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Systémes linéaires

Formulation du probléme

On appelle systéme linéaire d'ordre n (n entier positif), une expression de la
forme
Ax = b,

ol A = (a;;) est une matrice de taille n x n donnée, b = (b;) est un vecteur
colonne également donné et x = (z;) est le vecteur des inconnues du systéme.
La relation précédente équivaut aux n équations

n

E aijxj:bi, 2:1,...,71.

J=1

La matrice A est dite réguliére (non singuliere) si det(A) # 0. On a |'existence
et 'unicité de la solution x (pour n'importe quel vecteur b donné) si et
seulement si la matrice associée au systéme linéaire est réguliére.
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Systémes linéaires

Sommaire méthodes itératives

Méthodes itératives : définitions
Méthode de Richardson

Méthodes de Jacobi et de Gauss-Seidel
Critéres de convergence

m Méthodes du Gradient et du Gradient Conjugués
Critéres de convergence
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Systémes linéaires

Méthodes itératives

Résoudre un systéme linéaire Ax = b par une méthode itérative consiste a
construire une suite de vecteurs x*), £ > 0, de R" qui converge vers la solution
exacte x, c'est-a-dire :

lim x® = x
k—oo

pour n'importe quelle donnée initiale x(© € R™.
On peut considérer la relation de récurrence suivante :

x5 = Bx® 1 g k>0 (1)

ol B est une matrice bien choisie (dépendante de A) et g est un vecteur
(dépendant de A et de b), qui vérifient la relation (de consistance)

x=DBx+g. (2)
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Systémes linéaires

Méthodes itératives |
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Systémes linéaires

Méthodes itératives ||
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Systémes linéaires

Critére de convergence suffisant et nécessaire

On peut montrer que lim_,.. e® = 0 pour tout e(”) (et donc pour tout x(¥) si
et seulement si

p(B) <1,

ol p(B) est le rayon spectral de la matrice B, défini par

p(B) = max |Ai(B)|

et \;(B) sont les valeurs propres de la matrice B.

Plus la valeur de p(B) est petite, moins il est nécessaire d'effectuer d'itérations
pour réduire |'erreur initiale d'un facteur donné. Plus précisement :

el < p(B)lle|| et donc [le V]| < p(B) 1l k=0.1.....
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Systémes linéaires

Construction d'une méthode itérative |

Une approche générale pour construire une méthode itérative est basée sur la
décomposition de la matrice A :

ou

est une

atrice in

versible

pelée

préconditionneur de A.

Al

ors,

qui est de la forme (2) en posant

B=P ' (P-A)=1-P'A e g=P'b

La méthode itérative est construite en remplacant
Px=(P—-Ax+b
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Systémes linéaires

Construction d'une méthode itérative I

Pxt = (P - A)x® +b o PxtD - px® =p - Ax®

On peut généraliser cette méthode de la maniére suivante :
P(xHD — xM)y = g r® k=0,1,2,.. (3)
oil oy, # 0 est un paramétre pour améliorer la convergence de la suite x*).
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Systémes linéaires

La méthode de Richardson préconditionnée

Richardson préconditionnée

Soit x(© donné, r® =b — Ax® pour k =0,1,2, ... :

trouvez z* tel que  Pz® =r® (3)
choisissez ay,
xF+D) = x®) 4 0y 7®
r+D) — p — Axk+D
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Systémes linéaires

La méthode de Jacobi

Si les éléments diagonaux de A sont non nuls, on peut poser P; = D, la partie
diagonale de A.
On déduit alors :

Dx* =b — (A - D)x® k> 0.
Par composantes :

(kH (b— Z a;x (k>, i=1,...,n. (4)

J=1,j#

La méthode de Jacobi peut s'écrire sous la forme générale x**1) = Bx*) 4 g

avec B=B;=D'D—-A)=1-D"A, |etg=g;=D"'b.
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Systémes linéaires

La méthode de Gauss-Seidel

Prenond o = 1 et Pgg la partie triangulaire inférieure de A avec la diagonale.

i—1
(bt _ L b — (k+1 ’f) =1

j=1 Jj=i+1

On peut écrire cette méthode sous la forme (3), avec la matrice d'itération
B = Bgg donnée par

BGS = Pé‘;(PGS — A) et gas = Pééb
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Systémes linéaires

Critéres de convergence

On a la relation suivante :
Si A est une matrice symétrique définie positive, alors

=]

A B

L'erreur relative a la k-iéme itération peut &tre majorée par le résidu relatif
multiplié par le conditionnement de A.

En particulier, si K(A) ~ 1, une petite valeur de la norme du résidu correspond a
une petite valeur de la norme de l'erreur; si K(A) > 1, cette relation peut &tre
fausse.

On a également une estimation (utilisée si P # I) :

[Pl

=R
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Systémes linéaires

Convergence : conditions suffisantes

m Condition nécessaire et suffisante : p(B) < 1.

m Si A est une matrice a diagonale dominante stricte par ligne, c'est-a-dire

|aii|> Z |az~j|, 1=1,...,n.

J=1mij

alors les méthodes de Jacobi et de Gauss-Seidel sont convergentes

m Soit A réguliére, tridiagonale et dont les coefficients diagonaux sont tous
non-nuls. Alors les méthodes de Jacobi et de Gauss-Seidel sont toutes les
deux soit divergentes soit convergentes. Dans le deuxiéme cas,
p(Bas) = p(By)*

m Si A est une matrice symétrique définie positive, alors la méthode de
Gauss-Seidel converge (la méthode de Jacobi pas forcément).
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Systémes linéaires

La méthode de Richardson Préconditionnée

Richardson préconditionnée

Soit x(© donné, r® =b — Ax® pour k =0,1,2, ... :

trouvez z* tel que pz® =1®  (3)
choisissez ay,
xF+D) = x#) 4 o 5(®)
r+D — (B _ o) A7),

Cette méthode est appelée
m méthode de Richardson stationnaire préconditionnée si oy, = o (une

constante donnée) ;
m autrement elle est dite méthode de Richardson dynamique préconditionnée

quand «y, peut varier au cours des itérations.

La matrice inversible P est appelée préconditionneur de A.
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Systémes linéaires

Richardson : choix de a;

Si A et P sont symétriques définies positives, alors on a deux critéres optimaux
pour le choix de ay, :

1. Cas stationnaire :

2
)\mzn(P_lA) + )\maz(P_lA>,

O = Qopt =

k=0,1,..

ol A\in €t Anqe désignent respectivement la plus petite et la plus grande
valeur propre de la matrice P71 A.

2. Cas dynamique :

(20T (®)

U= G T Az

k=0,1,..

ot z®) = P~1r(¥) est le résidu préconditionné.
Cette méthode est aussi appelée méthode du gradient préconditionné.
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Systémes linéaires

La méthode de Richardson non-préconditionnée

Si P =1 et A est symétrique définie positive, alors les critéres optimaux sont :

m cas stationnaire :

2
)\mzn(A) + )\ma:c (A) '

A = Qopt =

m cas dynamique, appelé méthode du gradient si :

(BT (k)

U= T AR
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Systémes linéaires

Algorithme du Gradient préconditionné

On peut réécrire plus efficacement la méthode du gradient préconditionné de la
maniére suivante : soit x(©), poser r® = b — Ax(©), puis pour k =0, 1, ...,

Pz®) = p(®)
(2R Tp(®)
Ak =
" (20T Az®)

p+D) — p(F) _ ozkAz(k).

On observe qu'on doit résoudre un systéme linéaire pour la matrice P a chaque
itération ; donc P doit étre telle que la résolution du systéme associé soit facile
(c’est-a-dire avec un colit raisonnable). Par exemple, on pourra choisir P
diagonale ou triangulaire.

S. Deparis, SCI-SB-SC-EPFL Systémes linéaires 18 / 24



Systémes linéaires
Convergence de la méth. de Richardson

Considérons tout d'abord les méthodes de Richardson stationnaires:; on a le
résultat de convergence suivant :

Théoréme (Cas stationnaire)

On suppose la matrice P inversible et les valeurs propres de P~1 A strictement
positives et telles que o = AN > Ao > ... > Ay = Ain > 0. Alors la méthode
de Richardson stationnaire est convergente si et seulement si0 < o < 2/\;. De
plus, le rayon spectral de la matrice d'itération R, est minimal si oc = o

_ 2
e o e
avec
. /\maa; B Amzn
Popt )\mm + )\m(m
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Systémes linéaires

Dans le cas dynamique, on a un résultat qui permet de choisir de facon optimale
le paramétre d'accélération a chaque étape, si les matrice A et P sont
symétrique définie positives :

Théoreme (Cas dynamique)

Si A est symétrique définie positive, le choix optimal de «, est donné par

(x(®), 24

(AZ(k), Z(k))7 k Z 0

o —

ou
z®) = p~ipk),
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Systémes linéaires

Si on choisit les coefficients o de maniére optimale, pour les cas stationnaire et
dynamique, on peut démontrer que, si A et P sont symétriques définies positives,
la suite {x(*} donnée par la méthode de Richardson (stationnaire et dynamique)
converge vers x lorsque k — oo, et

K(P'4) -1

(k) _ < ==_7 -
™ = xla < (K(P—lA) 11

k
)Hﬂ”—ﬂm k>0,

ot ||[v]ja = VvTAv et K(P~'A) est le conditionnement de la matrice P71 A,

max (CTC)

Amax(C7 C) _ Anax(C)
Amin (CTC) n

Ke)= Nouin (€

Si C sdp, K(C)
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Systémes linéaires

Remarque. Dans le cas de la méthode du gradient ou de Richardson
stationnaire (sans préconditionneur) I'estimation de I'erreur devient

K(A) -1

(k) _ < (22 -

k
) HX(O) —x||la, k>0.

Remarque. Si A et P sont symétriques définies positives, on a

Amaz(P7EA)

K(P'A) = o (P1A)°
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Systémes linéaires
La méthode du gradient conjugué

Une méthode encore plus rapide dans le cas ot P et A sont symétriques définies
positives est celle du gradient conjugué préconditionné qui s'exprime ainsi :

soit x(© une donnée initiale; on calcule r® = b — Ax®, 70 = p=13(0)

p©@ =z puis pour k > 0,

p® T k)
T
p(k) Ap(k)
r+1) — p ) _ o, Ap®)
Pgk+1) — p(k+1)
( Ap<k>)TZ<k+1>

2 ap®)Tp
pkE+D) — (k1) _ g o)

Af =
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Systémes linéaires

Dans ce cas, |'estimation de |'erreur est donnée par

k
x4 = x4 < T % = x4y k=0 on e =
C
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