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Systèmes linéaires

Convergence : conditions suffisantes

Condition nécessaire et suffisante : ρ(B) < 1.

Si A est une matrice à diagonale dominante stricte par ligne, c’est-à-dire

|aii| >
∑

j=1,...,n;j ̸=i

|aij|, i = 1, . . . , n.

alors les méthodes de Jacobi et de Gauss-Seidel sont convergentes
Soit A régulière, tridiagonale et dont les coefficients diagonaux sont tous
non-nuls. Alors les méthodes de Jacobi et de Gauss-Seidel sont toutes les
deux soit divergentes soit convergentes. Dans le deuxième cas,
ρ(BGS) = ρ(BJ)

2

Si A est une matrice symétrique définie positive, alors la méthode de
Gauss-Seidel converge (la méthode de Jacobi pas forcément).
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Systèmes linéaires

La méthode de Richardson Préconditionnée

Richardson préconditionnée

Soit x(0) donné, r(0) = b− Ax(0) pour k = 0, 1, 2, ... :

trouvez z(k) tel que Pz(k) = r(k)

choisissez αk

x(k+1) = x(k) + αkz
(k)

r(k+1) = r(k) − αkAz
(k).

Cette méthode est appelée
méthode de Richardson stationnaire préconditionnée si αk = α (une
constante donnée) ;
autrement elle est dite méthode de Richardson dynamique préconditionnée
quand αk peut varier au cours des itérations.

La matrice inversible P est appelée préconditionneur de A.
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Systèmes linéaires

Richardson : choix de αk

Si A et P sont symétriques définies positives, alors on a deux critères optimaux
pour le choix de αk :

1. Cas stationnaire :

αk = αopt =
2

λmin(P−1A) + λmax(P−1A)
, k = 0, 1, ...

où λmin et λmax désignent respectivement la plus petite et la plus grande
valeur propre de la matrice P−1A.

2. Cas dynamique :

αk =
(z(k))T r(k)

(z(k))TAz(k)
, k = 0, 1, ...

où z(k) = P−1r(k) est le résidu préconditionné.
Cette méthode est aussi appelée méthode du gradient préconditionné.
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Systèmes linéaires

Convergence de la méth. de Richardson

Considérons tout d’abord les méthodes de Richardson stationnaires ; on a le
résultat de convergence suivant :

Théorème (Cas stationnaire)

On suppose la matrice P inversible et les valeurs propres de P−1A strictement
positives et telles que λmax = λ1 ≥ λ2 ≥ . . . ≥ λn = λmin > 0. Alors la méthode
de Richardson stationnaire est convergente si et seulement si 0 < α < 2/λ1. De
plus, le rayon spectral de la matrice d’itération Rα est minimal si α = αopt

αopt =
2

λmin + λmax

,

avec
ρopt =

λmax − λmin

λmin + λmax
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Systèmes linéaires

Si on choisit les coefficients α de manière optimale, pour les cas stationnaire et
dynamique, on peut démontrer que, si A et P sont symétriques définies positives,
la suite {x(k)} donnée par la méthode de Richardson (stationnaire et dynamique)
converge vers x lorsque k → ∞, et

∥x(k) − x∥A ≤
(
K(P−1A)− 1

K(P−1A) + 1

)k

∥x(0) − x∥A, k ≥ 0,

où ∥v∥A =
√
vTAv et K(P−1A) est le conditionnement de la matrice P−1A,

K(C) =

√
λmax(CTC)

λmin(CTC)
Si C sdp, K(C) =

λmax(C)

λmin(C)
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Systèmes linéaires

Exercice 5 I

On considère le système linéaire Ax = b, où

A =

 6 −3 0
−3 6 4
0 4 6

 , b =

 1
2
−3

 .

1 Supposons qu’il existe une constante 0 < C < 1 telle que, pour tout k ∈ N,

∥x(k+1) − x∥A ≤ C∥x(k) − x∥A .

Démontrez la majoration de l’erreur suivante (remarquez que l’estimation
est indépendante de la solution x) :

∥x(k) − x∥A ≤ Ck

1− C
∥x(1) − x(0)∥A.
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Systèmes linéaires

Exercice 5 II

Suggestion : estimez ∥x(0) − x∥A par rapport à ∥x(0) − x(1)∥A en utilisant
l’inégalité triangulaire pour (x(0) − x(1)) + (x(1) − x).

2 On considère la méthode de Richardson stationnaire préconditionné, avec la
matrice de préconditionnement P = D, D étant la partie diagonale de A. La
méthode est-elle convergente ? Calculez le paramètre αopt optimal.

3 Sans calculer la solution exacte et en choisissant comme vecteur initial
x(0) = (0, 0, 0)T , estimez le nombre minimal d’itérations nécessaires pour
avoir une erreur (en norme ∥ · ∥A) plus petite que 10−8.
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Systèmes linéaires

Exercice 5 III
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Systèmes linéaires

Exercice 5, solution
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Systèmes linéaires

Exercice 6 I

On considère le système linéaire Ax = b, où

A =

5 3 0
3 5 0
0 0 5

 , b =

8
8
5

 .

1 On considère la méthode de Richardson stationnaire préconditionné, avec
matrice de préconditionnement P = D, D étant la partie diagonale de A.
Pour quel choix de αk = const la méthode est-elle convergente ? Calculez le
paramètre αopt optimal.

2 On considère maintenant la méthode du gradient préconditionné, toujours
avec le préconditionneur P = D. La méthode est-elle convergente ? Calculez
le facteur CG de réduction de l’erreur tel que

∥x(k+1) − x∥A ≤ CG∥x(k) − x∥A.
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Systèmes linéaires

Exercice 6 II

3 Ici la solution est xex = (1, 1, 1)T . Calculez la A-norme de xex, ∥xex∥A.

4 Estimez le nombre minimal d’itérations nécessaires pour calculer la solution
x du système linéaire donnée par la méthode du gradient préconditionné
avec une tolérance tol = 10−2 sur l’erreur ||x(k) − x||A et une solution de
départ x(0) = (0, 0, 0)T . Ensuite, calculez l’erreur en utilisant le même
nombre d’itérations avec la méthode du gradient conjugué préconditionné.
L’erreur est-elle plus petite que 10−2 ? Pourquoi ?
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Systèmes linéaires

Exercice 6 III
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Exercice 6, solution
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Systèmes linéaires

Exercice 7 I

On considère le système Ax = b où :

A =

 α 1/2 0
α− 2 1 0
0 0 β

 , b =

 β + 1
0

γ/2

 .

1 Sans calculer les matrices d’itération, donner une condition suffisante sur le
paramètres α ∈ R, β ∈ R, et γ ∈ R pour que les méthodes de Gauss–Seidel
et de Jacobi soient convergentes.

2 Calculer les matrices d’itération BJ et BGS des méthodes de Jacobi et
Gauss–Seidel respectivement. Etablir pour quelles valeurs de α et β les
méthodes sont convergentes et indiquer quel est le rapport entre leurs
vitesses de convergence.
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Systèmes linéaires

Exercice 7 II

3 Pour quelles valeurs des paramètres α ∈ R, β ∈ R, et γ ∈ R pourrait-on
appliquer au système linéaire Ax = b la méthode de Richardson
stationnaire ? Dans le cas où α = β, quel est le choix optimal du paramètre
d’accéleration ? En utilisant les même paramètres, déterminer le facteur de
réduction de l’erreur correspondant, c’est à dire la constante C > 0 t.q.

||x(k) − x||A ≤ Ck||x(0) − x||A, ∀ k ≥ 0.

4 On veut résoudre le système linéaire par une méthode directe : quelle
factorisation de la matrice A envisageriez-vous ? Justifier votre réponse.

5 On pose α = 0, β = 1, et γ = 2. Calculer la factorisation de la matrice A et
résoudre le systéme linéaire Ax = b.
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Systèmes linéaires

Exercice 7 III
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Systèmes linéaires

Exercice 7, solution
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Systèmes linéaires

Méthode du gradient préconditionné I

Pz(k) = r(k)

αk =
(z(k))T r(k)

(z(k))TAz(k)

x(k+1) = x(k) + αkz
(k)

r(k+1) = r(k) − αkAz
(k).
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Méthode du gradient préconditionné II
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Systèmes linéaires

Analyse d’un exemple

Exemple

Considérons le système linéaire suivant :{
2x1 + x2 = 1
x1 + 3x2 = 0

(1)

dont la matrice est A =

(
2 1
1 3

)
. A est symétrique définie positive. La solution

du système est x1 = 3/5 = 0.6 et x2 = −1/5 = −0.2.
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Systèmes linéaires

Étude préliminaire de convergence

Considérons la matrice associée au système : A =

(
2 1
−1 3

)
.

Selon des critères suffisants connus, on a que
A Jacobi converge
B Gauss-Seidel converge
C ρ(BGS) = ρ(BJ)

2

D La méthode du gradient converge
E La méthode du gradient conjugué converge
F On ne peut rien affirmer
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Systèmes linéaires

Étude préliminaire de convergence

A est une matrice à diagonale dominante stricte par ligne. Alors, les
méthodes de Jacobi et de Gauss-Seidel convergent.
Le point précédent nous informe que les méthodes de Jacobi et de
Gauss-Seidel convergent dans ce cas, alors A est régulière, tridiagonale et
avec les coefficients diagonaux non-nuls, on a ρ(BGS) = ρ(BJ)

2. Donc, on
s’attend à ce que la méthode de Gauss-Seidel converge plus rapidement que
celle de Jacobi.
A est symétrique définie positive, donc les méthodes du gradient
préconditionné et du gradient conjugué préconditionné convergent. En plus,
par construction de la méthode, on s’attend à ce que la méthode du
gradient conjugué preconditionné converge plus vite que celle du gradient
préconditionné.
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Systèmes linéaires

On veut approcher la solution par une méthode itérative en partant de

x(0) =

(
x
(0)
1

x
(0)
2

)
=

(
1
1

2

)
.

On voit que

r(0) = b− Ax(0) =

(
−3

2

−5
2

)
et

∥r(0)∥2 =
√
(r(0))T r(0) =

√
34

2
≈ 2.9155.
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Systèmes linéaires

Méthode de Jacobi

x(k+1) = BJx
(k) + gJ , k ≥ 0, où BJ = I −D−1A et gJ = D−1b.

On a

BJ =

(
1 0
0 1

)
−
(

1
2

0
0 1

3

)(
2 1
1 3

)
=

(
0 −1

2

−1
3

0

)
gJ =

(
1
2

0
0 1

3

)(
1
0

)
=

(
1
2

0

)
et ρ(BJ) = max|λi(BJ)| = max(abs(eig(BJ))) = 0.4082.
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Systèmes linéaires

Pour k = 0 (1ère itérée) on trouve :

x(1) = BJx
(0) + gJ =

(
0 −1

2

−1
3

0

)(
1
1
2

)
+

(
1
2

0

)
=

(
1
4

−1
3

)
≈
(

0.25
−0.3333

)
.

On remarque que

r(1) = b− Ax(1) =

(
0.8333
0.75

)
et ∥r(1)∥2 = 1.1211.
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Systèmes linéaires

Méthode de Gauss-Seidel

x(k+1) = BGSx
(k) + gGS, k ≥ 0, où BGS = (D − E)−1(D − E − A)

et gGS = (D − E)−1b.

On a

BGS =

(
2 0
1 3

)−1(
0 −1
0 0

)
=

(
1
2

0
−1

6
1
3

)(
0 −1
0 0

)
=

(
0 −1

2

0 1
6

)
gGS =

(
1
2

0
−1

6
1
3

)(
1
0

)
=

(
1
2

−1
6

)
Dans ce cas ρ(BGS) = max|λi(BGS)| = max(abs(eig(BGS))) = 0.1667.
On vérifie que ρ(BGS) = ρ(BJ)

2.
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Systèmes linéaires

Pour k = 0 (1ère itérée) on trouve :

x(1) = BGSx
(0) + gGS =

(
0 −1

2

0 1
6

)(
1
1
2

)
+

(
1
2

−1
6

)
=

(
1
4

− 1
12

)
≈
(

0.25
−0.0833

)
.

On a

r(1) = b− Ax(1) =

(
0.5833

0

)
et ∥r(1)∥2 = 0.5833.
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Systèmes linéaires

Méthode du gradient préconditionné avec P = D

On pose r(0) = b− Ax(0) =

(
1
0

)
−
(
2 1
1 3

)(
1
1
2

)
=

(
−3

2

−5
2

)
.

Pour k = 0, on a :

Pz(0) = r(0) ⇔ z(0) = P−1r(0) =

(
−3

4

−5
6

)
α0 =

(z(0))T r(0)

(z(0))TAz(0)
=

77

107

x(1) = x(0) + α0z
(0) =

(
0.4603
−0.0997

)
r(1) = r(0) − α0Az

(0) =

(
0.1791
−0.1612

)
et ∥r(1)∥2 = 0.2410.
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Systèmes linéaires

Méthode du gradient conjugué préconditionné avec P = D
On pose r(0) = b− Ax(0), z(0) = P−1r(0) et p(0) = z(0). Pour k = 0, on a :

α0 =
(p(0))T r(0)

(p(0))TAp(0)
=

(z(0))T r(0)

(z(0))TAz(0)

x(1) = x(0) + α0p
(0) = x(0) + α0z

(0)

r(1) = r(0) − α0Ap
(0) = r(0) − α0Az

(0).

On voit que la première itérée x(1) coïncide avec celle obtenue par la méthode du
gradient préconditionné.
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Systèmes linéaires

Puis, on termine la première itération de la méthode du gradient conjugué
préconditionné :

Pz(1) = r(1) ⇔ z(1) = P−1r(1) =

(
0.0896
−0.0537

)
β0 =

(Ap(0))Tz(1)

(Ap(0))TAp(0)
=

(Az(0))Tz(1)

(Az(0))Tz(0)
= −0.0077

p(1) = z(1) − β0p
(0) = z(1) − β0z

(0) =

(
0.0838
−0.0602

)
.
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Systèmes linéaires

Si, maintenant, on calcule la deuxième itérée x(2) (k = 1) en utilisant ces quatre
méthodes, on trouve :

Méthode x(2) r(2) ∥r(2)∥2
Jacobi

(
0.6667
−0.0833

) (
−0.2500
−0.4167

)
0.4859

Gauss-Seidel
(

0.5417
−0.1806

) (
0.0972

0

)
0.0972

PG
(

0.6070
−0.1877

) (
−0.0263
−0.0438

)
0.0511

PCG
(
0.60000
−0.2000

) (
−0.2220
−0.3886

)
· 10−15 4.4755 · 10−16
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Systèmes linéaires

Comportement de l’erreur relative pour différentes méthodes itératives appliquées
au système (1) :

0 5 10 15 20
10

−20

10
−15

10
−10

10
−5

10
0

k

||
x

(k
) −

x
||
/|
|x

(0
) −

x
||

Jacobi
Gauss−Seidel
Grad.
Grad. conj.
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Systèmes linéaires

Un autre exemple

Exemple

On considère maintenant le système{
2x1 + x2 = 1
−x1 + 3x2 = 0

(2)

dont la solution est x1 = 3/7, x2 = 1/7.
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Systèmes linéaires

Étude préliminaire de convergence

Considérons la matrice associée au système : A =

(
2 1
−1 3

)
.

Selon des critères suffisants connus, on a que
A Jacobi converge
B Gauss-Seidel converge
C ρ(BGS) = ρ(BJ)

2

D La méthode du gradient converge
E La méthode du gradient conjugué converge
F On ne peut rien affirmer
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Systèmes linéaires

Étude préliminaire de convergence

Considérons la matrice associée au système : A =

(
2 1
−1 3

)
.

A est une matrice à diagonale dominante stricte par ligne. Donc, les
méthodes de Jacobi et de Gauss-Seidel convergent.
Le point précédent nous informe que les méthodes de Jacobi et de
Gauss-Seidel convergent dans ce cas, alors A est régulière, tridiagonale et
avec les coefficients diagonaux non-nuls, on a ρ(BGS) = ρ(BJ)

2. Donc, on
s’attend à ce que la méthode de Gauss-Seidel converge plus rapidement que
celle de Jacobi.
A n’est pas symétrique définie positive, donc on n’a aucune garantie que
les méthodes de Richardson stationnaire préconditionné, du gradient
préconditionné et du gradient conjugué préconditionné convergent. En effet,
même si elles convergent, la vitesse de convergence peut être assez lente car
elle dépend du choix de α ou αk.
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Systèmes linéaires

On approche la solution par une méthode itérative en partant de

x(0) =

(
x
(0)
1

x
(0)
2

)
=

(
1
1/2

)
.

La figure qui suit montre la valeur de
∥x(k) − x∥
∥x(0) − x∥

pour les méthodes de Jacobi,

de Gauss-Seidel, de Richardson stationnaire préconditionné avec α = 0.5 et

P = D =

(
2 0
0 3

)
, et du gradient conjugué préconditionné avec P = D.

À noter que cette fois-ci, la méthode du gradient conjugué préconditionné ne
converge pas.
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Comportement de l’erreur relative pour différentes méthodes itératives appliquées
au système (2) :

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

k

||
x

(k
) −

x
||
/|
|x

(0
) −

x
||

Jacobi
Gauss−Seidel
Richard. (stat.)
Grad. conj.
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Systèmes linéaires

Critères de convergence
On a la relation suivante :
Si A est une matrice symétrique définie positive, alors

∥x(k) − x∥
∥x∥

≤ K(A)
∥r(k)∥
∥b∥

. (3)

L’erreur relative à la k-ième itération peut être majorée par le résidu relatif
multiplié par le conditionnement de A.
En particulier, si K(A) ≈ 1, une petite valeur de la norme du résidu correspond à
une petite valeur de la norme de l’erreur ; si K(A) ≫ 1, cette relation peut être
fausse.
On a également une estimation (utilisée si P ̸= I) :

∥x(k) − x∥
∥x∥

≤ K(P−1A)
∥P−1r(k)∥
∥P−1b∥

.

S. Deparis, SCI-SB-SC–EPFL Systèmes linéaires 39 / 39


	4.2 – Systèmes linéaires – Méthodes itératives

