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Systémes linéaires

Convergence : conditions suffisantes

m Condition nécessaire et suffisante : p(B) < 1.

m Si A est une matrice a diagonale dominante stricte par ligne, c'est-a-dire

|aii|> Z |az~j|, 1=1,...,n.

J=1mij

alors les méthodes de Jacobi et de Gauss-Seidel sont convergentes

m Soit A réguliére, tridiagonale et dont les coefficients diagonaux sont tous
non-nuls. Alors les méthodes de Jacobi et de Gauss-Seidel sont toutes les
deux soit divergentes soit convergentes. Dans le deuxiéme cas,
p(Bas) = p(By)*

m Si A est une matrice symétrique définie positive, alors la méthode de
Gauss-Seidel converge (la méthode de Jacobi pas forcément).
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Systémes linéaires

La méthode de Richardson Préconditionnée

Richardson préconditionnée

Soit x(© donné, r® =b — Ax® pour k =0,1,2, ... :

trouvez z*) tel que Pz®) = )
choisissez o,
<) = x®) 4 o 5B
r+D — B _ o) A7),

Cette méthode est appelée
m méthode de Richardson stationnaire préconditionnée si oy, = o (une

constante donnée) ;
m autrement elle est dite méthode de Richardson dynamique préconditionnée

quand «y, peut varier au cours des itérations.

La matrice inversible P est appelée préconditionneur de A.
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Systémes linéaires

Richardson : choix de a;

Si A et P sont symétriques définies positives, alors on a deux critéres optimaux
pour le choix de ay, :

1. Cas stationnaire :

2
)\mzn(P_lA) + )\maz(P_lA>,

O = Qopt =

k=0,1,..

ol A\in €t Anqe désignent respectivement la plus petite et la plus grande
valeur propre de la matrice P71 A.

2. Cas dynamique :

(20T (®)

U= G T Az

k=0,1,..

ot z®) = P~1r(¥) est le résidu préconditionné.
Cette méthode est aussi appelée méthode du gradient préconditionné.
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Systémes linéaires
Convergence de la méth. de Richardson

Considérons tout d'abord les méthodes de Richardson stationnaires:; on a le
résultat de convergence suivant :

Théoréme (Cas stationnaire)

On suppose la matrice P inversible et les valeurs propres de P~1 A strictement
positives et telles que o = AN > Ao > ... > Ay = Ain > 0. Alors la méthode
de Richardson stationnaire est convergente si et seulement si0 < o < 2/\;. De
plus, le rayon spectral de la matrice d'itération R, est minimal si oc = o

_ 2
e o e
avec
. /\maa; B Amzn
Popt )\mm + )\m(m
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Systémes linéaires

Si on choisit les coefficients o de maniére optimale, pour les cas stationnaire et
dynamique, on peut démontrer que, si A et P sont symétriques définies positives,
la suite {x(*} donnée par la méthode de Richardson (stationnaire et dynamique)
converge vers x lorsque k — oo, et

K(P'4) -1

(k) _ < ==_7 -
™ = xla < (K(P—lA) 11

k
)Hﬂ”—ﬂm k>0,

ot ||[v]ja = VvTAv et K(P~'A) est le conditionnement de la matrice P71 A,

max (CTC)

Amax(C7 C) _ Anax(C)
Amin (CTC) n

Ke)= Nouin (€

Si C sdp, K(C)
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Systémes linéaires

Exercice 5 |

On considére le systeme linéaire Ax = b, ou

6 -3 0 1
A=(-3 6 4], b=| 2
0 4 6 -3

Supposons qu'il existe une constante 0 < C' < 1 telle que, pour tout k£ € N,
) x4 < ¥ = .
Démontrez la majoration de I'erreur suivante (remarquez que |'estimation
est indépendante de la solution x) :

k
1-C
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Systémes linéaires

Exercice 5 |l

Suggestion : estimez ||x(*) — x||4 par rapport a ||x® — x|/, en utilisant
I'inégalité triangulaire pour (x(@ —xM) + (x) —x).

On considére la méthode de Richardson stationnaire préconditionné, avec la
matrice de préconditionnement P = D, D étant la partie diagonale de A. La
méthode est-elle convergente ? Calculez le paramétre v, optimal.

Sans calculer la solution exacte et en choisissant comme vecteur initial
x(© = (0,0,0)7, estimez le nombre minimal d'itérations nécessaires pour
avoir une erreur (en norme || - ||4) plus petite que 1075.
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Systémes linéaires

Exercice 5 |1
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Systémes linéaires

Exercice 5, solution
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Systémes linéaires

Exercice 6 |

On considére le systéeme linéaire Ax = b, ou

5 3 0 8
A=1[3 5 0], b=18
0 0 5 5

On considére la méthode de Richardson stationnaire préconditionné, avec
matrice de préconditionnement P = D, D étant la partie diagonale de A.
Pour quel choix de a = const la méthode est-elle convergente ? Calculez le
paramétre a,,; optimal.

On considére maintenant la méthode du gradient préconditionné, toujours
avec le préconditionneur P = D. La méthode est-elle convergente ? Calculez
le facteur C; de réduction de I'erreur tel que

%) x| 4 < Collx® — x|
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Systémes linéaires

Exercice 6 1l

Ici la solution est x* = (1,1,1)%. Calculez la A-norme de x**, ||x°*|| 4.

Estimez le nombre minimal d'itérations nécessaires pour calculer la solution
x du systéeme linéaire donnée par la méthode du gradient préconditionné
avec une tolérance tol = 102 sur I'erreur ||x*) — x|| 4 et une solution de
départ x(® = (0,0,0)”. Ensuite, calculez I'erreur en utilisant le méme
nombre d'itérations avec la méthode du gradient conjugué préconditionné.
L'erreur est-elle plus petite que 1072 ? Pourquoi ?
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Systémes linéaires

Exercice 6 |l
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Systémes linéaires

Exercice 6, solution
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Systémes linéaires

Exercice 7 |

On considére le systéme Ax = b ou :

a 1/2 0 B+1
A= a—=2 1 0 |, b = 0
0 0 B v/2

Sans calculer les matrices d'itération, donner une condition suffisante sur le
paramétres o € R, § € R, et v € R pour que les méthodes de Gauss—Seidel
et de Jacobi soient convergentes.

Calculer les matrices d'itération B et Bgg des méthodes de Jacobi et
Gauss—Seidel respectivement. Etablir pour quelles valeurs de a et 3 les
méthodes sont convergentes et indiquer quel est le rapport entre leurs
vitesses de convergence.
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Systémes linéaires

Exercice 7 |l

Pour quelles valeurs des paramétres o € R, g € R, et v € R pourrait-on
appliquer au systéme linéaire Ax = b la méthode de Richardson
stationnaire 7 Dans le cas ot o = 3, quel est le choix optimal du paramétre
d'accéleration ? En utilisant les méme paramétres, déterminer le facteur de
réduction de I'erreur correspondant, c'est a dire la constante C' > 0 t.q.

Ix) = xlJ4 < CHXO — x4, Wk >0

On veut résoudre le systéme linéaire par une méthode directe : quelle
factorisation de la matrice A envisageriez-vous ? Justifier votre réponse.

On pose a =0, 8 =1, et v = 2. Calculer la factorisation de la matrice A et
résoudre le systéme linéaire Ax = b.
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Systémes linéaires

Exercice 7 |l
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Systémes linéaires

Exercice 7, solution
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Systémes linéaires

Méthode du gradient préconditionné |

Pk — )
(2))Tp(0)

(20T Az®)

x =x® 4+ a;2!
rHD = (B _ o) A7),

ap =

k+1) k)
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Systémes linéaires

Méthode du gradient préconditionné ||
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Systémes linéaires

Analyse d'un exemple

Exemple

Considérons le systéme linéaire suivant :

2.171 + 29 = 1
{ r1+31r3 =0 (1)
. 2 1 L. e .. .
dont la matrice est A = 1 3) A est symétrique définie positive. La solution

du systeme est x; = 3/5 = 0.6 et o = —1/5 = —0.2.
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Systémes linéaires

Etude préliminaire de convergence

Considérons la matrice associée au systéme : A = (_21
Selon des critéres suffisants connus, on a que

Jacobi converge

B Gauss-Seidel converge

p(Bgs) = p(Bj)?

B La méthode du gradient converge

La méthode du gradient conjugué converge

On ne peut rien affirmer
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Systémes linéaires

Etude préliminaire de convergence

m A est une matrice a diagonale dominante stricte par ligne. Alors, les
méthodes de Jacobi et de Gauss-Seidel convergent.

m Le point précédent nous informe que les méthodes de Jacobi et de
Gauss-Seidel convergent dans ce cas, alors A est réguliére, tridiagonale et
avec les coefficients diagonaux non-nuls, on a p(Bgs) = p(By)?. Donc, on
s'attend a ce que la méthode de Gauss-Seidel converge plus rapidement que
celle de Jacobi.

m A est symétrique définie positive, donc les méthodes du gradient
préconditionné et du gradient conjugué préconditionné convergent. En plus,
par construction de la méthode, on s'attend a ce que la méthode du
gradient conjugué preconditionné converge plus vite que celle du gradient
préconditionné.
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Systémes linéaires

|
On veut approcher la solution par une méthode itérative en partant de

On voit que

et

S. Deparis, SCI-SB-SC-EPFL
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Systémes linéaires

Méthode de Jacobi

x*D = B x® f g k>0 ouB;=I-D'Aetg;=D"'b.

e
e=(5 1) ()= ()

et p(By) = mazx|\;(By)| = max(abs(eig(B,))) = 0.4082.
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Systémes linéaires

|
Pour k = 0 (1ére itérée) on trouve :

o -1
X = Bx® 4 g, = (_ 02> <

On remarque que

N = =
~_
e
N\
O
~_
Il
VRS
| =
W=
~~
X
/|\
o o
W b
w
o ot
w
N~

W=

0.8333
) =b — Ax = ( e ) et lr], = 1.1211.
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Systémes linéaires

Méthode de Gauss-Seidel

x*+) = Baox™ 4 ggg, k>0, ot Bgs=(D—E)"YD—-FE—A)

Dans ce cas p(Bgs) = max|\;(Bgs)| = max(abs(eig(Bgs))) = 0.1667.
On vérifie que p(Bgs) = p(By)2.
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Systémes linéaires

Pour k = 0 (1ére itérée) on trouve :

1 1 1
et (1) () (3)- (1)~ ()
X GsX'’ + gas + ~ .
0 %t /\3 —3 -+ —0.0833

On a

£ b — Ax® — (0'58333) et [tV = 0.5833.
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Systémes linéaires

Méthode du gradient préconditionné avec

1 2 1 1
0 —p— 0) — _
On pose r b — Ax (0) (1 3> (%

Pour k=0, on a :

=D

()T 7
(z®)T Az — 107

0.4603
1) _ xO 4 g 50 —
= (—0.0997)

0.1791
(1) — 0 _ ) — M, =
r r apAz (—0.1612> et ||r'" |2 = 0.2410.

g =
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Systémes linéaires

|
Méthode du gradient conjugué préconditionné avec P = D
On pose r® =b — Ax® 2O = P11 et pO = 2O Pour k=0, on a:

(POYTEO)  (2©)T©)
W= PO)T AP ~ (20T Az0

r® = 1O _ 4 Ap© = £ _ 4 A7)

On voit que la premiére itérée x(1) coincide avec celle obtenue par la méthode du
gradient préconditionné.
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Systémes linéaires

|
Puis, on termine la premiére itération de la méthode du gradient conjugué
préconditionné :

0.0896
1 _ . 1) _ p-1.(1) _
Pz\" =r & oz =P rY = <_0.0537)

(ApOTZD)  (Az©)TzD)

Po = (ApOVTAp® — (AZ®)T50 — —0.0077

0.0838
@ — @ _ 0 — @) _ 0) —
p =z /80p z /BOZ <_00602) .
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Systémes linéaires

Si, maintenant, on calcule la deuxiéme itérée x? (k = 1) en utilisant ces quatre

méthodes, on trouve :

Méthode x(?) r® [FRIE
A L G T
Gauss-Seidel (—00%;56) (0'0372) 0.0972
e [(Som) | (0| oo
PCG <8‘gg%%%) (:8:;;;2) 10718 | 4.4755 - 10716
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Systémes linéaires

Comportement de I'erreur relative pour différentes méthodes itératives appliquées
au systéme (1) :

10° :
— Jacobi
- oo~ Gauss-Seidel
: NG - - Grad.
i SO ‘=~ Grad. conj.
- ~
10—5 || s\;,,/ .
i N
= 1 ~
0 1 AN
S 1 AN
x - ~
= 107" ! S
= ! S
AI 1 h
éx ! \\\
= 1 \\
1 AN
1 ~
1071 1 So i
' S=
1
10720 L L L
0 5 10 15

20
k
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Systémes linéaires

Un autre exemple

On considére maintenant le systéme

2$1+5L’2 =1
—X1 —|—3l‘2 =0

dont la solution est x; = 3/7, zo = 1/7.
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Systémes linéaires

Etude préliminaire de convergence

Considérons la matrice associée au systéme : A = (_21
Selon des critéres suffisants connus, on a que

Jacobi converge

B Gauss-Seidel converge

p(Bgs) = p(Bj)?

B La méthode du gradient converge

La méthode du gradient conjugué converge

On ne peut rien affirmer
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Systémes linéaires

Etude préliminaire de convergence

. : . 2 1
Considérons la matrice associée au systéme : A = (_1 3>.

m A est une matrice a diagonale dominante stricte par ligne. Donc, les
méthodes de Jacobi et de Gauss-Seidel convergent.

m Le point précédent nous informe que les méthodes de Jacobi et de
Gauss-Seidel convergent dans ce cas, alors A est réguliére, tridiagonale et
avec les coefficients diagonaux non-nuls, on a p(Bgs) = p(By)?. Donc, on
s'attend a ce que la méthode de Gauss-Seidel converge plus rapidement que
celle de Jacobi.

m A n’est pas symétrique définie positive, donc on n'a aucune garantie que
les méthodes de Richardson stationnaire préconditionné, du gradient
préconditionné et du gradient conjugué préconditionné convergent. En effet,
méme si elles convergent, la vitesse de convergence peut étre assez lente car

elle dépend du choix de a ou ay.
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Systémes linéaires

On approche la solution par une méthode itérative en partant de

0
7 1/2

I — x|

[x© —x]|
de Gauss-Seidel, de Richardson stationnaire préconditionné avec o« = 0.5 et

La figure qui suit montre la valeur de pour les méthodes de Jacobi,

P=D-= (g g) et du gradient conjugué préconditionné avec P = D.

A noter que cette fois-ci, la méthode du gradient conjugué préconditionné ne
converge pas.
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Comportement de |'erreur relative pour différentes méthodes itératives appliquées

au systéeme (2) :

10°
100
53
AI
S
=
%
,\I
=
=
107"} .
— Jacobi
“““ Gauss-Seidel
- - Richard. (stat.)
15| == Grad. conj.
107 I L L
0 5 10 15 20
k
Systémes linéaires 38/ 39

S. Deparis, SCI-SB-SC-EPFL



Systémes linéaires

Critéres de convergence

On a la relation suivante :
Si A est une matrice symétrique définie positive, alors

=]

A B

L'erreur relative a la k-iéme itération peut &tre majorée par le résidu relatif
multiplié par le conditionnement de A.

En particulier, si K(A) ~ 1, une petite valeur de la norme du résidu correspond a
une petite valeur de la norme de l'erreur; si K(A) > 1, cette relation peut &tre
fausse.

On a également une estimation (utilisée si P # I) :

[Pl

=R
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