si A et P sont symétriques définies positives,
la suite {x(K)} donnée par la méthode de Richardson (stationnaire et dynamique)
converge vers x lorsque k — oo, et

K(P1A) -1

k

\M“—MMS(

ot ||v|la = VvT Av et K(P~1A) est le conditionnement de la matrice P71A :
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Remarque. Dans le cas de la méthode du gradient ou de Richardson
stationnaire (sans préconditionneur) I'estimation de I'erreur devient

K(A) -1
K(A)+1

k
X9 — xfla < ( ) IXO —xla k>0, (12)

Remarque. Si A et P sont symétriques définies positives, on a

Amax(P71A)

K(P'A) = Non(PTA)
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LA METHODE DU GRADIENT CONJUGUE

Une méthode encore plus rapide dans le cas ou P et A sont symétriques définies
positives est celle du gradient conjugué préconditionné qui s'exprime ainsi :
soit x(® une donnée initiale; on calcule r® = b — Ax(®), 2(0) = p~1,(0),

p(® =z puis pour k > 0,

_pw T (k)

Q= ——F——
p(k) Ap(k)
X(k+1) — X(k) _|_ akp(k)
1) — ) — g, Ap(K)

(Apt) T ZUe+D)

e (Apt4) "p0
plitl) — S(k+1) = g (k)
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Dans ce cas, |'estimation de |'erreur est donnée par

k _1 —
Ix®) — x|[4 < _ 2 IX© — x| k>0 |ol|c="~ Ko(PTA) ~ 1 (13)
A= 14 ek A

 VK(PTA) T
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