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FORMULATION DU PROBLEME

On appelle systeme linéaire d'ordre n (n entier positif), une expression de la forme

ot A = (a;) est une matrice de taille n x n donnée, b = (b;) est un vecteur
colonne également donné et x = (x;) est le vecteur des inconnues du systéme. La
relation précédente équivaut aux n équations

n
g ajxj =bj, i=1,...,n.
=1

La matrice A est dite réguliére (non singuliére) si  det(A) # 0. On a I'existence
et l'unicité de la solution x (pour n'importe quel vecteur b donné) si et seulement
si la matrice associée au systéme linéaire est réguliére.
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METHODES ITERATIVES I

Résoudre un systéme linéaire Ax = b par une méthode itérative consiste a
construire une suite de vecteurs x), k > 0, de R" qui converge vers la solution

exacte x, c'est-a-dire :
lim x()
k—00

=X

pour n'importe quelle donnée initiale x(©) € R".
On peut considérer la relation de récurrence suivante :

xk+D) = By g k>0 (1)

ol B est une matrice bien choisie (dépendante de A) et g est un vecteur
(dépendant de A et de b), qui vérifient la relation (de consistance)

x = Bx+g. (2)
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METHODES ITERATIVES 11

Etant donné que x = A~1b, on obtient g = (/ — B)A~!b; la méthode itérative est
donc complétement définie par la matrice B qui est appellée matrice d'itération.
En définissant |'erreur a I'itération k comme

k) — x — x(9).

on obtient la relation de récurrence :

et — BelW et donc k™M) = Brtle® k=0 1,. ...
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CRITERE DE CONVERGENCE SUFFISANT ET NECESSAIRE

On peut montrer que lim,_,., e*) = 0 pour tout e® (et donc pour tout x(9) si
et seulement si

p(B) <1,

ou p(B) est le rayon spectral de la matrice B, défini par

p(B) = max |\,(B)|

et \;j(B) sont les valeurs propres de la matrice B.

Plus la valeur de p(B) est petite, moins il est nécessaire d'effectuer d'itérations
pour réduire |'erreur initiale d'un facteur donné. Plus précisement :

[V < p(B)[|e)]| et donc ||| < p(B)*[|eV]], k=0,1,....
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CONSTRUCTION D'UNE METHODE ITERATIVE I

Une approche générale pour construire une méthode itérative est basée sur la
décomposition de la matrice A :

A=P—(P-A)
oll P est une matrice inversible appelée préconditionneur de A. Alors,

Ax=b & [P+(A—=P)]lx=b & Px=(P—-Ax+b
& x=PYP—-Ax+P b

qui est de la forme (2) en posant
B=P'(P-A)=I—-P'A et g=P'b.

La méthode itérative est construite en remplagant
Px=(P—A)x+b par Px(+1) = (P — A)x(9) + b
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CONSTRUCTION D'UNE METHODE ITERATIVE 11

Py (k1) — (P - A)X(k) +b e Pxkt) _ py) — b A

On peut définir la méthode itérative correspondante :
Soit x(®©) donné, pour k =0,1,2, ...

P(xKHD) — x(K)) — ()

otr rk) désigne le résidu a I'itération k : |[r) = b — Ax(K)
On peut généraliser cette méthode de la maniére suivante :

P(x) — x(K)) = qur® Kk =0,1,2, ... (3)

oil o # 0 est un paramétre pour améliorer la convergence de la suite x().
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LA METHODE DE RICHARDSON PRECONDITIONNEE

RICHARDSON PRECONDITIONNEE
Soit x(© donné, r® =b — Ax®) pour k =0,1,2, ... :

trouvez ¥ tel que  Pz(H) =K (3)

choisissez «

k1) (8) D

x{ + akz(
rh1) = p — Ax(kH1)

La matrice P doit é&tre choisie de telle maniére que

o le cott de la résolution de (3) soit assez faible.

e puisque B = P7}(P — A), P doit étre assez “proche” de A.
Choix simples possibles :

@ «y constant, par exemple a = 1

o P égale a la diagonale D de A

e P égale a la partie trinagulaire inférieure de A (inclu la digonale)
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LA METHODE DE JACOBI

Si les éléments diagonaux de A sont non nuls, on peut poser P, = D, la partie
diagonale de A.
On déduit alors :

Dx) =p — (A—D)xW  k>0.
Par composantes :

k1) _ 1 [ ~ W .
X; _a—ii(b,— Z ajx; ), i=1,...,n (4)

Jj=Lj#i

La méthode de Jacobi peut s'écrire sous la forme générale x(kt1) = Bx(¥) 4 g

avec| B=B;=D Y (D—-A)=1-D"'A |etg=g,=D"h.

S. DEeparis, SCI-SB-SC-EPFL SYSTEMES LINEAIRES



000000000 e000000000000

LA METHODE DE (GAUSS-SEIDEL

Prenond o = 1 et Pgs la partie triangulaire inférieure de A avec la diagonale.

i—1

1
X,-(k+1) =— | b— Z iiX k+1)

aji

j=1 j=i+1

g aU , I=1,...,n.

On peut écrire cette méthode sous la forme (3), avec la matrice d'itération

B = Bgs donnée par

Bes = Pgs(Pes — A)
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CRITERES DE CONVERGENCE

On a la relation suivante :
Si A est une matrice symétrique définie positive, alors

I — x|

Il

Ir]

< KA1

L'erreur relative a la k-iéme itération peut étre majorée par le résidu relatif
multiplié par le conditionnement de A.

En particulier, si K(A) ~ 1, une petite valeur de la norme du résidu correspond a
une petite valeur de la norme de I'erreur; si K(A) > 1, cette relation peut étre
fausse.

On a également une estimation (utilisée si P # /) :

X — x|

1]

1P~

< K(P—lA)—”P_1b|| .
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CONVERGENCE : CONDITIONS SUFFISANTES

e Condition nécessaire et suffisante : p(B) < 1.

@ Si A est une matrice a diagonale dominante stricte par ligne, c'est-a-dire

|aii| > Z lajl, i=1,...,n.

J=Lenij#i

alors les méthodes de Jacobi et de Gauss-Seidel sont convergentes

@ Soit A réguliere, tridiagonale et dont les coefficients diagonaux sont tous
non-nuls. Alors les méthodes de Jacobi et de Gauss-Seidel sont toutes les
deux soit divergentes soit convergentes. Dans le deuxiéme cas,
p(Bes) = p(By)?

@ Si A est une matrice symétrique définie positive, alors la méthode de
Gauss-Seidel converge (la méthode de Jacobi pas forcément).
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LA METHODE DE RICHARDSON PRECONDITIONNEE

RICHARDSON PRECONDITIONNEE
Soit x(© donné, r® =b — Ax®) pour k =0,1,2, ... :

trouvez 29 tel que  PzW =K (3)

choisissez

rkHD) — ) _ o AZ(K),

Cette méthode est appelée

e méthode de Richardson stationnaire préconditionnée si ay = « (une
constante donnée) ;

@ autrement elle est dite méthode de Richardson dynamique préconditionnée
quand «y peut varier au cours des itérations.

La matrice inversible P est appelée préconditionneur de A.
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RICHARDSON : CHOIX DE ay

Si A et P sont symétriques définies positives, alors on a deux critéres optimaux
pour le choix de ay :

1. Cas stationnaire :

2

k=0,1,...
Amin(P_lA)—i_)\max(P_lA)’ 07 9

Q) = Qopt =

ol Amin €t Amax désignent respectivement la plus petite et la plus grande
valeur propre de la matrice P71A.

2. Cas dynamique :

(2(0) T (k)

(Z(k))w, kZO,].,

Ay =

otl zK) = P~1¢(k) est le résidu préconditionné.
Cette méthode est aussi appelée méthode du gradient préconditionné.
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LA METHODE DE RICHARDSON NON-PRECONDITIONNEE

Si P =1 et A est symétrique définie positive, alors les critéres optimaux sont :

@ cas stationnaire :

2
)\min(A) + )\max(A) .

A = Qopt =

@ cas dynamique, appelé méthode du gradient si :

() )

U= )T AR
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ALGORITHME DU GRADIENT PRECONDITIONNE

On peut réécrire plus efficacement la méthode du gradient préconditionné de la
maniére suivante : soit x(9), poser r(® = b — Ax(®, puis pour k = 0,1, ...,

k) _ ((K)
(Z(k))Tr(k)

o =~
(z(k))TAz(k)

etD) () g A0,

On observe qu'on doit résoudre un systéme linéaire pour la matrice P a chaque
itération ; donc P doit étre telle que la résolution du systéme associé soit facile
(c'est-a-dire avec un coit raisonnable). Par exemple, on pourra choisir P
diagonale ou triangulaire.

S. DEeparis, SCI-SB-SC-EPFL

SYSTEMES LINEAIRES



SYSTEMES LINEAIRES
0000000000000000e00000

CONVERGENCE DE LA METH. DE RICHARDSON

Considérons tout d'abord les méthodes de Richardson stationnaires; on a le
résultat de convergence suivant :

THEOREME (CAS STATIONNAIRE)

On suppose la matrice P inversible et les valeurs propres de P~1A strictement
positives et telles que Xppax = A1 > Xo > ... > N\, = A\pin > 0. Alors la méthode
de Richardson stationnaire est convergente si et seulement si 0 < av < 2/\;. De
plus, le rayon spectral de la matrice d'itération R, est minimal si & = copt

B 2
Clopt = )\min + )\max7
avec
o )\max - /\min
Port )\min + >\max
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Dans le cas dynamique, on a un résultat qui permet de choisir de facon optimale
le paramétre d'accélération a chaque étape, si les matrice A et P sont symétrique
définie positives :

THEOREME (CAS DYNAMIQUE)

Si A est symétrique définie positive, le choix optimal de « est donné par

(r9), ()

(A0, 0y =0

Qi =

20 = p1y(k),
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Si on choisit les coefficients ov de maniére optimale, pour les cas stationnaire et
dynamique, on peut démontrer que, si A et P sont symétriques définies positives,
la suite {x(K)} donnée par la méthode de Richardson (stationnaire et dynamique)
converge vers x lorsque k — oo, et

K(P1A) -1

k
0
Kip 1) Ol kz0

\M“—MMS(

ot ||v|la = VvT Av et K(P~A) est le conditionnement de la matrice P71A,

KO- \3erg SR KO =5
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Remarque. Dans le cas de la méthode du gradient ou de Richardson
stationnaire (sans préconditionneur) I'estimation de I'erreur devient

K(A) -1
K(A)+1

k
I ~xla < ) KO = xla k0.

Remarque. Si A et P sont symétriques définies positives, on a

Amax(P71A)

K(P'A) = N (PTA)
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LA METHODE DU GRADIENT CONJUGUE

Une méthode encore plus rapide dans le cas ou P et A sont symétriques définies
positives est celle du gradient conjugué préconditionné qui s'exprime ainsi :
soit x(® une donnée initiale; on calcule r® = b — Ax(®), 2(0) = p~1,(0),

p(® =z puis pour k > 0,

_pw T (k)

Q= ——F——
p(k) Ap(k)
X(k+1) — X(k) _|_ akp(k)
1) — ) — g, Ap(K)

(Apt) T ZUe+D)

e (Apt4) "p0
plitl) — S(k+1) = g (k)
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Dans ce cas, |'estimation de |'erreur est donnée par

X9 — xla < -

2ck

+ c2k

X = x]la,

k>0

VK(PTA) — 1

VKA(PTA) + 1
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